毛白杨苗期水肥耦合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以毛白杨(Populus tomentosa Carr.)S86号为材料分别于北京林业大学和河北威县进行盆栽和大田试验,对水分和肥料进行控制,研究不同土壤水分、不同肥料与施肥水平耦合对毛白杨生长发育、光合特性、植株酶活性、养分含量等生理指标的影响,实现节水、省肥、提高水肥利用率、提高产量的目的。研究结果表明:
     (1)对毛白杨生长影响最大的是土壤水分,其中土壤水分对苗高、整株叶面积和生物量的影响居于首位,且有显著的正效应;其次是氮肥和磷肥,影响小于土壤水分。不同水氮磷耦合下,生物量与各生长指标呈正相关,其中和整株叶面积相关性最大,其次为苗高,最低的是地径,但各生长指标相关性均达到显著水平。据此可以通过各个生长指标来预测盆栽毛白杨苗期生物量的生长情况。
     在本试验条件下,土壤水分和氮肥对毛白杨生物量影响有明显的交互作用,而土壤水分和磷肥、氮肥和磷肥交互关系未达到显著。对水氮进行田间耦合试验表明,水氮耦合处理下毛白杨苗木各部位干重大小为茎>根>叶,茎干重约占总生物量的59.48%,根干重占总生物量的22.13%,叶干重约占总生物量的18.38%。低水条件下,低氮能促进毛白杨生物量的累积,中氮和高氮均使生物量下降;中水条件下,中氮处理较利于毛白杨生长,生物量达到最大;高水条件下,中氮处理能获得较大的生物量。不施氮和低氮条件下,水分增加不利于生物量积累,此时水分胁迫对生物量积累有一定促进作用;但在中氮和高氮条件下,水分增加促进生长,水分供应越充足,获得的生物量越大。
     (2)毛白杨苗木叶片净光合速率(Pn)对环境条件中的水肥变化较敏感,7月到9月,毛白杨苗木Pn逐渐升高,其峰值出现9月。不同月份蒸腾速率(Tr)的变化规律与Pn有所不同,叶片Tr在苗木生长的过程中呈先升高后降低的趋势,8月达到峰值。毛白杨苗木Pn与气孔导度(Gs)、Tr和胞间CO2浓度(Ci)呈极显著正相关,与叶片水分利用效率(WUE)和气孔限制值(Ls)呈极显著负相关。WUE与Pn、Gs、Ci、Tr均呈极显著负相关,而与Ls呈极显著正相关。不同水肥处理下,导致毛白杨苗木光合速率变化的主导因素是气孔限制因素,同时也存在由于叶片营养和水分失衡导致的叶片自身光合能力下降等非气孔限制因素。
     低水条件下,增施氮肥不利于Pn的升高,高氮条件下,Pn值最低;中水条件下,施用氮肥对Pn的增加有一定促进作用,氮肥施用过多,Pn值同样下降,低氮下Pn最高;高水条件下,高氮水平下Pn值高于中低氮水平,不施氮肥处理Pn值最低。无论将氮固定在何种水平下Pn随土壤水分的变化趋势一致,随着土壤水分的增加而增加,分别在高水下达到最大值。当氮肥固定在一定水平时,光补偿点(LCP)随着土壤水分水平的升高而成下降趋势,表明苗木在弱光下光合能力越来越弱,不能很好的利用弱光。当土壤水分固定在一定水平时,LCP在低氮和中氮下较高,表明这些处理光合能力较强,低氮和中氮处理较利于毛白杨苗木弱光下的光合作用。
     (3)水肥互作效应对水分利用效率和养分吸收有显著的影响,水肥耦合存在一定的阈值。各时期毛白杨苗木的瞬时水分利用效率呈先降低后增高的趋势,9月>7月>8月。6-10月,毛白杨叶片全N量呈现降-升-降的总体趋势,叶片含P、K量呈升-降-升的趋势。
     低水条件下,增施氮肥能提供植株的养分吸收能力;中高水条件下,氮肥的施入对植株养分吸收也有促进作用,但是氮肥施入量过大,会抑制养分的吸收。土壤水分与植株吸收养分密切相关,充足的土壤供水能显著提高植株养分吸收能力。中低水条件下,低氮处理毛白杨苗木叶片WUE较大,随着氮肥水平的增大,WUE降低,水分胁迫下,施入较多的氮肥会降低苗木叶片WUE;而土壤水分较充足时,不施氮处理叶片WUE最高。另一方面,水分对叶片WUE影响较大,其中,低氮条件下,中水WUE较高;中高氮条件下,水分越充足,WUE越高,高水时达到最大。
     (4)盆栽条件下,构建多目标决策模型,对目标函数应用计算机寻求最优解可得,当各因素水平编码值分别为:X](土壤水分)=1.27,X2(氮肥)=1.33,X3(磷肥)=0.56时,即相当于水分为田间持水量的73.9%,施氮量为4.48 g·plant-1,施磷量为1.67 g·plant-1时各响应变量能达到最优。
     田间条件下,综合水氮处理对毛白杨生长、生理特征、经济效益、水分利用率和肥料吸收量的综合评价可看出,W3N2处理即土壤含水量控制在田间持水量的70-75%,施氮肥为300kg·hm-2处理在毛白杨苗期田间管理中综合评价最好,有利于毛白杨生长,同时能获得较高的经济利润,而W1N0处理在生产中应该被淘汰。
With Clone S86 of Chinese white poplar (Populus tomentosa Carr.) as test materials, we conducted a pot experiment in a gas-permeable greenhouse in a nursery of Beijing Forestry University and a field experiment in the experimental base in Wei County, Hebei Province, China. The specific objectives of this study were to quantify the coupling effects of soil water and fertilizer application on the physiological indexes inducing growth parameters, photosynthetic characteristics, enzymatic activity and nutrient contents of P. tomentosa seedlings, and to achieve the result of economizing water, saving fertilizer and increasing yield. By means of research, main conclusions are elicited as follows:
     (1) Soil relative water content (W) had the biggest impact on the growth of P. tomentosa seedlings. All the W, nitrogen application (N) and phosphorus application (P) treatments had obvious positive effects on height growth, leaf area and biomass yield with the size sequence of W>N>P. Correlations among the growth parameters of P. tomentosa seedlings subjected to different combinations of W, N and P treatments showed that biomass yield was positively correlated with the other growth parameters and the correlation coefficient of BY and LA was the highest, next was height growth and finally was basal diameter. A significant positive correlation between leaf area and height growth or basal diameter was also found. Therefore, the biomass yield of P. tomentosa seedlings can be predicted with the values of growth parameters.
