步行康复训练助行腿机器人系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
助行腿机器人系统是外骨骼机器人技术与减重康复训练相结合的产物。它利用外骨骼机器人动作精度高、响应速度快、“不知疲倦”的特点,有可能彻底解决人工手动减重训练强度难以保证、精度不够、训练数据难以反馈等问题,并将理疗师从繁重的体力劳动中解放出来,使其可以将更多的精力专注于患者康复训练效果的评估和康复计划的制定上,从而提升患者步行康复训练的质量和效率。目前,步行训练外骨骼机器人已成为国外神经康复技术的重要发展方向之一。
     本课题是上海大学机电工程与自动化学院智能机械与系统研究室承担国家863项目“步行训练机器人系统关键技术”的子课题,论文对外骨骼助行腿机器人系统的机构设计、系统建模、步行运动训练控制策略和实验验证等关键技术展开研究,具体研究内容如下:
     ⑴基于满足步行训练的功能要求以及安全性的考虑,结合人体工程学、仿生学和机械设计等技术,设计具有髋、膝和踝关节的3自由度的连杆助行腿。采用自行设计的电动直线驱动器动力装置,实现外骨骼助行腿髋、膝关节主动屈伸运动以及踝关节的主动跖屈和背屈运动,并制作了实物样机试验系统。
     ⑵在机器人辅助训练模式与康复治疗对应的原则下,设计“机器主动”和“患者主动”运动训练控制模式。采用拉格朗日法,建立机器主动训练模式下人机系统的动力学模型。为研究训练者与助行腿之间的人机耦合运动,利用牛顿–欧拉法构建患者主动训练模式的人机系统动力学方程。
     ⑶针对“机器主动”运动训练控制模式,采用计算力矩加比例–微分反馈控制算法,分析了建模误差以及外界干扰等不确定性因素对计算力矩加比例–微分反馈控制算法的影响,推导证明算法的收敛性。为消除建模误差影响,提高系统步态轨迹的跟踪能力,引入径向神经网络补偿建模误差。对“患者主动”运动训练控制模式,设计了基于位置阻抗控制方法,从理论上对建模误差与阻抗关系进行了分析。
     ⑷通过研究了SolidWorks、ADAMS和MATLAB/Simulink三种软件集成的协同仿真方法,建立了助行腿机器人虚拟样机协同仿真平台。在平台上,进行助行腿运动学和动力学仿真分析,步态轨迹跟踪控制算法仿真实验。仿真结果验证了运动学和动力学模型理论分析,为助行腿机构优化和驱动器的电机选型提供重要的参考依据。仿真实验数据表明计算力矩加比例–微分反馈控制算法对助行腿轨迹跟踪控制是有效的,为该算法在实际样机的应用奠定基础。
     ⑸在助行腿机器人样机系统实验平台上,进行了一系列的功能和性能实验,测试了助行腿机器人系统性能的稳定性、安全性和可靠性,并对试验结果进行分析。指出了存在的不足,为进行受试者参与系统测试实验做了一定准备。
     本论文在以下方面进行了新的探索并取得成果:
     ⑴探索性研究踝关节主动康复训练,导致助行腿的结构复杂化和加大助行腿运动控制的难度,通过利用多轴运动控制系统可以解决这个控制难度问题。带有踝关节主动康复训练的助行腿机器人可使下肢运动康复训练更加全面,符合临床习惯要求。
     ⑵建立了“机器主动”运动训练控制模式下助行腿机器人系统在跑步机上步行的动力学模型,采用主从跟随控制思想,设计计算力矩加比例–微分反馈的控制算法和径向基函数的神经网络补偿控制的方法,弥补机器人动力学模型的不确定性,提高助行腿轨迹跟踪能力。
     ⑶通过将训练者与助行腿隔离分析研究,采用牛顿–欧拉法分别建立动力学模型,利用人机交互作用信息建立训练者与助行腿组成的耦合系统的解耦关系,为研究“患者主动”训练模式的控制方法奠定理论基础。
     本博士论文深入研究步行训练机器人系统关键问题之一——助行腿。通过对助行腿关键技术的研究,为发展面向应用的步行训练机器人系统提供必要的理论依据、实验数据和研究经验。随着相关技术不断发展完善,将步行训练机器人技术转化为机器人产品,这将对于提高神经受损患者的康复效果和质量、具有积极的学术意义和重要的实际意义。
An exoskeleton robot for motor training in gait rehabilitation is in combination with the robot technology and the body weight supported treadmill training. When introduced into the gait rehabilitation after spinal cord injury, the exoskeleton robot performs with the characteristics of high accuracy, fast response and "tireless", and it is likely to avoid the drawbacks of the traditional body weight supported treadmill training. Meanwhile, the exoskeleton robot will help to train the patients as well as record the training data, free the doctors from the heavy physical work so that they can have more time to focus on the superior work such as rehabilitation training evaluation and making recovery plans. And then, the quality and efficiency of the rehabilitation training will be highly enhanced. Thus far, the exoskeleton robot has been a focus on the development of neuro-rehabilitation technique in the worldwide.
