基于几何代数的太赫兹时域光谱信号分析及物质识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹技术是目前科技领域的研究前沿,太赫兹时域光谱(THz-TDS)技术是太赫兹科学技术研究领域中的重要探测技术之一。太赫兹时域光谱(THz-TDS)信号蕴含了表征物质特征指纹的丰富信息,可以给出物质独一无二的指纹光谱,因此可被用于物质识别。如何对THz-TDS信号进行有效表示和处理分析,如何充分利用信号内含的信息有效地进行物质识别等,是THz-TDS技术研究中必须解决的重要课题。
     近年来的研究发现很多物质在太赫兹波段没有单独的特征峰,需要采用整个测量波段的THz-TDS光谱作为物质的指纹特征来进行分析处理。整个测量波段的THz-TDS信号可被视为多维矢量空间中的一个多维矢量。为了提取并有效利用THz-TDS信号中蕴含的巨大信息量,迫切需要系统深入地研究和发展THz-TDS信号处理和分析的新理论新方法。为此,本文针对THz-TDS信号特点,将几何代数引入了THz-TDS信号分析和处理的研究中,提出了基于几何代数的THz-TDS信号物质识别的新方法。
     本文的研究成果可以概括为如下五部分:
     1.基于THz-TDS透射模式系统的物理机理,构建了THz-TDS信号的几何代数框架,提出了THz-TDS信号的几何代数分析方法。该方法充分利用了THz光谱的幅度和相位信息,将整个有效频域内的THz-TDS信号视为高维实矢量空间中的矢量,研究了THz-TDS信号的几何分布特性及代数关系,揭示了物质的光学常数和THz-TDS信号矢量间存在的对应关系。
     2.基于THz-TDS信号的几何代数分析研究结果,定义了太赫兹时域光谱信号的外积相似性函数和欧氏距离,推导了这两种相似性度量的具体计算公式,讨论了计算复杂度,提出基于距离(外积相似性函数)的分类方法来实现信号分类。实验验证了这两种度量的有效性和可行性。本文还研究了THz-TDS信号及其梯度特征矢量的联合熵和互信息相似性度量,并与基于几何积的相似性度量(外积相似性函数和欧氏距离)进行了对比实验。实验验证了本文提出的外积相似性函数的优越性。
     3.对THz-TDS信号的射影分解方法及其性质进行了研究,还研究了THz-TDS信号矢量在主分量分析变换(PCA)和射影分解变换(PS)下的性质,提出了基于PCA的THz-TDS信号射影分解的维数简约方法,并应用于信号分类和识别。该方法可以有效地实现THz-TDS信号的维数简约和去噪,进行THz-TDS信号的显著特征提取,有助于对THz-TDS信号的分类和辨识。THz-TDS信号的分类实验验证了该方法的有效性,仿真信号的辨识实验表明该方法优于传统的PCA方法,具有较好的抗噪能力。
     4.对信号的共形分解变换进行了研究,提出了太赫兹时域光谱信号的共形分解方法,并构建了特征子空间的辨识准则,进而提出了基于共形分解的THz-TDS信号物质辨识方法。该方法对待辨识样品的THz-TDS信号矢量进行基于已知物质的面片的共形分解,将矢量线性映射到各物质对应的二维子空间,在子空间中,采用辨识标准来识别样品的物质。物质辨识实验显示了该方法具有很高的辨识成功率,不仅验证了该方法的可行性,而且与空间图样成份分析(CSPA)方法相比具有优越性。
     5.将信号稀疏表示理论和THz-TDS信号几何代数分析的研究结果相结合,对THz-TDS信号矢量进行基于冗余字典的稀疏表示,提出了基于稀疏表示的THz-TDS信号分类方法。基于THz-TDS信号矢量的几何分布和代数结构特性,该方法采用了冗余字典原子的优化选取方法;通过引入噪声因素,修正了信号分类模型;在确定类别标识的问题上,分别提出了以最大系数和最小残差作为分类依据的方法。实验结果验证了该方法在等间隔采样的THz-TDS信号分类问题中的可行性和有效性。
     本文的研究结果表明几何代数分析方法在THz-TDS信号的分析和处理研究中具有极大的潜力,将有助于基于THz-TDS信号的物质识别技术的发展和应用。
Terahertz technology is the frontier of the current science and technology studyfields, the terahertz time-domain spectroscopy (THz-TDS) is an important explorationtechnology in the research field of the terahertz science and technology. THz-TDSsignals contain abundant information, and present a unique fingerprint of the material,which can be used for the material identification. How to represent, process and analyzeTHz-TDS signals effectively, and how to utilize the information of signals effectively inthe substance identification, those are the important problems needed to be solved in thestudy of THz-TDS technology.
     Recent studies show that there are often no obvious peaks in THz-TDS signals, andit is needed to adopt the entire THz-TDS spectra as the substance fingerprint foranalysis and processing. One THz-TDS signal of the entire spectral band can beregarded as a vector in the multi-dimensional vector space. In order to extract andutilize the tremendous information of THz-TDS signals effectively, there is an urgentdemand to develop new signal processing and analysis methods systematically anddeeply. Therefore, the geometric algebra (GA) is brought into the THz-TDS signalanalysis and processing to the characters of THz-TDS signals in this paper, newsubstance identification methods of THz-TDS signals are developed based on GA.
     Specifically, major contributions of this dissertation are as follows:
     1. Based on the physical mechanism of the transmission model THz-TDS system,the geometric algebra framework for the THz-TDS signals analysis is constructed, andthe signal analysis method is developed. In the method, both the magnitude and phaseinformation of THz-TDS signals are utilized, and one THz-TDS signal of the entirespectral band is regarded as a vector in the high-dimensional real vector space.Geometrical distribution characteristics and algebraical relations of the THz-TDS signalvectors are studied, which reveal the corresponding relationships between the opticalconstants of the substance and THz-TDS signal vectors.