     There were significantly positive interaction effects of W×N on biomass yield of P. tomentosa seedlings, whereas the interaction effects of W×P and N×P were not significant. The field experiment of interactions between W and N indicted that stem had the heaviest dry matter, next was root and last was leaf, where the proportion of dry weight of stem, root and leaf in total biomass yield were 59.48%, 22.13% and 18.38%, respectively. At lower W levels, there was a higher growth and production with the lower levels of N but not with medium or higher levels. At medium W levels, the highest biomass yield could be obtained at medium N levels. At higher W levels, there was a higher growth and production at medium levels of N. Meanwhile, biomass yield of seedlings was decreased with W increasing at lower N or non-N levels and certain water deficit could improve plant growth. At medium or higher levels of N, biomass yield of seedlings was significantly increased with W increasing and the higher W levels, the greater biomass yield.
     (2) Net photosynthetic rate (Pn) in the leaves of P. tomentosa seedlings was sensitive to different combinations of W, N and P treatments. A progressive increase in Pn of the seedlings was found from July to September and the peak value found in September. Differing from Pn, the variation trend of transpiration rate (Tr) first increased and then dropped with time and the peak value of Tr was obtained in August. There was an obviously positive correlation between Pn and stomatal conductance (Gs),Tr or intercellular CO2 concentration (Ci) but highly negative correlation between Pn and water use efficiency (WUE) or stomatal limitation (Ls). And, there was an obviously negative correlation between WUE and Pn, Gs, Tr or Ci but highly positive correlation between WUE and Ls. Our results show that the inhibition of photosynthesis under different soil water and fertilizer treatments was mainly attributed to the stomatal factors and also due to nonstomatal factors, that is, the suppression of chloroplast capacity to fix CO2 caused by the imbalances of nutrient and water contents in leaves.
     At lower W levels, the value of Pn was decreased with the increase of N levels and the lowest Pn was found at the highest N levels. At medium W levels, the highest value of Pn was obtained at medium N levels and over-N applications also decreased Pn. At higher W levels, there was a higher Pn at higher N levels than medium or lower N levels and the value was lowest at non-N level. Pn kept increasing with the increase of W levels under the N at any fixed level and there was the highest values of the three parameters at the higher levels of W. When N at a fixed level, light compensate point (LCP) signifying the photosynthetic capacity in low light decreased with W increasing, whereas the value of LCP was higher at medium or lower N levels.
     (3) The coupling effects of soil water and fertilizer applications on WUE and nutrient contents were significant and had certain threshold. WUE in the leaves of P. tomentosa seedlings initially dropped and then improved with time and the peak value of WUE was obtained in September. From June to October, the variation trend of leaf N content was a down-up-down sequence and leaf P and K contents were up-down-up.
     Specifically, increasing N application could improve the nutrient absorption capacity of seedlings subjected to lower levels of W. At medium and higher W levels, plant nutrient content was initially improved with an increase of N application but actually decreased under excessively high levels of N fertilizer, suggesting that soil water was closely related to the nutrient content and sufficient water supply can significantly improved the nutrient absorption capacity. As for WUE, at medium and lower W levels, the value of WUE in the leaves of P. tomentosa seedlings was higher with the lower levels of N. And, the value of WUE of seedlings subjected to non-N level was highest when soil water was sufficient. In contrast, there was a higher WUE with the higher levels of W at higher or lower N levels.
     (4) In the pot experiment, a multiple target decision model synthesizing relevant parameters was established to obtain the optimized combination. We concluded that the recommended combination of W, N and P for growers was W=78.1% of the field capacity, N=4.48 g plant-1, and P=1.67 g plant-1 (i.e. coded values of W, N and P factors were 1.55,1.33 and 0.56, respectively).
     In the field experiment, we conducted a comprehensive evaluation on plant growth, physiological characters, water use efficiency, fertilizer absorption amount and economic benefits of Populus tomentosa seedlings grown in field coupling affected by W and N. The results showed that W3N2 treatment (i.e. W=70%~75%, N=300 kg hm-2) was the best combination whereas W1N0 treatment should be eliminated in the field management.
     All these recommendations should help to achieve maximum growth potential of P.tomentosa seedlings, obtain high water and fertilizer use efficiencies and reduce the risk of nitrate pollution of groundwater in arid and semi-arid regions.
引文
[1]鲍甫成,熊满珍.我国木材及林产品供需平衡研究[J].林产工业,2005,32(4):3-5.
    [2]鲍士旦.土壤农化分析[M].北京:农业出版社,2008.
    [3]曹帮华,巩其亮,齐清.三倍体毛白杨苗期不同配方施肥效应的研究[J].山东农业大学学报:自然科学版,2004,35(4):512-516.
    [4]柴仲平,王雪梅,孙霞,等.水氮耦合对红枣光合特性与水分利用效率的影响研究[J].西南农业学报,2010,23(5):1625-1630.
    [5]陈年来,李庭红,王刚,等.甜瓜光合特性研究Ⅰ单叶面积动态与光合性能[J].兰州大学学报(自然科学版),2001,37(2):105-111.
    [6]陈竹君,刘春光,周建斌,等.不同水肥条件对小麦生长及养分吸收的影响[J].干旱地区农业研究,2001,19(3):30-35.
    [7]戴春昌.杨树营养缺乏及防治[J].林业月报,1993,6:15-16.
    [8J邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002.
    [9]邓坦.欧美杨107杨扦插苗需肥规律和合理施肥技术研究[D].北京林业大学,2009.
    [10]段树生,施海,王连军.施肥对毛白杨生长量、叶片氮(N)、磷(P)、钾(K)含量及蒸腾作用、气孔阻力影响的研究[J].广东林业科技,2007,23(3):13-17.
    [11]范晶,赵惠勋,李敏.比叶重及其与光合能力的关系[J].东北林业大学学报,2003,31(5):37-39.
    [12]方晓娟,李吉跃,聂立水,等.毛白杨杂种无性系稳定碳同位素值的特征及其水分利用效率[J].生态环境学报,2009,18(6):2267-2271.
    [13]冯晓旺,宣奇丹,张文杰.毛白杨叶片含水量无损检测系统的研究[J].安徽农业科学,2010,38(15):8213-8215.
    [14]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019.
    [15]高建社,孙楠,马宝有,等.白杨派几个无性系抗旱性比较研究[J].西北林学院学报,2007,22(3):64-66.
    [16]龚江,王海江,谢海霞,等.膜下滴灌水氮耦合对棉花生长和产量的影响[J].灌溉排水学报,2008,27(6):51-54.
    [17]关军锋,李广敏.干旱条件下施肥效应及其作用机理[J].中国生态农业学报,2002,10(1):59-61.
    [18]郭惠清,田有亮.杨幼树水分生理指标和光合强度与土壤含水量关系的研究[J].干旱区资源与环境,1998,12(2):101-106.
    [19]郭文琦,张思平,陈兵林,等.水氮运筹对棉花花后生物量和氮素利用率的影响[J].西北植物学报,2008,28(11):2270-2277.
    [20]韩汉鹏.试验统计引论[M].北京:中国林业出版社,2006.