     The research subject on key technologies of the rehabilitation robot in gait training, which is sponsored by National High-Tech R & D Program, is undertaken by the Laboratory of Intelligent Machine and System at School of Mechatronics Engineering and Automation of Shanghai University. Some research works associated with the exoskeleton robot are described in this thesis, including mechanical design, system modeling, method of motion control, etc. They are described in detail as follows:
     Considering the patients’requirements and safety of gait training, the exoskeleton robot is designed combination of many technologies, such as ergonomics, bionics and mechanical design. Each leg of the exoskeleton robot has three degree of freedom at hip, knee and ankle joints. To drive flexion and extension movement of joints, a custom-designed electric linear actuator is adopted. A physical prototype of exoskeleton robot has been developed. Robot-in-charge and patient-in-charge modes are introduced on the principle of rehabilitation therapy and robot-assisted training. Using the Lagrange method, the mathematic model in robot-in-charge mode is given. In order to develop man-machine coupling between the trainer and the exoskeleton robot, dynamics equations of man-machine system in patient-in-charge mode is built based on the Newton-Euler approach.
     The computed torque control law with proportion-differential feedback is designed in robot-in-charge mode. Uncertain factors of dynamic model influencing the control algorithm are discussed and the convergence of the control method is proved in theory. To remove modeling error and improve trajectory tracking control effect, a compensating scheme on radial-basis-function neural network is presented. In patient-in-charge mode, a position-based impedance control approach is introduced. The relation between modeling error and impedance is analyzed theoretically.
     To develop the exoskeleton robot, a method based on virtual prototype and collaborative simulation is proposed. Solidworks, Adams and Matlab/Simulink are integrated to be used to establish united simulation platform for the exoskeleton robot. Kinematics and dynamics simulation of the exoskeleton robot, the trajectory tracking control laws are done in collaborative simulation platform. The results give important reference for mechanism optimization and motor selection, indicating that the proposed method can control and track the trajectory of the exoskeleton robot effectively.
     Through establishing a prototype of the exoskeleton robot, a series of training experiments are carried out, which demonstrate the functionality, safety and reliability of the exoskeleton robot. The results prove the feasibility of the exoskeleton robot system. But the exoskeleton robot still need be improved for human testing.
     The achievements of this thesis are summarized as follows:
     An actuated robot ankle joint applying to rehabilitation training may result in the complex structure of the exoskeleton robot and the difficulty of motion control which can be solved using multi-axis motion control system. The exoskeleton robot with the actuated ankle joint makes patients trained completely, in accord with the requirements of clinical practice.
     The dynamics model of the man-machine system walking on the treadmill in robot-in-charge mode is built. Based on the master-slave following control strategy, a computer torque control law with proportion-differential feedback and a compensating scheme based on radial basis function neural networks are designed to make up uncertain factors of the dynamic model and increase the ability of the trajectory tracking.