     2. Based on the results of the geometric algebra analysis of THz-TDS signals, anouter product similarity function and the Euclidean distance of the THz-TDS signals aredefined respectively using the geometric product. Detailed computation formulas ofthese two similarity measures are derived, with their computational complexitiesdiscussed. The substance classification method based on the THz-TDS signals based on those metrics is proposed. Experiments on the substance classification verify thefeasibility and validity of the similarity function. Other similarity metrics of THz-TDSsignals and their gradient feature vectors using the joint entropy and mutual informationare studied and compared with the metrics defined by the geometric procduct.Comparative experiment shows the advantages of the outer product similarity function.
     3. The projective split of the THz-TDS signal and its properties are studied. Byanalyzing properties of THz-TDS signals’ metrics under the principle componentanalysis (PCA) and PS, a new dimensionality reduction method of THz-TDS signalsbased on PCA is proposed and applied to signal classification and recognition. Thismethod can effectively realize the dimensionality reduction and the signal denoising,facilitate the feature extraction, contribute to the accurate classification andidentification. Experiments on the classification of THz signals not only verify theeffectiveness of our method, but also show its potential ability in the visualization ofTHz signals and images. The simulated experiments on the signals identification alsoshow that our method is better than the traditional PCA and has better anti-noise ability.
     4. The conformal split and its properties is studied, the conformal split ofTHz-TDS signal is presented with properties studied. Accordingly, two criteria forsubstance identification are proposed, and a novel substance identification method viathe conformal split is presented. In the method, using the conformal split with respect to2-blades of the “known” substances, one THz-TDS signal is related to vectors insubspaces of substances. The substance can be identified using criteria in the subspaces.The presented methods are applied in experiments of the substance identification, andalso compared with the component spatial pattern analysis (CSPA) method.Experiments show its feasibility and greater accuracy.
     5. From the signal sparse representation and the results of the THz-TDS analysis,THz-TDS signal vectors can be sparsely represented in an overcomplete dictionary, anda signal classification method via the sparse representation is presented. In the method,an optimal construction of the overcomplete dictionary is developed based on thegeometrical distribution and the algebraic structure properties of signal vectors, thesignal classification model is modified to account for possibly noise, and the test sampleis classified using either the maximized coefficient or the minimized residual.Feasibility and effectiveness of the method is confirmed by experiments presented.
     Study results in this paper show that the geometric algebra analysis method haspotential ability in the THz-TDS signal analysis and processing, and it will help thedevelopment and application of the substance identification technology based on THz-TDS signals.
引文
[1]刘盛纲.太赫兹科学技术的新发展.中国基础科学科学前沿.2006年,第8卷(第1期). pp7-12。
    [2] B. Ferguson, X.-C. Zhang. Materials for terahertz science and technology. NatureMaterials.,2002,Vol.1(1),2002. pp26-33.
    [3]许景周,张希成.太赫兹科学技术和应用.第一版.北京:北京大学出版社,2007年。
    [4]张存林.太赫兹感测与成像.第一版.北京:国防工业出版社,2008年。
    [5] C. D. Amico, A. Houard, M. Franco, et.al. Conical Forward THz Emission fromFemtosecond-Laser-Beam Filamentation in Air. Physical Review Letters.2007,Vol.98(23), pp235002-235004.
    [6]中国THz研发网, http://www.thznetwork.org.cn.
    [7]国际THz在线杂志Terahertz Science and Technology,http://www.tstnetwork.org.
    [8] S. R. Murrill, E. L. Jacobs, S. K. Moyer, et al. Terahertz imaging systemperformance model for concealed-weapon identification. OSA, Applied Optics.2008, Vol.47(9). pp1286-1297.
    [9] H. Hoshina, Y. Sasaki, A. Hayashi, et al. Noninvasive Mail Inspection Systemwith Terahertz Radiation. Applied Spectoscopy.2009, Vol.63(1). pp81-86.
    [10] ZDNetUK News. Intel terahertz transistor breaks speed limits.26November,2001, http://news.zdnet.co.uk/hardware/0,1000000091,2099821,00.htm.
    [11] BBC News. Camera 'looks' through clothing All objects emit terahertz radiation Acamera that can "see" explosives, drugs and weapons hidden under clothing from25metres has been invented.10March2008,http://newsvote.bbc.co.uk/mpapps/pagetools/print/news.bbc.co.uk/2/hi/technology/7287135.stm.
    [12] TechCrunch. Up To30Gbps: New Chip Enables Record-Breaking Wireless DataTransmission Speed. November22nd,2011, http://techcrunch.com/tc/.
    [13] D. H. Auston, K. P. Cheung, and P. R. Smith. Picosecond photoconductingHertzian dipole. Applied Physics Letters.1984, Vol.45(3). pp284-286.
    [14] C. Fattinger and D. Grischkowsky. Point source terahertz optics. Applied PhysicsLetters.1988,Vol.53(16). pp1480-1482.
    [15] C. Fattinger and D. Grischkowsky. Terahertz Beams. Applied Physics Letters.1989,Vol.54(6). pp490-492.
    [16] Z. P. Jiang, M. Li, X. C. Zhang. Dielectric constant measure-ment of thin films bydifferential time-domain spectroscopy. Applied Physics Letters.2000, Vol.76(22).pp3221-3223.
    [17] T. Nagashima and M. Hangyo. Measurement of complex optical constants of ahighly doped Si wafer using terahertz ellipsometry. Applied Physics Letters.2001,Vol.79(24). pp3917-3919.
    [18]谢维信,裴继红. THz信号处理与分析的研究现状和发展展望.电子学报.2007, Vol.35(10). pp1973-1979。
    [19] I. Hosako, N. Sekine, M. Patrashin, et al. At the dawn of a new era in terahertztechnology. Proceddings of the IEEE. Aug.,2007, Vol.95, pp1611-1623.
    [20] B. M. Fischer, M. Walther, P. U. Jepsen. Far-infrared vibrational modes of DNAcomponents studied by terahertz time-domain spectroscopy. Physics in Medicineand Biology.2002, Vol.47(21). pp3807-3814.