    [21]韩晓增,裴宇峰,王守宇,等.水氮耦合对大豆生长发育的影响Ⅱ.水氮耦合对大豆生理特征的影响[J].大豆科学,2006,25(2):103-108.
    [22]何春霞,李吉跃,张燕香,等.5种绿化树种叶片比叶重、光合色素含量和613C的开度与方位差异[J].植物生态学报,2010,34(2):134-143.
    [23]何华,陈国良,赵世伟.水肥配合对马铃薯水分利用效率的影响[J].干旱地区农业研究,1999,17(2):59-66.
    [24]何明珠,王辉,陈智平.荒漠植物持水力研究[J].中国沙漠,2006,26(3):403-408.
    [25]何茜.毛白杨抗旱节水优良无性系评价与筛选[D].北京林业大学,2008.
    [26]何茜,李吉跃,陈晓阳,等.毛白杨不同无性系苗木耗水量及其昼夜分配[J].华南农业大学学报,2010,31(1):47-50.
    [27]胡磊,李吉跃,尚富华,等.不同施肥处理对毛白杨人工林生长及营养状况的影响[J].中国农学通报,2010,26(9):115-121.
    [28]胡学俭.10树种苗期抗旱特性及抗旱评价指标体系的研究[D].山东农业大学,2005.
    [29]华元刚,陈秋波,林钊沐,等.水肥耦合对橡胶树产胶量的影响[J].应用生态学报,2008,19(6):1211-1216.
    [30]贾玉彬,王文全,张新荣,等.土壤水分与毛白杨蒸腾耗水关系的研究[J].河北林果研究,1997,12(3):279-283.
    [31]江华.植物种间和种内叶片光合速率差异的生理生化基础[D].中国科学院上海植物生理生态研究所,2001.
    [32]姜卫兵,高光林,俞开锦,等.水分胁迫对果树光合作用及同化代谢的影响研究进展[J].果树学报,2002,19(6):416-420.
    [33]姜岳忠,吴晓星,马玲.毛白杨苗期生长特性及需肥量研究[J].甘肃农业大学学报,2004,39(4):423-426.
    [34]姜志林.森林生态学(三):森林生态系统的生产力[J].生态学杂志,1984,14(4):74-77.
    [35]蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用——光响应曲线的新方法[J].植物学通报,1999,12(6):712-718.
    [36]金剑,刘晓冰,王光华,等.水肥耦合对春小麦群体叶面积及产量的影响[J].吉林农业大学学报,2005,27(3):241-244.
    [37]景茂.银杏对土壤水分胁迫的响应[D].南京林业大学,2005.
    [38]孔东,晏云,段艳,等.不同水氮处理对冬小麦生长及产量影响的田间试验[J].农业工程学报,2008,24(12):36-40.
    [39]李鲁华,李世清,翟军海,等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报,2001,21(1):1-7.
    [40]李美珍,陈爱苹.早作小麦不同降水年型施肥研究[J].河南农业科学,1995,11:15-16.
    [41]李佩艳,尹飞孙,王俊忠,等.施氮量和氮肥后施对夏玉米叶片衰老生理的影响[J].河南农业科学,2010,10):26-29.
    [42]李庆逵.中国农业持续发展中的肥料问题[M].南昌:江西科学技术出版社,1998.
    [43]李邵,薛绪掌,郭文善,等.水肥耦合对温室盆栽黄瓜产量与水分利用效率的影响[J].植物营养与肥料学报,2010,16(2):376-381.
    [44]李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].旱地地区农业研究,1994,12(1):47-53.
    [45]李卫民,周凌云.水肥(氮)对小麦生理生态的影响(Ⅰ)水肥(氮)条件对小麦光合蒸腾与水分利用的影响[J].土壤通报,2004,35(2):136-142.
    [46]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196.
    [47]李秀红.基于灰色关联度的多目标决策模型与应用[J].山东大学学报(理学版),2007,42(12):33-36.
    [48]李严坤,张忠学,仲爽,等.水肥处理对玉米叶片水分利用效率及其光合特性的影响[J].东北农业大学学报,2008,39(10):15-19.
    [49]梁运江,依艳丽,许广波,等.水肥耦合效应对保护地辣椒肥料氮、磷经济利用效率的影 响[J].土壤通报,2007,38(6):1141-1144.
    [50]梁宗锁,李新有.节水灌溉条件下夏玉米气孔导度与光合速度的关系[J].干旱地区农业研究,1996,14(1):101-105.
    [51]林同保,崔国金,王志强,等.拔节期水氮运筹对冬小麦籽粒灌浆期叶片光合特性及水分利用效率的影响[J].麦类作物学报,2009,29(4):627-631.
    [52]林植芳,彭长连,林桂珠.大豆和小麦不同基因型的碳同位素分馏作用及水分利用效率[J].作物学报,2001,27(4):409-414.
    [53]刘奉觉,郑世锴.杨树叶面积与生长指标的关系分析[J].林业科学,1989,25(4):370-374.
    [54]刘建福,汤青林,倪书邦,等.水分胁迫对澳洲坚果叶绿素a荧光参数的影响[J].华侨大学学报(自然科学版),2003,24(3):305-309.
    [55]刘建伟,胡新生.半干旱地区八种杨树无性系间苗期净光合速率变化的研究[J].林业科学研究,1994,7(5):475-480.
    [56]刘婧,王宝山,谢先芝.植物气孔发育及其调控研究[J].遗传,2011,33(2):1-7.
    [57]刘寿坡,李昌华.林地施肥的理论和实践[J].土壤学进展,1987,4:1-8.
    [58]刘寿坡,朱占学,张瑛,等.毛白杨人工林施肥效应的初步研究[J].土壤通报,1988,5:219-222.
    [59]刘勇,陈艳.不同施肥处理对三倍体毛白杨苗木生长及抗寒性的影响[J].北京林业大学学报,2000,22(1):38-44.
    [60]陆景陵.植物营养学[M].北京:中国农业大学出版社,2003.
    [61]吕家珑,张一平.施磷水平对SPAC水分能量特征的影响[J].生态学报,2000,20(2):255-263.
    [62]马晖,于卫平,黄利江,等.杨树速生丰产林配套施肥技术试验研究----追肥试验[J].林业科学研究,2004,17(122-126.
    [63]马建伟,张宋智,王军辉,等.17种植物叶片叶绿素荧光特性分析[J].甘肃林业科技,2009,34(3):1-4.
    [64]马强,宇万太,张璐,等.下辽河平原不同水肥条件对玉米养分吸收与分配的影响[J].农业工程学报,2006,22(S2):283-288.
    [65]穆兴民.水肥耦合效应与协同管理[M].北京:中国林业出版社,1999.
    [66]聂俊华,李丽,肖秋生.水磷耦合对冬小麦幼苗营养元素含量的影响[J].土壤,2005,37(2):158-162.
    [67]牛正田.黑杨派无性系苗期产量相关性状的遗传变异[D].中国林业科学研究院,2007.