     Dynamics equations of the trainer and the exoskeleton robot are built respectively based on the Newton Euler approach. The decoupling relationship between the trainer and exoskeleton robot is found using man-machine Interaction Information. This provides theoretical foundation for developing dynamic control methods in patient-in-charge mode.
     The exoskeleton robot, one of key issues on rehabilitation robot in gait training, is developed deeply in this thesis. These works provide the necessary theoretical basis, experimental data and valuable research experience for development of rehabilitation robot in gait training. With improvement of the related technologies, some products on the rehabilitation robot are realized. This is of positive academic significance and practical importance to improve the quality of rehabilitation training.
引文
[1]孙巍.脊髓损伤后截瘫病人自护能力的研究[D].上海:第二军医大学硕士论文,2007.
    [2]陈银海.脊髓损伤康复的临床研究[D].广州:第一军医大学博士论文,2007.
    [3] Jezernik S, Morari M. Controlling the human-robot interaction for robotic rehabilitation of locomotion [C]. 7th International Workshop on Advanced Motion Control, 2002, 133-135.
    [4] Dietz1 V, Harke S J. Locomotor activity in spinal cord-injured persons [J]. Appl Physiol, 2004, 1954-1960.
    [5]刘晓玲.对多发性硬化患者的认知性评估和认知性干预的评价[J].中国临床康复,2002,6(21): 3214-3214.
    [6] Noritaka K, Daichi N, Masaki O, et al. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons [J]. Journal of Neurophysiology, 2005, 93:777-785.
    [7] Field E C. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury [J]. PHYS THER, 2000, 80(5):477-484.
    [8]常冬梅,纪树荣,寇志刚等.偏瘫康复训练中的步态分析[J].中国康复理论与实践, 2002, 8(1):56-57.
    [9]王彤,王翔,陈旗等.减重平板训练对瘫痪后步行障碍患者的影响[J].中华物理医学与康复杂志, 2002,2, 24(2):98-101.
    [10]励建安.减重训练的研究进展[J].中华物理医学与康复杂志, 2002, 12, 24(12):759-761.
    [11]夏昊昕,张立勋,王岚.下肢康复训练机器人[J].应用科技, 2004, 31(2): 3-7.
    [12]缪鸿石.中枢神经系统(CNS)损伤后功能恢复的理论(一) [J].中国康复理论与实践, 1995, 1(1):1-4.
    [13]于维东.偏瘫康复的理论与实践[J].现代康复, 2001, 5(2): 5-8.
    [14]陈景藻.康复医学[M].北京:高等教育出版社.2007.
    [15]陈兆聪,黄真.“运动再学习”疗法在脑卒中康复治疗中的应用[J].中国康复医学杂志,2007, 22(11):1053-1055.
    [16]谷爱武,吴毅,范振华等.运动再学习对偏瘫患者下肢运动功能的影响[J].中国康复医学杂志,1999, 14(3):119-120.
    [17]任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究[D].北京:清华大学硕士论文,2004.
    [18]程方,王人成,贾晓红等.减重步行康复训练机器人研究进展.[J].康复医学工程, 2008, 31(2):366-368.
    [19] Vallery H, Ekkelenkamp R, Buss M, et al. Complementary limb motion estimation based on interjoint coordination: experimental evaluation [C]. IEEE 10th International Conference on Rehabilitation Robotics, 2007, 361-364.
    [20] Veneman J F, Kruidhof R, Ekkelenkamp R, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (3): 379-386.
    [21] Veneman J F, Ekkelenkamp R, Kruidhof R, et al. A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots [J]. The International Journal of Robotics Research, 2006, 25 (3): 261-581.
    [22] Veneman J F, Ekkelenkamp R, Kruidhof R, et al. Design of a series elastic and bowden-cable-basedactuation system for use as torque-actuator in exoskeleton-type training[C]. IEEE 9th International Conference on Rehabilitation Robotics, 2005: 496-499.
    [23] Sangwan V, Agrawal S K. Generation of leg-like motion and limit cycles with an underactuated two dof linkage[C]. The First IEEE/RAS-EMBS International Conference, 2006: 684-689.