    [21] D.M. Mittleman, G. Gupta, R. Neelamani, et al. Recent advances in terahertzimaging. Journal of Applied Physics B.1999, Vol.68. pp1085-1094.
    [22] M. B. Campbell and E. J. Heilweil. Non-invasive detection of weapons of massdestruction using THz radiation. Proc. SPIE.2003, Vol.5070, pp38-43.
    [23] C. J. Strachan, P. F. Taday, D. A. Newnham, et al. Using terahertz pulsedspectroscopy to quantify pharmaceutical polymorphism and crystallinity. Journalof Pharmaceutical Sciences2005, Vol.94(4). pp837–846.
    [24] J. A. Zeitler, Y. C. Shen, C. Baker,et al. Analysis of coating structures andinterfaces in solid oral dosage forms by three dimensional terahertz pulsedimaging. Journal of Pharmaceutical Sciences.2007, Vol.96. pp330-340.
    [25] G. J. Wilmink and J. E. Grundt, Current State of Research on Biological Effects ofTerahertz Radiation, Journal of Infrared, Millimeter, and Terahertz Waves,2011,Vol.32(10). pp1074-1122.
    [26] Van der Weide D. W, J. Murakowski,F. Keilmann. Gas-absorption spectroscopywith electronic terahertz techniques. IEEE Transactions on Microwave Theoryand Techniques, vol.48, issue4, pp740-743.
    [27]李建蕊,李九生,赵晓丽.太赫兹时域谱技术快速定性检测奶粉中的三聚氰胺.中国计量学院学报.2009,Vol.20(2). pp131-134。
    [28] S. Gorenflo,U. Tauera, H. A. Lambrechta,and H. Hehnb. Modeling of thebehavior of water and soot contaminated oils in the terahertz range,Proceeding ofSPIE,2006,V01.6194.
    [29]颜志刚,郑松,谢强军等.有机磷农药甲基对硫磷的太赫兹(THz)光谱研究.光谱学与光谱分析.2009,Vol.29(10). pp2622-2625。
    [30]孙金海,沈京玲,郭景伦等.太赫兹时域光谱技术在玉米种子鉴定中的实验研究.光学技术.2008, Vol.34(4). pp541-543,546.
    [31] B. Fischer, M. Hoffmann, H. Helm, et al. Chemical recognition in terahertztime-domain spectroscopy and imaging. Semiconductor Science and Technology.2005Vol.20(7). ppS246-S253.
    [32]张增艳.以THz吸收全谱为特征指纹的混合物成分分析.中国科学院上海应用物理研究所.博士学位论文.2007年。
    [33] C. C. Te, B. Ferguson and D. Abbott. Investigation of biomaterial classificationusing T-rays. Proceedings of SPIE.2002, Vol.4937. pp294-306.
    [34] L. Duvillaret, F. Garet, L. Coutaz. A reliable method for extraction of materialparameters interahertz time-domain spectroscopy. Selected topics in QuantumElectronics.1996,Vol.2(3). pp739-746.
    [35] L. Duvillaret, F. Garet, and J. Coutaz. Highly Precise Determination of OpticalConstants and Sample Thickness in Terahertz Time-DomainSpectroscopy,Applied Optics.1999, Vol.38(2). pp409-415.
    [36] T. D. Dorney, R. G. Baraniuk, D. M. Mittleman. Material parameter estimationusing terahertz time-domain spectroscopy. Journal of the Optical Society ofAmerica A.2001, Vol.18(7). pp1562-1571.
    [37] W. Withayachumnankul, B. Ferguson, T. Rainsford, et al. Simple materialparameter estimation via terahertz time-domain spectroscopy. IEE ElectronicsLetters.2005, Vol.41(14). pp801-802.
    [38] Pupeza, R. Wilk, M. Koch, Highly accurate optical material parameterdetermination with THz time-domain spectroscopy. Optics express.2007,Vol.15(7). pp4335-4350.
    [39] S. P. Mickan, A. Menikh, J. Munch, et al. Amplification and modelling ofbioaffinity detection with terahertz spectroscopy. Biomedical Application ofMicro-and Nanoengineering, Proceeding of SPIE.2002, Vol.4937. pp334-342.
    [40] B. M. Fischer, H. Helm, and P. U. Jepsen. Chemical recognition with broadbandTHz spectroscopy. Proc. IEEE. Aug2007, Vol.95. pp1592–1604.
    [41] D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss. T-ray imaging. IEEE J. Select.Topics Quantum Electron.,1996, Vol.2. pp679-692.
    [42] C. J rdens, M. Scheller, M. Wichmann, et al. Terahertz birefringence fororientation analysis. Optical Society of America, Applied Optics.2009, Vol.48(11). pp2037-2044.
    [43]张振伟,崔伟丽,张岩等.太赫兹成像技术的实验研究.红外与毫米波学报.2006, Vol.25(3). pp217-220。
    [44] M. Tonouchi, Cutting-edge terahertz technology. Nature photonics. Feb2007,Vol.1. pp97-105.
    [45] M Naftaly, R E Miles, Terahertz time-domain spectroscopy for materialcharacterization, Proceedings of the IEEE, Aug2007, Vol.95(8),pp1658-1665
    [46]葛敏,赵红卫,吉特等.常见五元糖的太赫兹时域光谱.中国科学B辑:化学.2005, Vol.35(6). pp441-445。
    [47] Y. Chen, H. Liu, Y. Deng, et al. Spectroscopic characterization of explosives in thefar infrared region. in Terahertz for Military and Security Applications II, R. J.Hwu, D. L. Woolard, eds., Proc. SPIE.2004, Vol.5411. pp1-8.
    [48] M. C. Kemp, P. F. Taday, B. E. Cole, et al. Security applications of terahertztechnology. Terahertz for Military and Security Applications. R. J. Hwu, D. L.Woolard, eds., Proc. SPIE.2003, Vol.5070. pp44-52.