    [68]潘瑞炽.植物生理学[M].北京:高等教育出版社,1984.
    [69]裴保华.毛白杨年生育规律的研究[J].林业科学,1962,4:293-297.
    [70]彭晓邦,蔡靖,姜在民,等.渭北黄土区农林复合系统中大豆辣椒的光合生理特性[J].生态学报,2009,29(6):3173-3180.
    [71]綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报,2006,17(5):835-838.
    [72]钱莲文,郭建宏.常绿杨苗期生长特性[J].福建林学院学报,2010,30(1):34-38.
    [73]秦景,董雯怡,贺康宁,等.盐胁迫对沙棘幼苗生长与光合生理特征的影响[J].生态环境学报,2009,18(3):1031-1036.
    [74]区约翰,孙继生.几种树苗叶绿素含量与光合作用及干物质生产关系的比较研究[J].热带林业科技,1985,1):14-19.
    [75]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响[J].厦门大学学报(自然科学版),2005,44(1):28-31.
    [76]石虹.浅谈全球水资源态势和中国水资源环境问题[J].水土保持研究,2002,9(1):145-150.
    [77]史宏志,范艺宽,刘国顺,等.烟草水肥耦合机理研究现状和展望[J].河南农业科学,2008,10:5-10.
    [78]宋维明,程宝栋.关于中国木材贸易资源基础的思考[J].绿色中国:理论版,2004,5:39-42.
    [79]宋先松,石培基,金蓉.中国水资源空间分布不均引发的供需矛盾分析[J].干旱区研究,2005,22(2):162-166.
    [80]宋曰钦,翟明普,贾黎明.不同树龄三倍体毛白杨生物量分布规律[J].东北林业大学学报,2010,38(1):1-3.
    [81]孙景生,康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报,2000,16(2):1-5.
    [82]孙利涛.施肥对杨树生长及生理特性的影响[D].南京林业大学,2008.
    [83]孙时轩,张振江.毛白杨在沙地造林的施肥量及其配比(Ⅱ)[J].北京林业大学学报,1995,17(1):31-36.
    [84]孙霞,柴仲平,蒋平安,等.水氮耦合对苹果光合特性和果实品质的影响[J].水土保持研究,2010,17(6):271-274.
    [85]谭雪莲,郭天文,张国宏,等.氮素对小麦不同叶位叶片叶绿素荧光参数的调控效应[J].麦类作物学报,2009,29(3):437-441.
    [86]唐小明.有机肥的保水培肥效果及对冬小麦产量的影响[J].水土保持研究,2003,10(1):130-132.
    [87]汪德水.旱地农田肥水协同效应与耦合模式[M].北京:气象出版社,1999.
    [88]汪耀富,孙德梅,李群平,等.灌水与氮用量互作对烤烟叶片养分含量、产量、品质及氮素利用效率的影响[J].河南农业大学学报,2003,37(2):119-123.
    [89]王斌,赵桂玲,周稳海,等.灰色关联分析在玉米成本收益评价中的应用[J].中国农学通报,2010,26(15):369-371.
    [90]王聪翔,孙文涛,孙占祥,等.辽西半干旱区水肥耦合对春玉米产量的影响[J].灌溉排水学报,2008,27(2):102-105.
    [91]王国强,周静,崔键,等.不同水肥组合对红壤地区早稻产量及氮肥利用率的影响[J].土壤,2008,40(3):392-398.
    [92]王海艺,韩烈保,杨永利,等.水肥对洋白蜡生物量的耦合效应研究[J].北京林业大学学报,2006,S1:64-68.
    [93]王俭珍,周禾,韩建国,等.新麦草种子产量的水肥耦合模型分析[J].草业学报,2005,14(6):41-49.
    [94]王健,梁运江,许广波,等.水肥耦合效应对保护地辣椒叶片叶绿素含量的影响[J].延边大学农学学报,2006,28(4):287-292.
    [95]王颉.试验设计与SPSS应用[M].北京:化学工业出版社,2006.
    [96]王景伟,朱铁林,王海泽.水肥耦合对大豆生长发育的正交设计实验研究[J].大豆通报,2007,6:17-20.
    [97]王俊儒.施氮条件下供水对作物产量及生理特性的影响[D].西北农林科技大学,2001.
    [98]王力,侯庆春.林地施肥与水肥效益[J].西北林学院学报,2000,15(2):84-88.
    [99]王力,邵明安,侯庆春.水、氮、磷对杨树生物量的耦合效应[J].北京林业大学学报,2000,22(3):19-22.
    [100]王力,邵明安,侯庆春,等.不同水肥条件对杨树生物量的影响[J].西北农林科技大学学报:自然科学版,2004,32(3):53-58.
    [101]王琦,李锋瑞.灌溉与施氮对黑河中游新垦农田土壤硝态氮积累及氮素利用率的影响[J].生 态学报,2008,28(5):2148-2159.
    [102]王荣莲,于健,赵永来,等.滴灌施肥水肥耦合对温室无土栽培水果黄瓜产量的影响[J].节水灌溉,2009,3:15-23.
    [103]王田浩,于希容.不同水肥条件下番茄叶片中丙二醛含量对产量和畸形果的影响[J].宁夏农林科技,2010,4:28-29.
    [104]王同朝,卫丽,吴克宁,等.旱农区水磷耦合效应对春小麦产量和水分利用效率的影响[J].农业工程学报,2000,16(1):53-55.
    [105]王同朝,魏国庆.水资源亏缺下水肥耦合对作物的影响[J].河南农业科学,1999,10:10-11.
    [106]王文全,张立军,李炜波,等.毛白杨幼林节水灌溉效益分析[J].河北林果研究,1997,12(3):284-289.
    [107]王文全,张振江.毛白杨光合作用与土壤水分间关系的研究[J].河北林学院,1993,9(3):185-188.
    [108]王迎,马玉敏,玄成龙,等.三倍体毛白杨无性系苗期生长特性初步探讨[J].山东林业科技,2005,3:9-11.
    [109]韦泽秀.水肥对大棚黄瓜和番茄生理特性及土壤环境的影响[D].西北农林科技大学,2009b.
    [110]韦泽秀,梁银丽,山田智,等.不同水肥条件下番茄土壤微生物群落多样性及其与产量品质的关系[J].植物生态学报,2009a,33(3):580-586.
    [111]魏虹,林魁,李凤民,等.有限灌溉对半干旱区春小麦根系发育的影响[J].植物生态学报,2000,24(1):106-110.
    [112]温国胜,田海涛,张明如,等.叶绿素荧光分析技术在林木培育中的应用[J].应用生态学报,2006,17(10):1973-1977.
    [113]乌凤章,滕文飞,王贺新,等.杨树新无性系引种苗期试验[J].辽宁林业科技,2005,2:23-24.
    [114]吴景社,李英能.我国21世纪农业用水危机与节水农业[J].农业工程学报,1998,14(3):95-101.