    [24] Agrawal S K, Fattah A. Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12 (2): 157- 165.
    [25] Agrawal S K, Banala S K, Fattah A, et al. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (3): 410-420.
    [26] Colombo G, Matthias J, Reinhard S, et al. Treadmill training of paraplegic patients using a robotic orthosis[J]. Journal of Rehabilitation Research and Development. 2000, 37(6): 693-700.
    [27] Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients [J]. Spinal Cord, 2001, 39: 252-255.
    [28] Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment [J]. Journal of Rehabilitation Research &Development, 2006, 43(5): 679-694.
    [29] Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the lokomat robotic gait-orthosis[J]. Clinical Biomechanics, 2008, 23(10):1251-1259.
    [30] Costa N, Caldwell D G. Control of a biomimetic "soft-actuated" 10 DOF lower body exoskeleton[C]. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006: 495-501.
    [31] Caldwell D G, Tsagarakis N G. Soft exoskeletons for upper and lower body rehabilitation—design, control and testing [J]. International Journal of Humanoids Robotics, 2007, 4 (3): 549-573.
    [32] http://www.braintreerehabhospital.com/pdf/autoambulator_MDNews.pdf [OL].
    [33]牛彬.可穿戴式下肢步行外骨骼控制机理与实现[D].杭州:浙江大学硕士学位论文,2006.
    [34] Chu A, Kazerooni H, Zoss A. On the biomimetic design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. IEEE Conference on Robotics and Automation, 2005:4345-4352.
    [35] Huang L, Steger R, Kazerooni H. Hybrid control of Berkeley Lower Extremity Exoskeleton [J]. International Journal of Robotics Research, 2006, 25 (5): 561- 573.
    [36] Hiroaki K, Sankai Y. Power assist method based on phase sequence driven by interaction between human and robot suit[C]. IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, 2004:491-496.
    [37] Lee S, Sankai Y. Power assist control for leg with hal-3 based on virtual torque and impedance adjustment[C]. IEEE International Conference on Systems, Man and Cybernetics, 2002, 4:453-458.
    [38] Hayashi T, Kawamoto H, Sankai Y. Control method of robot suit HAL working as operator's muscle using biological and dynamical information[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005:3063-3068.
    [39] Hesse S. A mechanized gait trainer for restoration of gait [J]. Journal of Rehabilitation Research and Development, 2000, 37(6):701-708.
    [40] Hesse S, Bemhardt S. Locomotor therapy in neurorehabilitation [J]. Neuro Rehabilitation, 2001, 16:133-139.
    [41] Hesse S, Bemhardt S, Schmidt H, et al. HapticWalker–a novel haptic foot device [J]. ACM Transactions on Applied Perception, 2005, 2(3):563-574.
    [42] Schmidt H, Sorowka D, Hesse S, et al. Development of a robotic walking simulator for gait rehabilitation [J]. Biomed Tech, 2003, 48(10): 281-286.
    [43]张晓超,张立勋,颜庆.一种新型三自由度下肢康复训练机器人步态机构运动分析及仿真[J].自动化技术与应用, 2005, 24(3):32-35.
    [44] http://www.heuimt.com/researchshow.htm#000 [OL].
    [45] http://intron.kz.tsukuba.ac.jp/gaitmaster/gaitmaster_e.html [OL].
    [46]姜海波.人体下肢关节系统的生物力学行为研究[D].北京:中国矿业大学博士论文.2008.
    [47]卢本兴,韩文仲.气压膝关节下肢假肢的分析与研究[J].华北航天工业学院学报, 2003, 13(2):1-5.
    [48] Nixon M S, Tan T N, Chellappa R. Human Identification Based on Gait [M]. New York: Springer, 2005.
    [49] Vaughan C L, Davis B L, O’Connor J C. Dynamic of Human Gait [M]. Cape Town: Kiboho Publishers, 1999.
    [50] Winter D,刘志诚.人体运动生物力学[M].北京:人民体育出版社, 1990.