    [49] F. Huang, B. Schulkin, H. Altan, et al. Terahertz study of1,3,5-trinitro-s-triazineby time-domain and Fourier transform infrared spectroscopy. Applied PhysicsLetters.2004, Vol.85. pp5535-5537.
    [50]韩煜,葛庆平,张存林等.基于小波变换的太赫兹图像识别.计算机工程与应用.2008, Vol.44(2). pp241-244.
    [51] N. Li, J. L.Shen, J. H. Sun, et al. Study on THz spectrum of methamphetamine.OPTICS EXPRESS.2005, Vol.13(18). pp6750-675.
    [52]王孝伟,王强,王花丽等.太赫兹时域光谱检测农产品中2种酰胺类农药残留研究.农业科学与技术(英文版).2010, Vol.11(8). pp53-58.
    [53]陈锡爱,黄平捷,侯迪波等.盐酸莱克多巴胺的太赫兹光谱研究.光谱学与光谱分析.2011年第03期. pp600-603
    [54]马士华,施宇蕾,徐新龙等.用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱.物理学报.2006年8月, Vol.55(8). pp4091-4095.
    [55]王卫宁,李元波,岳伟伟.组氨酸和精氨酸的太赫兹光谱研究.物理学报.2007年2月, Vol.56(2). pp0781-0785.
    [56]孟坤,李泽仁,刘乔.太赫兹时域光谱技术用于老化炸药检测.光谱学与光谱分析.2011, Vol.31(5). pp1305-1308.
    [57] B. Ferguson, S. Wang, D. Gray, et al. Identification of biological tissue usingchirped probe THz imaging. Microelectronics Journal.2002, Vol.33.pp1043–1051.
    [58] X. X. Yin, S. Hadjiloucas, B. M. Fischer, et al. Classification of lactose andmandelic acid THz spectra using subspace and wavelet-packet algorithms. Proc.SPIE.2007, Vol.6798. pp679814-1-9.
    [59] E. P. J. Parrott, S. M. Y. Sy, T. Blu, et al. Terahertz pulsed imaging in vivo:measurements and processing methods data processing algorithms. Journal ofBiomedical Optics. October2011, Vol.16(10). pp106010-1-106010-8.
    [60]曹丙花,张光新,周泽魁.太赫兹时域光谱技术在纺织纤维鉴别中的应用.电子科技大学学报.2010, Vol.39(1). pp55-57.
    [61]葛进,王仍,张雷.不同频率的太赫兹时域光谱透射成像对比度研究.激光与红外.2010年4月,Vol.40(4). Pp383-386.
    [62] P. Ku el, H. Němec, F. Kadlec, et al. Gouy shift correction for highly accuraterefractive index retrieval in time-domain terahertz spectroscopy. OPTICSEXPRESS OSA.19July2010, Vol.18(15). pp15338-15348.
    [63] W. Withayachumnankul, B. M. Fischer, et al. Uncertainty in terahertztime-domain spectroscopy measurement. Optical Society of America (B).2008,Vol.25(6):1059-1072.
    [64] W. Withayachumnankul, B. M. Fischer, and D. Abbott. Material thicknessoptimization for transmission-mode terahertz time-domain spectroscopy. OpticsExpress.2008, Vol.16(10). pp7382-7396.
    [65]石小溪,赵国忠.爆炸性物质的太赫兹THz光谱分析.现代科学仪器.2006,Vol.(2),pp48-50。
    [66]刘冬,严建华,王飞等.太赫兹波段火焰碳黑的光学特性研究.光谱学与光谱分析.2009年,Vol.29(12). pp3185-3189.
    [67]王秀敏.太赫兹光谱分析中用误差理论确定样品厚度的研究.激光与红外.2009, Vol.39(8). Pp884-886.
    [68] J. W. Handley, A.J. Fitzgerald, T. Loefflerc, et al. Potential Medical Applicationsof THz Imaging. Proceedings Medical Image Understanding and Analysis. July2001, pp17-20.
    [69] V. P. Wallance, E. MacPherson, J. A. Zeitler, et al. Three-dimensional imaging ofoptically opaque materials using nonionizing terahertz radiation. J. Opt. Soc. Am.A. December2008, Vol.25(12). pp3120–3133.
    [70] Qian SE, Time-Frequency and Wavelet Transforms,1st ed, New Jersey, USA:Prentice Hall, Inc.,2002.
    [71] R. K. H. Galv o, S. Hadjiloucas and J. W. Bowen, et al. Optimal discriminationand classification of THz spectra in the wavelet domain. Optics Express, OSA.2003, Vol.11(12). pp1462-1472.
    [72] R. K. H. Galv o, S. Hadjiloucas and J.W. Bowen. Use of the statistical propertiesof the wavelet transform coefficients for the optimization of integration time inFourier transform spectrometry. Opt. Lett.2002, Vol.27. pp643-645.
    [73] E. Berry, R. D. Boyle, A. J. Fitzgerald, et al. Time-frequency analysis interahertz-pulsed imaging. Computer Vision Beyond the Visible Spectrum(Springer,2005), pp271–311.
    [74] J. W. Handley, A.J. Fitzgerald, E. Berry, et al. Wavelet compression in medicalterahertz pulsed imaging. Physics in Medicine and Biology.2002, Vol.47.pp3885-3892.
    [75] S. Pittner and S. V. Kamarthi. Feature extraction from wavelet coefficients forpattern recognition tasks. IEEE Transactions on Pattern Analysis and MachineInterlligence.1999, Vol.21(1). pp1085–1094.
    [76]邓玉强.邢岐荣,郎利影等. THz波的小波变换频谱分析.物理学报.2005,Vol.54(11). pp240-243。
    [77] B. Ferguson and D. Abbott. Signal processing for T-ray bio-sensor systems.Proceedings of SPIE.2001, Vol.4236. pp157-169.