    [115]吴俊江,刘丽君,钟鹏,等.低磷胁迫对不同基因型大豆保护酶活性的影响[J].大豆科学,2008,27(3):437-441.
    [116]吴明才,肖昌珍,郑普英.大豆磷素营养研究[J].中国农业科学,1999,32(3):59-65.
    [117]吴普特,冯浩,牛文全,等.现代节水农业技术发展趋势与未来研发重点[J].中国工程科学,2007,9(2):12-18.
    [118]吴锡麟,叶功富,李宝福,等.木麻黄苗期生物量的水肥耦合效应[J].中南林学院学报,2005,25(1):21-24.
    [119]武维华.植物生理学[M].北京:科学出版社,2003.
    [120]肖厚军,蒋太明,夏锦慧,等.贵州岩溶地区辣椒肥水耦合试验研究[J].灌溉排水学报,2003,22(4):79-80.
    [121]谢伟,黄璜,沈建凯.植物水肥耦合研究进展[J].作物研究,2007,21(12):541-546.
    [122]徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91.
    [123]徐伟洲,徐炳成,段东平,等.不同水肥条件下白羊草光合生理生态特征研究——光响应曲线[J].草业学报,2010,18(6):773-779.
    [124]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [125]许大全,张玉忠.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [126]薛崇伯.毛白杨[M].北京:中国林业出版社,1981.
    [127]薛亮,周春菊,雷杨莉,等.夏玉米交替灌溉施肥的水氮耦合效应研究[J].农业工程学报,2008,24(3):91-94.
    [128]薛崧,吴小平.不同氮素水平对旱地小麦叶片叶绿素和糖含量的影响及其与产量[J].干旱地区农业研究,1997,15(1):79-84.
    [129]薛铸,史海滨,郭云,等.盐渍化土壤水肥耦合对向日葵苗期生长影响的试验[J].农业工程学报,2007,23(3):91-94.
    [130]闫湘,金继运,何萍,等.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450-459.
    [131]杨成超,苏晓华,黄秦军,等.黑杨苗期高生长形态建成[J].东北林业大学学报,2010,38(9):13-15.
    [132]杨建伟,梁宗锁,韩蕊莲,等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,28(5):630-636.
    [133]杨敏生,张世红,等.水分胁迫下白杨双交杂种无性系苗木生长研究[J].河北农业大学学报,2002,25(4):1-6.
    [134]杨世丽,贾秀领,张凤路,等.水氮耦合对小麦叶片硝酸还原酶活性、植株吸氮量及产量的影响[J].华北农学报,2008,23(4):124-128.
    [135]杨文,周涛.氮磷配施对旱地春小麦水分利用效率及水肥交互作用的影响[J].干旱地区农业研究,2008,26(5):10-16.
    [136]尹光华,刘作新,陈温福,等.水肥耦合条件下春小麦叶片的光合作用[J].兰州大学学报:自然科学版,2006,42(1):40-43.
    [137]于亚军,李军,贾志宽,等.不同水肥条件对宁南旱地谷子产量、WUE及光合特性的影响[J].水土保持研究,2006,13(2):87-90.
    [138]虞娜,张玉龙,张玉玲,等.灌溉和施肥对温室番茄产量和品质影响效应的研究[J].中国土壤与肥料,2009,4:31-35.
    [139]宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927-932.
    [140]袁巧霞,武雅娟,艾平,等.温室土壤硝态氮积累的温度,水分,施氮量耦合效应[J].农业工程学报,2007,23(10):192-198.
    [141]袁玉欣,孙时轩,屠泉洪,等.毛白杨人工幼林施用N,P,K效果的研究[J].北京农学院学报,1991,6(3):243-247.
    [142]曾广伟,林琪,杜金哲,等.不同土壤水分条件下施磷量对小麦旗叶衰老及产量的影响[J].中国土壤与肥料,2010,2):35-40.
    [143]翟晶,曹凑贵,潘圣刚,等.水肥耦合对水稻生长性状及产量的影响[J].安徽农业科学,2008,36(29):12632-12635.
    [144]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200.
    [145]张礼军,张恩和,郭丽琢,等.水肥耦合对小麦/玉米系统根系分布及吸收活力的调控[J].草业学报,2005,14(2):102-108.
    [146]张力君,王林和,易津.驼绒藜等8种耐旱灌木持水力分析[J].干旱区资源与环境,2003,17(2):122-128.
    [147]张岁岐.根冠关系对作物水分利用的调控[D].西北农林科技大学,2001.
    [148]张雅倩,林琪,张玉梅,等.干旱胁迫对不同小麦品种花后旗叶生理特性的影响[J].干旱地区农业研究,2010,28(6):158-164.
    [149]张耀华,华元刚,林钊沐,等.水肥耦合对橡胶苗生物量及氮效率的影响研究[J].广东农业科学,2009,6:76-80.
    [150]张依章,张秋英,孙菲菲,等.水肥空间耦合对冬小麦光合特性的影响[J].干旱地区农业研究,2006,24(2):57-60.
    [151]张云华,王荣富,阮龙.水分胁迫对甘薯叶绿素荧光和光合特性的影响[J].中国农学通报,2005,21(8):208-210.
    [152]张中峰,黄玉清,莫凌,等.岩溶植物光合-光响应曲线的两种拟合模型比较[J].武汉植物学研究,2009,27(3):340-344.
    [153]赵炳梓,徐富安.水肥条件对小麦、玉米N、P、K吸收的影响[J].植物营养与肥料学报,2000,6(3):260-266.
    [154]赵凤君.不同水分处理下黑杨新品系间水分利用效率的差异及其机理研究[D].北京林业大学,2004.
    [155]赵好,陈金林,于彬,等.杨树速生丰产配方施肥试验[J].东北林业大学学报,2009,11:26-28.
    [156]赵瑞龙,周明耀,顾玉芬,等.水稻水肥祸合技术的生态环境效应和最佳模式研究[J].水利与建筑工程学报,2005,3(4):18-20.
    [157]赵燕,董雯怡,张志毅,等.施肥对毛白杨杂种无性系幼苗生长和光合的影响[J].林业科学,2010,46(4):70-77.
    [158]赵忠,王真辉,刘西平.土壤水分条件对毛白杨菌根接种生长及营养生理效应的影响[J].西北林学院学报,2000,15(2):1-6.
    [159]郑世锴,刘奉觉,臧道群.供水对杨树人工幼林材积生长的影响[J].林业科学,1988,3:332-338.
    [160]郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报,2007,18(1):16-22.
    [161]郑文君,范崇辉,韩明玉.不同天气对苹果叶片光合特性的影响[J].西北农业学报,2007,16(6):124-127.
    [162]钟顺清.水肥耦合下草炭对小白菜生长的影响[J].中国农学通报,2007,23(3):478-482.
    [163]仲爽,李严坤,任安,等.不同水肥组合对玉米产量与耗水量的影响[J].东北农业大学学报,2009,40(2):44-47.