    [51]杨雅琴,张通.正常步态和偏瘫步态的特点及对比[J].中国康复理论与实践, 2003, 9(10):608-609.
    [52]杨辉.下肢康复机器人减重支撑系统设计与装置研究[D].上海:上海大学硕士学位论文,2009.
    [53]吴洪,冉春风.表面肌电图在运动训练中的应用[J].中国组织工程研究与临床康复.2008, 12(39):7739-7743.
    [54] Zhang Z, Wang Z, Yao S L, et al. Research on control of an exoskeletal ankle with surface electromyography signals[C]. The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008:1301-1304.
    [55]赵彦峻,徐诚,张景柱等.人体下肢外骨骼关键技术分析与研究[J].机械设计,2008, 25(10):1-4.
    [56] Perry J, Schoneberger B. Gait analysis: normal and pathological function [M]. Thorofare, NJ: SLACK Incorporated, 1992.
    [57] Philippe S, Mostafa R, Guy B. An anthropomorphic biped robot: dynamic concepts and technological design [J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans,1998, 28(6):823-838.
    [58]余伟正.步行康复用踝关节系统的研究[D].上海:上海大学硕士学位论文,2009.
    [59] Veneman J F. Design and Evaluation of the Gait Rehabilitation Robot Lopes [D]. Netherland: University of Twente, 2007.
    [60] Feng Z G, Qian J W, Zhang Y N, et al. Biomechanical design of the powered gait orthosis [C]. IEEE International Conference on Robotics and Biomimetics, China, 2007:1698-1702.
    [61] Zoss A, Kazerooni H, Chu A. On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005: 3465- 3472.
    [62] http://www.univie.ac.at/cga[OL].
    [63]张彤,毕胜.减重步行训练的临床应用[J].现代康复, 2001, 5(8):58-61.
    [64] Rose J, Gamble JG. Human Walking [M]. Baltimore: Williams & Wilkins, 1994.
    [65] http://guardian.curtin.edu.au/cga/data/ Normal [OL].
    [66] http://guardian.curtin.edu.au/cga/data/ Dundee [OL].
    [67] http://guardian.curtin.edu.au/cga/data/ m1[OL].
    [68] Zoss A, Kazerooni H, Chu A. Biomechanical design of the Berkeley Lowers Extremity Exoskeleton (BLEEX) [J].IEEE/ASME Transactions on Mechatronics, 2006, 11(2):128-138.
    [69] Woodson W, Tillman B, Tillman P. Human Factors Design Hand [M]. New York: McGraw-Hill, 1992.
    [70]陈峰.可穿戴型助力机器人技术研究[D].合肥:中国科技大学博士论文, 2007.
    [71]姚春东.液压传动实用技术[M].北京:石油工业出版社, 2001.
    [72]何发昌,邵远.多功能机器人原理及应用[M].北京:高等教育出版社, 1996.
    [73]张杰.脑卒中瘫痪下肢外骨骼康复机器人研究[D].杭州:浙江大学硕士学位论文,2007.
    [74]蔡自兴.机器人学[M].北京:清华大学出版社, 2000.
    [75]覃正.多体系统动力学压缩建模[M].北京:科学出版社, 2000.
    [76]洪嘉振.计算多体动力学[M].北京:高等教育出版社, 1998.
    [77]王斌锐.异构双腿行走机器人研究与开发[D].沈阳:东北大学博士学位论文, 2005.
    [78] Schenau G J. Some fundamental aspects of the biomechanics of overground versus treadmill locomotion [J]. Med Sci Sports Exerc, 1980, 12:257-261.
    [79] Nelson R C, Dillman C J, Lagasse P, et al. Biomechanics of overground versus treadmill running [J]. Med Sci Sports, 1972, 4(4):233–40.
    [80] Murray M P, Spurr G B. Treadmill vs. floor walking: kinematics, electromyogram, and heart rate [J]. Appl Physiol, 1985, 59(1): 87-91.