    [78] S. Hadjiloucas, R. K. H. Galv o, V. M. Becerra, et al. Comparison of state spaceand ARX models of a waveguide's THz transient response after optimal waveletfiltering. IEEE Trans Microw Theory Tech MTT.2004, Vol.52(10):2409–2419.
    [79] X. X. Yin, K. M. Kong, J. W. Lim, et al. Enhanced T-ray signal classificationusing wavelet preprocessing. Med Bio Eng Comput.2007, Vol.45. pp611–616.
    [80] X. X. Yin, B. W. H. Ng, B. Ferguson, et al. Auto-regressive models of waveletsub-bands for classifying terahertz pulse measurements. Journal of BiologicalSystems.2007, Vol.15(4). pp551–571.
    [81]姚宝岱,王迎新.基于太赫兹时域谱分析的爆炸物检测方法研究.光学技术.2007,33(4). pp.586-590
    [82]陈龙旺,孟阔,张岩.小波变换在太赫兹时域光谱分析中的应用.光谱学与光谱分析.2009,Vol.29(5).pp1168-1171.
    [83]余倩,赵跃进,于飞等.一种基于小波变换的太赫兹时域光谱分析方法.光学学报.2009, Vol.29(3). Pp838-843.
    [84]孙青,邓玉强,曹士英等.时间-频率联合分析消除太赫兹光谱干涉.2010,Vol.30(12). pp.3169-3173.
    [85]陈龙旺.小波变换在太赫兹光谱分析及成像中的应用.首都师范大学.硕士学位论文.2008。
    [86] C. Shon, W. Chong, S. Jeon, et al. High speed terahertz pulse imaging in thereflection geometry and image quality enhancement by digital image. Processing.Int J Infrared Milli Waves.2008, Vol.29. pp79–88.
    [87] S. Hadjiloucas, R. K. H. Galv o, and J. W. Bowen. Analysis of spectroscopicmeasurements of leaf water content at terahertz frequencies using lineartransforms. Opt. Soc. Am. A.2002, Vol.19(12). pp2495–2509.
    [88] R. M. Woodward, V. P. Wallace, R. J. Pye, et al. Terahertz pulse imaging of exvivo basal cell carcinoma. J. Invest. Dermatol.2003, Vol.120. pp72–8.
    [89]曹丙花,范孟豹,荆胜羽.基于太赫兹波时域光谱技术的纺织材料鉴别和分类技术研究.光谱学与光谱分析.2010,Vol.30(7). ppl748—1751.
    [90]闫战科.基于THz波谱分析技术的农药检测机理和方法研究.浙江大学.博士论文.2009。
    [91] S. Kawata, K. Sasaki, S. Minami. Component analysis of spatial and spectralpatterns in multispectral images. I. Basis. J. Opt. Soc. Am. A.1987, Vol.4(11).pp2101-2106.
    [92] S. Kawata, K. Sasaki, S. Minami, Component analysis of spatial and spectralpatterns in multispectral images. II. Entropy minimization. J. Opt. Soc. Am. A.1989, Vol.6(1). pp73-79.
    [93] K. Kawase, Y. Ogawa, Y. Watanable, et al. Non-destructive terahertz imaging ofillicit drugs using spectral fingerprints. Opt. Express.2003, Vol.11(20).pp2549-2554.
    [94] W. Watanabe, K. Kawase, T. Ikari, et al. Component spatial pattern analysis ofchemical mixtures using terahertz spectroscopic imaging. Appl..Phys.Lett.,2003,Vol.83(4). pp800-803.
    [95] Y. Watanabe, K. Kawase, T. Ikari, et al. Component analysis of chemical mixturesusing terahertz spectroscopic imaging. Opt. Commun.2004, Vol.234. pp125-129.
    [96] A. Dorboiu, Y. Sasaki, T. Shibuya, et al. THz-wave spectroscopy applied to thedetection of illicit drugs in mail. Proceedings of the IEEE.2007, Vol.95(8).pp1566-1575.
    [97] K. Fukunaga, Y. Ogawa, S. Hayashi, et.al., Terahertz spectroscopy for artconservation. IEICE Electron. Express.2007,Vol.4, No.8,258–263.
    [98] K. Fukunaga, Y. Ogawa, et al. Application of terahertz spectroscopy for characterrecognition in a medieval manuscript. IEICE Electronics Express,2008,Vol.5(7):223-228.
    [99]逯美红,沈京玲,郭景伦等.太赫兹成像技术对玉米种子的鉴定和识别.光学技术.2006, Vol.32(3). pp361-363,366。
    [100] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory.2006, Vol.52.pp1289-1306.
    [101] E. J. Candés, J. Romberg and T. Tao. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information. IEEE Transactionson Information Theory.2006, Vol.52(2). pp489–509.
    [102] W. L. Chan, M. L. Moravec, et al. Terahertz imaging with compressed sensing andphase retrieval. Optics Letters.2008, Vol.33(9). pp974-976.
    [103] W. L. Chan, K. Charan, D. Takhar, et al., A single-pixel terahertz imaging systembased on compressed sensing. American Institute of Physics, Applied PhysicsLetters.2008, Vol.93. pp121105(1-3).
    [104] K. H. Jin, Y. Kim, et al. Compressed sensing pulse-echo mode terahertzreflectance tomography. Optics Letters. December15,2009, Vol.34(24).pp3863-3865.
    [105] Z. Xu, W. L. Chan, D. M. Mittleman, et al. Sparse Reconstruction of ComplexSignals in Compressed Sensing Terahertz Imaging, Signal Recovery andSynthesis. OSA Technical Digest (CD)(Optical Society of America,2009), paperSTuA4.
    [106] Z. Xu, E. Y. Lam. Image reconstruction using spectroscopic and hyperspectralinformation for compressive terahertz imaging.2010Optical Society ofAmerican. July2010, Vol.27(7). pp1638-1646.