    [164]周斌.由灰色关联度确定权重的客观多目标决策法[J].昆明理工大学学报:理工版,2003,28(5):159-161.
    [165]周建朝,林晓坤,王孝纯,等.低磷胁迫对不同基因型甜菜抗性生理特征的效应[J].植物营养与肥料学报,2010,16(6):1379-1386.
    [166]周林.NL 80106杨树早期施肥试验初报[J].江苏林业科技,1996,23(2):19-21.
    [167]朱春全,雷静品,刘晓东,等.不同经营方式下杨树人工林叶面积分布与动态研究[J].林业科学,2001,37(1):46-51.
    [168]朱春全,王世绩,王富国,等.六个杨树无性系苗木生长、生物量和光合作用的研究[J].林业科学研究,1995,8(4):388-394.
    [169]朱光权,顾炳贤.意杨苏柳营养特点与需肥规律研究[J].浙江林业科技,1995,15(4):7-12.
    [170]邹旭恺,张强.近半个世纪我国干旱变化的初步研究[J].应用气象学报,2008,19(6):679-687.
    [171]Al-Kaisi M M, Yin X H. Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency[J]. Agronomy Journal,2003,95(6):1475-1482.
    [172]Al-Kanani T, Mackenzie A F, Barthakur N N. Soil water and ammonia volatilization relationships with surface-applied nitrogen fertilizer solutions[J]. Soil Science Society of America journal (USA),1991,55(6):1761-1766.
    [173]Allen H L, Dougherty P M, Campbell R G. Manipulation of water and nutrients-practice and opportunity in southern US pine forests[J]. Forest Ecology and Management,1990,30(1): 437-453.
    [174]Alsafar M S, Al-Hassan Y M. Effect of nitrogen and phosphorus fertilizers on growth and oil yield of indigenous mint (Mentha longifolia L.)[J]. Biotechnology,2009,8:380-384.
    [175]Arnon I. Physiological principles of dryland crop production[J]. Physiological aspects of dryland farming,1975,1-145.
    [176]Arora V K, Singh H, Singh B. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model[J]. Agricultural Water Management,2007,94(1):22-30.
    [177]Aujla M S, Thind H S, Buttar G S. Fruit yield and water use efficiency of eggplant (Solanum melongema L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation[J]. Scientia Horticulturae,2007,112(2):142-148.
    [178]Aulakh M S, Malhi S S. Interactions of nitrogen with other nutrients and water:Effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution[J]. Advances in Agronomy,2005,86:341-409.
    [179]Badr M A, Hussein S D A. Yield and fruit quality of drip-irrigated cantaloupe under salt stress conditions in an arid environment[J]. Australian Journal of Basic and Applied Sciences,2008,2(1): 141-148.
    [180]Barraclough P B, Kuhlmann H, Weir A H. The effects of prolonged drought and nitrogen fertilizer on root and shoot growth and water uptake by winter wheat[J]. Journal of Agronomy And Crop Science,1989,163(5):352-360.
    [181]Begg J E, Turner N C. Crop water deficits[J]. Advances in Agronomy,1976,28(16):1-2.
    [182]Benjamin J G, Ahuja L R, Allmaras R R. Modelling corn rooting patterns and their effects on water uptake and nitrate leaching[J]. Plant and Soil,1996,179(2):223-232.
    [183]Bhan S, Misra D K. Effects of variety, spacing and soil fertility on root development in groundnut under arid conditions.[J]. Indian Journal of Agricultural Science,1970,40:1050-1055.
    [184]Blanke M M, Cooke D T. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves[J]. Plant Growth Regulation,2004,42(2):153-160.
    [185]Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Biology,1992,43(1):83-116.
    [186]Brar B S, Vig A C. Kinetics of phosphate release from soil and its uptake by wheat[J]. The Journal of Agricultural Science,1988,110(3):505-513.
    [187]Bremer E, Kuikman P. Influence of competition for nitrogen in soil on net mineralization of nitrogen[J]. Plant and Soil,1997,190(1):119-126.
    [188]Bronson K F, Booker J D, Bordovsky J P, et al. Site-specific irrigation and nitrogen management for cotton production in the southern high plains[J]. Agronomy Journal,2006,98(1):212-219.
    [189]Bronson K F, Onken A B, Keeling J W, et al. Nitrogen response in cotton as affected by tillage system and irrigation level[J]. Soil Science Society of America Journal,2001,65(4):1153-1163.
    [190]Brouwer R. Investigations into the occurrence of active and passive components in the ion uptake of Viciafabo[J]. Acta Botania Neerlandica,1956,5(4):288-314.
    [191]Brown K R, Driessche R. Growth and nutrition of hybrid poplars over 3 years after fertilization at planting[J]. Canadian Journal of Forest Research,2002,32(2):226-232.
    [192]Brown K R, Van den Driessche R. Effects of nitrogen and phosphorus fertilization on the growth and nutrition of hybrid poplars on Vancouver Island[J]. New Forests,2005,29(1):89-104.
    [193]Brown P L. Water Use and Soil Water Depletion by Dryland Winter Wheat as Affected by Nitrogen Fertilization 1[J]. Agronomy Journal,1971,63(1):43.
    [194]Burgess S S 0, Adams M A, Turner N C, et al. The redistribution of soil water by tree root systems[J]. Oecologia,1998,115(3):306-311.
    [195]Cabello M J, Castellanos M T, Romojaro F, et al. Yield and quality of melon grown under different irrigation and nitrogen rates[J]. Agricultural Water Management,2009,96(5):866-874.
    [196]Carefoot J M, Janzen H H. Effect of straw management, tillage timing and timing of fertilizer nitrogen application on the crop utilization of fertilizer and soil nitrogen in an irrigated cereal rotation[J]. Soil & Tillage Research,1997,44(3):195-210.
    [197]Casson S A, Hetherington A M. Environmental regulation of stomatal development[J]. Current Opinion in Plant Biology,2010,13(1):90-95.
    [198]Chaerle L, Saibo N, Van Der Straeten D. Tuning the pores:towards engineering plants for improved water use efficiency[J]. Trends in Biotechnology,2005,23(6):308-315.
    [199]Choi W J, Chang S X, Allen H L, et al. Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand[J]. Forest Ecology and Management,2005, 213(1):90-101.
    [200]Comic G, Ghashghaie J, Genty B, et al. Leaf photosynthesis is resistant to a mild drought stress[J]. Photosynthetica,1992,27(3):295-309.
    [201]Crevoisier D, Popova Z, Mailhol J C, et al. Assessment and simulation of water and nitrogen transfer under furrow irrigation[J]. Agricultural Water Management,2008,95:354-366.
    [202]Deell J R, Prange R K, Murr D P. Chlorophyll fluorescence as a potential indicator of controlled-atmosphere disorders in "Marshall" McIntosh apples[J]. Hortscience,1995,30(5): 1084-1085.