    [81] Matsas, Taylor A, Nicholas M. Knee joint kinematics from familiarised treadmill walking can be generalised to overground walking in youngunimpaired subjects [J].Gait & Posture, 2000(11):46-53.
    [82] Taylor N F. Movements of the lumbar spine and be reliably measured after 4 minutes of treadmill walking [J].Clinical Biomechanics, 1996, (11):484-486.
    [83] Riley P O, Paolini G, Croce U D, et al. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects [J]. Gait & Posture, 2007, 26:17-24.
    [84] Lee S J, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals [J]. Journal of Applied Physiology, 2008, 104:747-755.
    [85]杨东超,刘莉,徐凯,等.拟人机器人运动学分析[J].机械工程学报, 2003, 39(9): 70-74.
    [86]孙迪生,王炎.机器人控制技术[M].北京:机械工业出版社,1997.
    [87] Hidler J. Robotic-assessment of walking in individuals with gait disorders[C]. IEEE International Conference on Engineering in Medicine and Biology Society, 2004: 4829-4831.
    [88] Jezernik S, Morari M. Controlling the human-robot interaction for robotic rehabilitation of locomotion[C]. International Workshop on Advanced Motion Control, 2002: 133- 135.
    [89] Wicke A, Zitzewitz J, Banz R, et al. Iterative learning synchronization of robotic rehabilitation tasks[C]. IEEE 10th International Conference on Rehabilitation Robotics, 2007:335-340.
    [90] Daisuke A, Ichinose W E, Harkema S J, et al. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weighted-supported Gait training following neurologic injury [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 387-400.
    [91] Riener R, Lunenburger L, Jezernik S, et al. Patient-cooperative strategies for robot-aided treadmill training: first experimental results [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 3(13):380-394.
    [92] Jezernik S, Colombo G, Morari M. Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis [J]. IEEE Transaction on Robotics and Automation, 2004, 20(3):574-582.
    [93] Agrawal S K, Banala S K, Fattah A. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3):410-420.
    [94] Banala S K, Kulpe A, Agrawal S K. A powered leg orthosis for gait rehabilitation of motor-impaired patients[C]. IEEE International Conference on Robotics and Automation, 2007: 4140-4145
    [95] Asseldonk E H, Veneman J F, Ekkelenkamp R. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16(4):360-370.
    [96] Ekkelenkamp R, Veneman J F, Kooij van der H. LOPES: selective control of gait functions during the gait rehabilitation of CVA patients [C]. IEEE 9th International Conference on Rehabilitation Robotics, 2005:361-364.
    [97]徐国政,宋爱国,李会军.基于模糊推理的上肢康复机器人自适应阻抗控制[J].东南大学学报, 2009, 39(1):156-160.
    [98]冯治国,钱晋武,章亚男等.下肢外骨骼矫形器动力学建模与运动控制研究[J].高技术通讯, 2009, 19(3): 267-272.
    [99]王斌锐,金英连,许宏等.机器人仿生膝关节的计算力矩加比例微分反馈控制[J].机械工程学报, 2008, 44(1):179-183.
    [100]代颖.一类关于不确定性机器人的鲁棒控制策略[J].自动化学报, 1999,25(2):204-209.
    [101]张耀欣.高性能平面二自由度并联机器人研究[D].合肥:中国科技大学博士学位论文,2007.
    [102] Kostic D. Data-driven Robot Motion Control Design [D]. Netherland: Technische Universiteit Eindhoven, 2004.
    [103]刘振泽.欠驱动步行机器人运动学机理与控制策略研究[D].长春:吉林大学博士学位论文,2007.
    [104]理查德·摩雷,李泽湘.机器人操作的数学导论[M].北京:机械工业出版社,1997.
    [105] Wijesoma W S, Kodagoda K R S. Synthesis of stable fuzzy PD/PID control laws for robotic manipulators from a variable structure system standpoint[C]. Proceedings of the 6th International Conference on Computational Intelligence, Theory and Applications: Fuzzy Days, 1999:495-511.