    [107] Z. Xu, E. Y. Lam. Hyperspectral THz Image Reconstruction, Signal Recovery andSynthesis. OSA Technical Digest (CD)(Optical Society of America,2010), paperFTuD2.
    [108] Z. Xu, E. Y. Lam. Hyperspectral reconstruction in biomedical imaging usingterahertz systems. Circuits and Systems (ISCAS), Proceedings of2010IEEEInternational Symposium.2010, pp2079-2082.
    [109]丁玉美,阔永红,高新波.数字信号处理-时域离散随机信号处理.第一版.西安:西安电子科技大学出版社,2006。
    [110] H. B. Liu,H. Zhong,N. Karpowicz,et al.,Terahertz spectroscopy and imagingfor defense and security applications. Proceedings of the IEEE.2007. Vol.95.pp1514-1527.
    [111] W. H. Fan, A. Burnett, P C. Upadhya, et al. Far-infrared spectroscopiccharacterization of explosives for security applications using broadband terahertztime-domain spectroscopy. Applied Spectroscopy.2007, Vol.61(6). pp638-643.
    [112] J. F. Federici, B. Schulkin, F. Huang, et al. THz imaging and sensing for securityapplications-explosives, weapons and drugs. Semicond. Sci. Technol.2005,Vol.20. ppS266–S280.
    [113] Liu H B;Chen Y Q;Bastiaans G J, et al. Detection and identification of explosiveRDX by THz diffuse reflection spectroscopy.Optics Express.2006, Vol.14(1). pp415-423.
    [114] Y. Sun, M. Y. Sy, Y.Wang,et al. A promising diagnostic method: Terahertz pulsedimaging and spectroscopy. World J Radiol.2011March, Vol.28;3(3). pp55-65.
    [115] R. M. Woodward, B. E. Cole and V. P. Wallace et al. Terahertz pulse imaging ofin vitro basal cell carcinoma samples. Lasers and Electro-Optics,2001. CLEO '01.Technical Digest.2001, Vol.56. pp329-330.
    [116] P. H. Siegel. Terahertz technology in biology and medicine. IEEE T Micro Theory.2004, Vol.52. pp2438-2447.
    [117] Fischer, B. M. Hoffmann, M. Helm. Terahertz time-domain spectroscopy andimaging of artificial RNA. Optics Express.2005, Vol.13(14). pp5205-5215.
    [118] P. F. Taday, I. V. Bradley, D. D. Arnone, et al. Using terahertz pulse spectroscopyto study the crystalline structure of a drug: A case study of the polymorphs ofranitidine hydrochloride. J Pharmaceut Sci.2003, Vol.92. pp831–838.
    [119] J. A. Zeitler, P. F. Taday, D. A. Newnham, et al. Thomas Rades Terahertz pulsedspectroscopy and imaging in the pharmaceutical setting-a review. Journal ofPharmacy and Pharmacology. February2007, Vol.59(2). pp209–223.
    [120]田璐,赵昆.太赫兹技术在石油领域的应用进展.现代科学仪器.2011年12月, Vol.06. pp5-11。
    [121]王孝伟,王强,王花丽.太赫兹时域光谱检测农产品中2种酰胺类农药残留研究.Agricultural Science&Technology.2010年, Vol.11(8). pp53-56。
    [122] Hua Y F and Zhang H J. Qualitative and Quantitative Detection of Pesticides WithTerahertz Time-Domain Spectroscopy. IEEE Trans Microwave Theory Technol58,2064-2070(2010).
    [123]曹丙花,侯迪波,颜志刚等.基于太赫兹时域光谱技术的农药残留检测方法.红外与毫米波学报.2008, Vol.6. pp429-432。
    [124] J. Schürmann. Pattern Classification. J. Wiley,1996
    [125] B. S. Ferguson, Three dimensional T-ray inspection systems. University ofAdelaide, School of Electrical and Electronic Engineering.2004, Thesis (Ph.D.)http://hdl.handle.net/2440/37962
    [126] E. Berry, J. W.Handley, A. J. Fitzgerald,et al. Multispectral classificationtechniques for terahertz pulsed imaging:all example in histopathology. MedicalEngineering&Physics.2004, Vol.26. pp423-430.
    [127] J.W. Handley, A.J. Fitzgerald, E. Berry, et al. Approaches to segmentation inmedical terahertz pulsed imaging. Proceedings of Medical Image Understandingand Analysis.2002, pp157–160.
    [128] S. Nakajima, H. Hoshina, M. Yamashita,et al. Terahertz imaging diagnostics ofcancer tissues with a chemometrics technique. Applied Physics Letters.2007,Vol.90. pp041102-3.
    [129] Y. Shen, P. F. Taday, M. C. Kemp, et al. Terahertz spectroscopy of explosivematerials. Passive Millimetre-Wave and Terahertz Imaging and Technology, editedby Roger Appleby, J. Martyn Chamberlain, Keith A. Krapels, Proceedings ofSPIE(SPIE, Bellingham, WA).2004, Vol.5619. pp82-89.
    [130] M. A. Brun, F. Formanek, A. Yasuda, et al. Terahertz imaging applied to cancerdiagnosis. Physics in Medicine and Biology.2010, Vol.55. pp4615–4623.
    [131] H. M. Paiva and R. K. H. Galv o. Wavelet-packet identification of dynamicsystems in frequency subbands. Signal Processing.2006, Vol.86. pp2001-2008.
    [132] X. X. Yin. Pattern recognition and tomographic reconstruction with TerahertzSignals for applications in biomedical engineering. Thesis (Ph.D.)-University ofAdelaide, School of Electrical and Electronic Engineering.2009.
    [133] W. Withayachumnankul, B. Ferguson, T. J. Rainsford, et al. Direct Fabry-Peroteffect removal. Fluctuation and Noise Letters.2006, Vol.6(2). pp L227-L239.
