六自由度串联机器人运动优化与轨迹跟踪控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1954年,第一台电子可编程机器人在美国诞生,从此,机器人不再是捷克小说家的科学幻想,而成为众多科学家和工程师奋斗终生的目标。历经50多年的发展,国外的机器人技术和应用逐渐成熟,并造就了安川、松下、KUKA、ABB、iRobot等一批著名的机器人公司。如今,机器人已成为自动化生产线、柔性制造系统中必不可少的单元,2004年底全球在役的工业机器人超过100万台,2005年增长率达到创记录的30%,其中亚洲机器人增长幅度高达43%,2007年全球新安装工业机器人的数量超过十万套。机器人的研究和应用远没有停止,而是以日新月异的速度向智能化、模块化和系统化的方向发展,其应用领域也从传统的制造业向建筑、农业、防灾、医疗、宇宙、海洋开发等领域,甚至是娱乐、家庭服务等与人类活动密切相关的领域拓展。
     然而,机器人技术是集机构学、电子技术、计算机技术、传感技术、控制论、人工智能和仿生学等多学科于一体的高新技术。由于基础制造技术、多学科交叉融合以及产业化推动等诸多因素的影响,我国虽在1972年即开始研制工业机器人,但至今没有形成品牌,国内的工业机器人装备也主要依赖进口。因此,无论是在理论和技术上跟踪国际先进水平,还是在应用上服务国内制造业,进一步研究机器人的关键共性理论和技术,找到制约机器人国产化的核心问题和解决方案,都具有非常重要的意义。
     本文以自主研制的钱江Ⅰ号焊接机器人作为载体,通过理论研究和实验验证相结合的方式,系统深入地研究了六自由度串联机器人的实时逆运动学、轨迹规划与优化、动力学耦合特性和高精度轨迹跟踪控制问题,旨在找到工业机器人国产化的受限因素,并为串联机器人的开发应用提供一套有效的理论和技术解决方案。
     本文的研究共分为七章,各章内容概括如下:
     第一章,调研分析国内外串联机器人的发展历程及应用现状,以工业机器人为重点指出串联机器人的核心理论和技术问题,结合国内工业机器人研究和产业现状,阐明本课题的研究意义、研究难点和研究内容。
     第二章,建立机器人连杆坐标系并获得D-H参数,推导机器人正运动学和逆运动学计算公式。由于任务空间的位姿变量和关节空间的关节变量具有一对多关系,因此重点解决逆运动学算法的实时性和稳定性问题。将机器人的几何结构从满足Pieper准则拓展到一般几何结构,提出一种基于矩阵分解的一般6R机器人实时逆运动学算法,结合封闭解法、牛顿-拉夫森迭代算法,得到一套可以解决各类几何结构六自由度串联机器人逆运动学问题的高效算法。采用C++实现整套算法,使其可以用于6R机器人实时控制系统。
     第三章,建立机器人任务空间和关节空间轨迹构造方法。推导三维空间直线、圆弧、样条曲线构造方程。为实现机器人作业的柔顺性,采用三次样条曲线构造任务空间平滑位置轨迹,采用四元数球面立体插值方法构造任务空间平滑姿态轨迹。由于机器人各关节驱动和传动部件具有输出力矩限制和运动平滑性要求,因此,提出一种考虑运动学约束的平滑轨迹规划方法,采用B样条曲线构造关节轨迹,使关节速度、加速度、加加速度均连续,且轨迹的起始和终止位置的速度、加速度和加加速度可以任意配置。为提高机器人的作业效率,研究时间最优轨迹规划,以轨迹执行时间作为优化目标,将运动学约束转化为B样条曲线控制顶点约束,采用序列二次规划算法搜索最优时间节点,进而规划出时间最优且加加速度连续的轨迹。将加加速度累积效果作为优化目标,采用类似的轨迹构造方法和寻优方法,规划出最优平滑轨迹。该套轨迹规划与优化算法为机器人快速平稳地执行作业任务奠定了基础。
     第四章,讨论自主研制的钱江Ⅰ号焊接机器人及其关键技术,包括系统架构、机器人本体、嵌入式示教盒软硬件、主控制器及主控软件、运动控制器及运动控制软件、手动焊机数字化转接模块。采用拉格朗日功能平衡法推导六自由度串联机器人的动力学方程,代入钱江Ⅰ号焊接机器人的结构参数,分析其惯量特性、哥氏力和离心力特性、重力矩特性,为机械结构的优化设计和驱动传动部件的合理选型提供理论依据,为关节控制器和轨迹跟踪控制器的研究设计提供动力学模型。
     第五章,首先分析电机驱动的机器人单关节控制模型。在Matlab中建立交流伺服电机PID控制模型,以单关节阶跃响应的瞬态性能和稳态性能作为优化指标,采用序列二次规划方法分别在单关节最大惯量和最小惯量处对速度闭环PI控制参数和位置闭环PID控制参数进行寻优。然后,考虑机器人六关节联动时的动态、耦合和非线性特性,分别采用模糊自适应PID控制策略和有重力补偿的PID控制策略提高轨迹跟踪精度,研究模糊自适应PID控制器对于提高轨迹跟踪精度的效果,研究完全重力补偿PID控制器应用于串联机器人的可行性和有效性。
     第六章,针对工业机器人执行的作业任务具有重复性的特点,引入迭代学习控制技术,用于适应工业机器人重复执行作业任务时重复出现的动态特性,包括惯量耦合、力矩耦合、摩擦力、噪声干扰等。提出一种自适应迭代学习轨迹跟踪控制器,根据轨迹跟踪的误差和误差导数得到学习量,用于修正PD控制器的输出,从而提高轨迹跟踪精度。提出一种输入型迭代学习控制策略,在不改变控制器模型和参数的条件下,通过修正输入参考轨迹达到提高期望轨迹跟踪精度的目的。在钱江Ⅰ号焊接机器人系统上进行控制实验,结果验证了输入迭代学习策略的有效性。
     第七章,总结归纳了本文的主要研究工作、研究结论和创新点,针对串联机器人的国产化和前沿研究作出展望,为后续研发工作提供参考。
In 1954, the first electronic programmable robot was born in the U.S. Since then, robot is no long a science fiction of Czech novelist, but the life-long goal struggled by many scientists and engineers. After 50 years of development, foreign technology and application of robots gradually matured, and a number of well-known companies such as Yaskawa, Panasonic, KUKA, ABB and iRobot were brought up. Today, robot has become an essential unit of automatic production lines and flexible manufacturing systems. At the end of 2004, totoal number of the world's industrial robots was more than one million, and the annual growth rate in 2005 was 30 percent, which created a new record, and the growth rate in Asia was up to 43%. In 2007, the world's newly installed industrial robots were more than one million sets. Research and application of robot is far from stopped, but developing day by day with the trend of intelligent, modular and systematic. Its applications are expanding from traditional field of manufacturing to new fileds of architecture, agriculture, disaster prevention, medical care, the universe, the ocean, and even the fields closely related to human activities such as entertainment, home service.