    [106] Antonio V, Giovanni L . On the trajectory tracking control of industrial SCARA robot manipulators[J].IEEE transactions on industrial electronics, 2002, 49(1):224-232.
    [107] Wai R J. Tracking control based on neural network strategy for robot manipulator [J]. Neurocomputing, 2003, 51:425-445.
    [108] Roselito A, Braga A P, Benjamim. Control of a robotic manipulator using artificial neural networks with on-line adaptation [J]. Neural Processing Letters, 2004, 12:19-31.
    [109] Hu S, Ang M, Krishnan H. On-line neural network compensator for constrained robot manipulators[C]. In Proc. of the 3rd Asian Control Conference, Shanghai, 2000, 1621-1627.
    [110] Khemaissia S, Morris A S. Neural-adaptive control of robot manipulators [J]. Robotica, 1993, 11:456-473.
    [111] Gang F. A compensating scheme for robot tracking based on neural networks [J]. Robotics and Autonomous System, 1995, 15(3):199-206.
    [112] Li Q, Poo A N, Ang M. An enhanced computed-torque control scheme for robot manipulators with a neuro-compensator [J]. IEEE Transactions on Robot and Automation, 1995, 1:56-60.
    [113]王东署,沈大中.一种改进机器人计算力矩控制的神经网络补偿方法[J].高技术通讯,2007,17(5):479-483.
    [114] Pham D T, Sahin Y. Analysis and real-time implementation of a radial-basis-function neural-network compensator for high-performance robot manipulators [J]. International Journal of Machine Tools and Manufactures, 1999, 39:415-429.
    [115]刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008.
    [116]孙厚义,冯勋刚,马巧玲,等.运动意念对急性脑卒中患者偏瘫康复的作用[J].中风与神经疾病杂志.2001, 18(5):305-305.
    [117]梅元武,文晖.近红外光谱仪在脑卒中瘫痪康复评定中的应用[J].中国康复医学杂志.2001, 16(3):154-157.
    [118]王鹏飞.四足机器人稳定行走规划及控制技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [119] Kazerooni H, Sheridan T, Houpt P. Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion [J]. IEEE Journal of Robotics and Automation,1986, 2(2):83-92.
    [120] Seraji H, Colbaugh R. Force Tracking in Impedance Control[J].The International Journal of Robotics Research, 1997, 16(1):97-117.
    [121]陈峰,费燕琼,赵锡芳.机器人的阻抗控制[J].控制与决策, 2005(12):46-49.
    [122]王政.基于交互驱动的虚拟样机动力学建模技术研究与应用[D].杭州:浙江大学博士论文,2005.
    [123]范成建,熊光明,周明飞等.虚拟软件MSC.ADAMS应用与提高[M].北京:机械工业出版社, 2006.
    [124]李增刚. ADAMS入门详解与实例[M].北京:国防工业出版社, 2007.
    [125]王斌锐金英连徐心和.仿生膝关节虚拟样机与协同仿真方法研究[J].系统仿真学报, 2006, 18 (6), 1554-1557.
    [126]程军,宋华,徐心和等.异构双腿行走机器人的联合仿真研究[J].系统仿真学报, 2007, 19(21), 4953-4956.
    [127]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社, 2005.
    [128]郑建荣. ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社, 2002.
    [129]刘小平,郑建荣,朱治国等. SolidWorks与ADAMS/View之间的图形数据交换研究[J].机械工程师, 2003,12:26-27.
    [130]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].杭州:浙江大学博士论文,2005.
    [131] http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/201607 [OL].
    [132] http://www.ni.com/pxi/zhs [OL].
    [133] http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/14125 [OL].
    [134] http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/13087 [OL].
    [135] http://www.ni.com/motion/zhs [OL].
    [136]陶泽勇.下肢康复机器人步态轨迹控制研究[D].上海:上海大学硕士学位论文,2009.
    [137]王企远,钱晋武,冯治国等.下肢步态矫形器的生理学步态规划与试验[J].中国机械工程, 2009, 20(8): 928-932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700