    [203]Derby N E, Steele D D, Terpstra J, et al. Interactions of nitrogen, weather, soil, and irrigation on corn yield[J]. Agronomy Journal,2005,97(5):1342-1351.
    [204]Desrochers A, Van Den Driessche R, Thomas B R. NPK fertilization at planting of three hybrid poplar clones in the boreal region of Alberta[J]. Forest Ecology and Management,2006,232(3): 216-225.
    [205]Di Paolo E, Rinaldi M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment[J]. Field Crops Research,2008,105(3):202-210.
    [206]Dichio B, Xiloyannis C, Sofo A, et al. Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees[J]. Plant and Soil,2007,290(1):127-137.
    [207]Eckersten H, Torssell B, Kornher A, et al. Modelling biomass, water and nitrogen in grass ley: Estimation of N uptake parameters[J]. European Journal of Agronomy,2007,27(1):89-101.
    [208]El-Bably A Z. Effect of irrigation and nutrition of copper and molybdenum on Egyptian Clover (Trifolium alexandrnium L.)[J]. Agronomy Journal,2002,94(5):1066-1070.
    [209]Elmi A A, Madramootoo C, Egeh M, et al. Water and fertilizer nitrogen management to minimize nitrate pollution from a cropped soil in southwestern Quebec, Canada[J]. Water, Air,& Soil Pollution,2004,151(1):117-134.
    [210]Enoki T, Kawaguchi H, Iwatsubo G. Nutrient-uptake and nutrient-use efficiency ofPinus thunbergii Parl. along a topographical gradient of soil nutrient availability[J]. Ecological Research, 1997,12(2):191-199.
    [211]Evans J R, Terashima I. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach[J]. Functional Plant Biology,1987,14(1):59-68.
    [212]Fang Q X, Yu Q, Wang E L, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain[J]. Plant And Soil,2006,284:335-350.
    [213]Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Biology,1989,40(1):503-537.
    [214]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33(1):317-345.
    [215]Fleischer W E. The relation between chlorophyll content and rate of photosynthesis[J]. The Journal of General Physiology,1935,18(4):573-597.
    [216]Flowers T H, O'Callaghan J R. Nitrification in soils incubated with pig slurry or ammonium sulphate[J]. Soil Biology and Biochemistry,1983,15(3):337-342.
    [217]Foyer C H, Valadier M H, Migge A, et al. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize Ieaves[J]. Plant Physiology,1998,117(1):283-292.
    [218]Galle A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery[J]. New Phytologist, 2007,174(4):799-810.
    [219]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta (BBA)-General Subjects,1989,990(1):87-92.
    [220]Gough C M, Seiler J R, Maier C A. Short-term effects of fertilization on loblolly pine (Pinus taeda L.) physiology[J]. Plant, Cell & Environment,2004,27(7):876-886.
    [221]Green T H, Mitchell R J. Effects of nitrogen on the response of loblolly pine to water stress I. Photosynthesis and stomatal conductance[J]. New Phytologist,1992,122(4):627-633.
    [222]Guttieri M J, Mclean R, Stark J C, et al. Managing irrigation and nitrogen fertility of hard spring wheats for optimum bread and noodle quality[J]. Crop Science,2005,45(5):2049-2059.
    [223]Halvorson A D, Bartolo M E, Reule C A, et al. Nitrogen effects on onion yield under drip and furrow irrigation[J]. Agronomy Journal,2008,100(4):1062-1069.
    [224]Halvorson A D, Follett R F, Bartolo M E, et al. Nitrogen fertilizer use efficiency of furrow-irrigated onion and corn[J]. Agronomy Journal,2002,94(3):442-449.
    [225]Hare P D, Cress W A. Metabolic implications of stress-induced proline accumulation in plants[J]. Plant Growth Regulation,1997,21(2):79-102.
    [226]He C Z, Zhang Z Y, Feng X L, et al. Variation of leaf characteristics in Populus tomentosa Carr.[J]. Forestry Studies in China,2005,7(3):51-53.
    [227]Hebbar S S, Ramachandrappa B K, Nanjappa H V, et al. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.)[J]. European Journal of Agronomy,2004,21(1): 117-127.
    [228]Hessini K, Ghandour M, Albouchi A, et al. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress[J]. Journal of Plant Research,2008, 121(3):311-318.
    [229]Hocking P J, Randall P J, Demarco D. The response of dryland canola to nitrogen fertilizer: partitioning and mobilization of dry matter and nitrogen, and nitrogen effects on yield components[J]. Field Crops Research,1997,54(2):201-220.
    [230]Hu Y, Burucs Z, Schmidhalter U. Effect of foliar fertilization application on the growth and mineral nutrient content of maize seedlings under drought and salinity[J]. Soil Science & Plant Nutrition,2008,54(1):133-141.
    [231]Huo-Yan W, Jian-Min Z, Xiao-Qin C, et al. Interaction of NPK fertilizers during their transformation in soils:I. Dynamic changes of soil pH[J]. Pedosphere,2003,13(3):257-262.
    [232]Jose S, Merritt S, Ramsey C L. Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen[J]. Forest Ecology and Management,2003, 180(3):335-344.
    [233]Karam F, Kabalan R, Breidi J, et al. Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes[J]. Agricultural Water Management,2009,96(4):603-615.
    [234]Keulen H. Modelling the interaction of water and nitrogen[J]. Plant and Soil,1981,58(1): 205-229.
    [235]Khalili A, Akbari N, Chaichi M R. Limited irrigation and phosphorus fertilizer effects on yield and yield components of grain sorghum (Sorghum bicolor L.var. Kimia)[J]. American-Eurasian Journal of Agricultural & Environmental Sciences,2008,3(5):697-702.
    [236]Krause G H, Weis E. Chlorophyll fluorescence as a tool in plant physiology [J]. Photosynthesis Research,1984,5(2):139-157.
    [237]Kuchenbuch R, Claassen N, Jungk A. Potassium availability in relation to soil moisture[J]. Plant and Soil,1986,95(2):233-243.
    [238]Le Roux X, Walcroft A S, Daudet F A, et al. Photosynthetic light acclimation in peach leaves: importance of changes in mass:area ratio, nitrogen concentration, and leaf nitrogen partitioning[J]. Tree Physiology,2001,21(6):377-386.
    [239]Li F L, Bao W K, Wu N, et al. Growth, biomass partitioning, and water-use efficiency of a leguminous shrub (Bauhinia faberi var. microphylla) in response to various water availabilities[J]. New Forests,2008,36(1):53-65.
    [240]Liu Z, Dickmann D I. Abscisic acid accumulation in leaves of two contrasting hybrid poplar clones affected by nitrogen fertilization plus cyclic flooding and soil drying[J]. Tree Physiology, 1992,11(2):109.
    [241]Malhi S S, Mcgill W B. Nitrification in three Alberta soils:effect of temperature, moisture and substrate concentration[J]. Soil Biology and Biochemistry,1982,14(4):393-399.