    [134] A. J. Fitzgerald, S. Pinder, A. D Purushotham, et al. Classification ofterahertz-pulsed imaging data from excised breast tissue. Journal of BiomedicalOptics. Feb06,2012, Vol.17. pp016005-1-10.
    [135]陈艳江,刘艳艳,赵国忠等.基于支持向量机的中药太赫兹光谱鉴别.光谱学与光谱分析.2009, Vol.29(9). pp.2346-2350。
    [136]赵树森,陈思嘉,沈京玲.用支持向量机识别毒品的太赫兹吸收光谱.2009,Vol.36(3). pp.752-757。
    [137] F. Oliveira, R. Barat, B. Shulkin, et a1. Neural network analysis of terahertzspectra of explosives and bio-agents. Proceedings of SPlE-Terahertz for Militaryand Security Applications.2003, Vol.5070. pp60-70.
    [138]贾燕,用神经网络识别毒品和抗生素的太赫兹光谱,首都师范大学,硕士学位论文,2007
    [139] T. L ffler, K. Siebert, S. Czasch, et al. Visualization and classification inbiomedical terahertz pulsed imaging. Physics in Medicine and Biology.2002,Vol.47. pp3847-3852.
    [140] S. Wang, B. Ferguson, and X.-C. Zhang. Pulsed terahertz tomography. Journal ofPhysics D: Applied Physics.2004, Vol.37. pp R1–R36.
    [141] R.K.H. Galv o, S. Hadjiloucas, V.M. Becerra, et al. Subspace systemidentification framework for the analysis of multimoded propagation ofTHz-transient signals. Measurement Science and Technolgy.2005, Vol.16(3).pp1037-1053.
    [142]刘文涛,李景文,杜春燕.基于太赫兹光谱检测的危险品模糊识别研究.光谱学与光谱分析.2010年2月,Vol.30(2). pp401-405。
    [143] A. J. Fitzgerald, E. Berry, R. E. Mileset al. Evaluation of image quality interahertz pulsed imaging using test objects. Physics in Medicine and Biology.2002, Vol.47. pp3865–73.
    [144]张平,王新柯,李海涛等.基于分形理论的太赫兹光谱识别.量子电子学报.2007, V01.24(6). pp672-677。
    [145]翟爽,葛庆平.基于太赫兹光谱曲线识别的爆炸物识别方法研究.首都师范大学学报(自然科学版).2009, Vol.30(2). pp6-9。
    [146]李宁.毒品和西药的THz光谱研究.[学位论文]2006。
    [147] S. Wang, B. Ferguson, D. Abbott, et al. T-ray imaging and tomography. Journal ofBiological Physics.2003, Vol.29. pp247-256.
    [148] R. M. Woodward, V. P. Wallace and R. J. Pye, et al. Terahertz pulse imaging inreflection geometry of skin tissue using time domain analysis techniques. Proc.SPIE.2002, Vol.4625. pp160–169.
    [149] V. P. Wallace, A. J. Fitzgerald, E. Pickwell, et al. Terahertz pulsed spectroscopy ofhuman basal cell carcinoma. Appl. Spectrosc.2006, Vol.60. pp1127–33.
    [150] E. Pickwell and V. P. Wallace, Biomedical applications of terahertz technology. J.Phys. D: Journal of Applied Physics.2006, Vol.39. ppR301–R310.
    [151] A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, et al. Terahertz pulsed imagingof human breast tumors. Radiology.2006, Vol.239(2). pp533–540.
    [152] H. Grassmann. Linear Extension Theory (Die Lineale Ausdehnungslehre).1844.Translated by Kannenberg L C in The Ausdehntmgslehre of1844and OtherWorks,Chicago,La SaUe:Open Court Publ.,1995.
    [153] W. K. Clifford. Applications of Grassmann’s extensive algebra. American J. ofMath.,1878, Vol.1. pp350-358.
    [154] D. Hestenes. Spacetime algebra, Gordon and Breach, New York,1966,1987
    [155] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. Reidel,Dordrecht,Boston,1984.
    [156]谢维信,曹文明,蒙山.基于Clifford代数的混合型传感器网络覆盖理论的研究.中国科学E辑:信息科学,2007, Vol.37(8). pp1018—1031.
    [157] J. Lasenby, A. N. Lasenby, C. J. L. Doran, et al. New geometric methods forcomputer vision-an application to structure and motion estimation. InternationalJournal of Computer Vision.1998, Vol.26(3). pp191-213.
    [158] E. Bayro-Corrochano,J. Lasenby. A unified language for computer vision androbotics. Lecture Notes in Computer Science. Heidelberg: Springer.1997,Vol.1315. pp219-234.
    [159] E. Bayro-Corrochano, L. Reyes-Lozano, J. Zamora-Esquivel. ConformalGeometric Algebra for Robotic Vision. Journal of Mathematical Imaging andVision.2006, Vol.24. pp55-81.
    [160] D. Hestenes, Universal geometric algebra. A quarterly J. of Pure and AppliedMathematics.1988, Vol.62(3-4). pp1-15.
    [161] D. Hestenes, The design of linear algebra and geometry. Acta ApplicandaeMathematicae.1991, Vol.23. pp65-93.
    [162] H. Li, D. Hestenes, A. Rockwood. Chapter2. Generalized HomogeneousCoordinates for Computational Geometry. Geometric Computing with CliffordAlgebras. Berlin,Heidelberg:Springer-Verlag.2001, pp27-60
    [163] H. Li, D. Hestenes, A. Rockwood. Chapter3. Spherical Conformal Geometry wlthGeometric Algebra. Geometric Computing with Clifford Algebra. Berlin,Heidelberg: Springer-Vevlag.2001, pp61-76.
    [164] H. Li, D. Hestenes, A. Rockwood. Chapter4. A Universal Model for ConfornalGeometrics of Euclidean,Spherical and Douhle-hyperbolie Spaces. GeometricComputing with Clifford Algebras. Berlin, Heidelberg: Springer-Verlag.2001,pp77-104.