    [242]Mengel K, Von Braunschweig L C. The Effect of Soil Moisture Upon the Availability of Potassium and Its Influence on the Growth of Young Maize Plants (Zea Mays L.)[J]. Soil Science, 1972,114(2):142-148.
    [243]Mmolawa K, Or D. Root zone solute dynamics under drip irrigation:A review[J]. Plant and Soil, 2000,222(1):163-190.
    [244]Nesme T, Brisson N, Lescourret F, et al. Epistics:A dynamic model to generate nitrogen fertilisation and irrigation schedules in apple orchards, with special attention to qualitative evaluation of the model[J]. Agricultural Systems,2006,90(1):202-225.
    [245]Pardos M, Royo A, Pardos J A. Growth, nutrient, water relations, and gas exchange in a holm oak plantation in response to irrigation and fertilization[J]. New Forests,2005,30(1):75-94.
    [246]Passioura J B. Roots and drought resistance[J]. Agricultural Water Management,1983,7(3): 265-280.
    [247]Pelah D, Wang W X, Altman A, et al. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response[J]. Physiologia Plantarum,1997,99:153-159.
    [248]Pirmoradian N, Sepaskhah A R, Maftoun M. Deficit irrigation and nitrogen effects on nitrogen-use efficiency and grain protein of rice[J]. Agronomie,2004a,24(3):143-153.
    [249]Pirmoradian N, Sepaskhah A R, Maftoun M. Effects of water-saving irrigation and nitrogen fertilization on yield and yield components of rice (Oryza sativa L.)[J]. Plant Production Science, 2004b,7(3):337-346.
    [250]Pitman R M. Wood ash use in forestry——a review of the environmental impacts[J]. Forestry, 2006,79(5):563-588.
    [251]Rego T J, Grundon N J, Asher C J, et al. Comparison of the effects of continuous and relieved water stress on nitrogen nutrition of grain sorghum[J]. Australian Journal of Agricultural Research, 1988,39(5):773-782.
    [252]Rhodenbaugh E J, Pallardy S G. Water stress, photosynthesis and early growth patterns of cuttings of three Populus clones[J]. Tree Physiology,1993,13(3):213-226.
    [253]Rosati A, Day K R, Dejong T M. Distribution of leaf mass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen within tree canopies[J]. Tree Physiology, 2000,20(4):271-276.
    [254]Sakaki T, Kondo N, Sugahara K. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation:role of active oxygens[J]. Physiologia Plantarum,1983,59(1): 28-34.
    [255]Sayer M A S, Brissette J C, Barnett J P. Root growth and hydraulic conductivity of southern pine seedlings in response to soil temperature and water availability after planting[J]. New Forests, 2005,30(2):253-272.
    [256]Schulte P J, Hinckley T M, Stettler R F. Stomatal responses of Populus to leaf water potential[J]. Canadian journal of botany,1987,65(2):255-260.
    [257]Seginer I, Bleyaert P, Breugelmans M. Modelling ontogenetic changes of nitrogen and water content in lettuce[J]. Annals of Botany,2004,94(3):393-404.
    [258]Shangguan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environmental and Experimental Botany,2000,44(2):141-149.
    [259]Shedeed S I, Zaghloul S M, Yassen A A. Effect of method and rate of fertilizer application under drip irrigation on yield and nutrient uptake by tomato[J]. Ozean Journal of Applied Science,2009, 2:139-147.
    [260]Shimshi D. The effect of nitrogen supply on some indices of plant-water relations of beans (Phaseolus vulgaris L.)[J]. New Phytologist,1970,69(2):413-424.
    [261]Simonovic S P. World water dynamics:global modeling of water resources[J]. Journal of Environmental Management,2002,66(3):249-267.
    [262]Singh B, Singh G. Effects of controlled irrigation on water potential, nitrogen uptake and biomass production in Dalbergia sissoo seedlings[J]. Environmental and Experimental Botany,2006,55(1): 209-219.
    [263]Somma F, Hopmans J W, Clausnitzer V. Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake[J]. Plant and Soil, 1998,202(2):281-293.
    [264]Souza R P, Machado E C, Silva J, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery[J]. Environmental and Experimental Botany,2004,51(1):45-56.
    [265]Stanford G E. Nitrogen Mineralization-Water Relations in Soil[J]. Soil Science Society of America Journal,1973,38(1):103-106.
    [266]Strong W M, Barry G. The availability of soil and fertilizer phosphorus to wheat and rape at different water regimes[J]. Australian Journal of Soil Research,1980,18(3):353-362.
    [267]Thind H S, Aujla M S, Buttar G S. Response of cotton to various levels of nitrogen and water applied to normal and paired sown cotton under drip irrigation in relation to check-basin[J]. Agricultural Water Management,2008,95:25-34.
    [268]Thompson T L W, Walworth S A, Sower J, et al. Fertigation frequency for subsurface drip-irrigated broccoli[J]. Soil Science Society of America Journal,2003,67:910-918.
    [269]Thompson T L, Doerge T A, Godin R E. Nitrogen and water interactions in subsurface drip-irrigated cauliflower:I. Plant response[J]. Soil Science Society of America Journal,2000, 64(1):406-411.
    [270]V R Smarty C J, Green P, Salisbury J, et al. Global water resources:vulnerability from climate change and population growth[J]. Science,2000,289(5477):284-288.
    [271]Van Den Driessche R, Thomas B R, Kamelchuk D P. Effects of N, NP, and NPKS fertilizers applied to four-year old hybrid poplar plantations[J]. New Forests,2008,35(3):221-233.
    [272]Viets Jr F G. Water deficits and nutrient availability[M]. New York:Academic Press,1972.
    [273]Wang J F. Negative Effects of Application Chemical Fertilizers on Farmland and the Control Measures [J]. Agro-Environmental Production,1998,17(1):39-42.
    [274]Weih M, Nordh N. Characterising willows for biomass and phytoremediation:growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes[J]. Biomass and Bioenergy,2002,23(6):397-413.
    [275]Woo N S, Badger M R, Pogson B J. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence[J]. Plant Methods,2008,4(1):27-28.
    [276]Zeng Q, Brown P H. Soil potassium mobility and uptake by com under differential soil moisture regimes[J]. Plant and Soil,2000,221(2):121-134.
    [277]Zhang D Q, Zhang Z Y, Yang K. QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar (Populus tomentosa × P. bolleana)× P. tomentosa[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2006,36(8):2015-2023.
    [278]Zhou X L, Wang H, Chen Q G, et al. Coupling effects of depth of film-bottomed tillage and amount of irrigation and nitrogen fertilizer on spring wheat yield[J]. Soil & Tillage Research,2007, 94(1):251-261.
    [279]Zhu Z T, Zhang Z Y. The status and advances of genetic improvement of Populus tomentosa Carr.[J]. Journal of Beijing Forestry University (English edn.),1997,6:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700