    [165] T. Bülow. Hypercomplex Spectral Signal Representations for the Processing andAnalysis of Images. PhD thesis, Christian-Albrechts-University of Kiel,1999.
    [166] M. Felsberg and G. Sommer. Structure multivector for local analysis of images.Technical Report Number2001, Christian-Albrechts-Universitat zu Kiel, Institutfur Informatik und Praktische Mathematik, February2000.
    [167] E.V. Labunets-Rundblad, V.G. Labunets, Chapter7. Spatial-Colour CliffordAlgebra for Invariant Image Recognition,(In: Geometric Computing with CliffordAlgebra), Ed. G. Sommer. Springer, Berlin Heideberg,2001, pp155–185.
    [168] J. Ebling and G. Scheuermann. Clifford Fourier Transform on vector fields. IEEETrans. Visulization and Computer Graphic.2005, Vol.11(4). pp469-479.
    [169]顾耀林,李延芳.基于模板匹配的流场涡旋识别.计算机应用.2007, Vol.27(9).pp2246-2248.
    [170]李茂宽,关键.基于几何代数的彩色光流场计算.光学学报,2009, Vol.29(10).pp2837-2841.
    [171] V.G. Labunets, E.V. Rundblad, and J. Astola. Fast invariant recognition of color3D images based on spinor-valued moments and invariants. Proc. SPIE “VisionGeometry X”.2001, Vol.4476, pp22-33.
    [172]徐永红,洪文学,高直.模式特征的几何代数多向量表示方法.燕山大学学报.2010, Vol.34(2). pp119-122,137。
    [173] S. Buchholz. A theory of neural computation with Clifford algebra. Ph.D. thesis,Christian-Albrechts-Universit¨at zu Kiel.2005.
    [174] S. Buchholz, G. Sommer. Introduction to Neural Computation in Clifford Algebra.Springer, Heidelberg.2001, pp291–314.
    [175] B. Bayro-Corrochano, S. Buchholz. Geometric neural networks. G. Sommer, J.J.Koenderink (eds.) Algebraic Frames for the Perception–Action Cycle, LectureNotes in Computer Science. Springer, Heidelberg.1997, Vol.1315. pp379–394.
    [176] C. Perwass, V. Banarer, G. Sommer. Spherical decision surfaces using conformalmodelling. B. Michaelis, G. Krell (eds.) DAGM2003, Magdeburg, Lecture Notesin Computer Science. Springer, Berlin, Heidelberg.2003, Vol.2781. pp9–16.
    [177] V. Banarer, C. Perwass, G. Sommer. The hypersphere neuron. Proceedings of the11th European Symposium on Artificial Neural Networks, ESANN2003,Belgium2003, pp469–474.
    [178]李茂宽,刘超.基于共形几何代数的C-球壳聚类方法及其实现.现代电子技术.2010, Vol.33(10). pp102-104,121。
    [179]李茂宽,关键.基于共形几何代数与Radon变换的圆检测方法.光电工程.2010年4月,Vol.37(4). pp72-76,82。
    [180] P. Y. Han, M. Tani, M. Usami, et al. A direct comparision between terahertztime-domain spectroscopy and far-infrared Fourier transform spectroscopy.Journal of Applied Physics.2001, Vol.89(4). pp2357-2359.
    [181] P. Lopato, T. Chady, and K. Goracy. Image and Signal Processing for THzImaging of Composite Materials[J], CP1211, Review of QuantitativeNondestructive Evaluation Vol.29,2010, pp.766-773
    [182] M. Naftaly, R. Dudley. Methodologies for determining the dynamic ranges andsignal-to-noise ratios of terahertz time-domain spectrometers. Optics Letters.2009,Vol.34(8). pp1213-1215.
    [183] V. Labunets, Clifford algebras as unified language for image processing andpattern recognition, NATO Advanced Study Institute, ComputationalNoncommutative Algebra and Applications, July6--19,2003.
    [184]裴继红,胡勇,谢维信.太赫兹时域光谱图像的模拟分析.信号处理.2007年8月, Vol.23(4A). pp186-189。
    [185] Leo Dorst, Stephen Mann, Gable, http://www.cgl.uwaterloo.ca/~smann/GABLE/
    [186] Perwass, C.: CLUCalc. http://www.clucalc.info/(2006)
    [187] THz database.[Online]
    [188] http://www.riken.go.jp/lab-www/tera/TP_HP/RIKENDatabase/index.html
    [189] Takeya Unuma, Yusuke Ino, Makoto Kuwata-Gonokami, et al.,“Determination ofthe time origin by the maximum entropy method in time-domain terahertzemission spectroscopy”,2010OSA, Vol.18, No.15,19July2010, Optics Express,15853-15858.(日本名古屋大学)
    [190] Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens and G. Marchal,Automated multimodality image registration based on information theory,Information Processing in Medical Imaging (Y. Bizais, C. Barillot and R. Di Paola,eds.), Kluwer Academic Publishers, Dordrecht,1995, pp.263-274
    [191] J. P. Pluim, J.B. A。 Maintz, M.A. Viegever, Image registration by maximizationof combined mutual information and gradient information, IEEE, Trans. onMedical Imaging, August2000, vol.19(8), pp.809-814
    [192] T. Naes, B. H. Mevik. Understanding the collinearity problem in regression anddiscriminate analysis. J. Chemom.2001, Vol.15. pp413-426.
    [193] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.IEEE Transactions on Signal Processing.1993, Vol.41. pp3397~3415.
    [194] S. B. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basispursuit. SIAM Journal on Scientific Computing.1998, Vol.20(1). pp33-61.
    [195] H. Rauhut, K. V. P. Schnass. Compressed sensing and redundant dictionaries.IEEE Transactions on Information Theory.2008, Vol.54(5). pp2210-2219.
    [196] E. van den Berg, M. P. Friedlander, Probing the Pareto frontier for basis pursuitsolutions. SIAM J. on Scientific Computing.2008, Vol.31(2). pp890-912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700