     However, robotics is a high-tech technology which integrating the electronics technology, computer technology, sensor technology, control theory, artificial intelligence and bionics, etc. For the reasons of basic manufacturing technology, multi-disciplinary integration, promotion of industrialization and many other factors, although the research and development of robot began in 1972 in our country, but so far there is no successful domestic branch of robot, so the robots demanded still rely on imports. Therefore, whether for tracking the international advanced theory and technology, or for suppling services of robot application for domestic manufacturing, further research of key and common theories and technologies in robotics, and discovery of problems and solutions of domestic robot industrialization, are of great importance.
     In this paper, an arc welding robot named Qianjiang I is designed, theoretical research and experimental verification are carried out systematicly and deeply on serial robot, especially serial robot with six degrees of freedom. The research focuses on real-time inverse kinematics, trajectory planning, trajectory optimizing, dynamics coupling characteristics and high-precision tracking control, and aims to finding the constraints on domestic robot industrialization, as well as obtaining an effective solution of theory and technology for the development and application of serial robots.
     The thesis is divided into seven chapters, each chapter is summarized as follows:
     In the first chapter, development and application of serial robots at home and abroad are investigated and analyesed. Key theoretical and technical problems existing in serial robots, especially industrial robots, are pointed out. Then the significances, difficulties and contents are presented according to status quo of research and application of industrial robots.
     In chapterⅡ, coordinate systems of links are set up, and D-H parameters are obtained. Then equations of kinematics and inverse kinematics are derived. Because the one-to-many relationship of variable in task space and joint space, stability and real-time performance of inverse kinematics are focused on. The geometry of serial robots with six degree of freedom is extended from the style which satisfies Pieper's rules to general structure, and a real-time inverse kinematics algorithm based on matrix decompostion is proposed for general 6R robots, which have six rotate joints and general geometry. By combining with the closure method, Newton - Raphson iterative algorithm, a set of algorithm is obtained, and the inverse kinematics problem of serial robots with six rotate joints and various geometries can be solved efficiently. At last, C++ programming language is adopted to realize the set of algortithms, so it can be used for real-time control systems of 6R robots.
     In chapterⅢ, the construction of trajectories in task space and joint space are established. Equations that describe line, arc and spline curve in three-dimensional space are derivated, which are the basic elements of any complex trajectory. In order to achieve flexibility of motion, cubic spline is adopted to contruct smooth trajectory of posiotn in task space, and spherical quaternion interpolation method is exploited to generate smooth trajectory of orientation in task space. Because the output torque of driving and transmitting components of every joint is limited and smooth movement is required, a smooth trajectory planning method that considers kinematic constraints is proposed. B-spline is utilized to generate joint trajectory, so joint velocity, acceleration and jerk are continuous, and, the velocity, acceleration and jerk at the starting and stopping points can be configured. In order to enhance the working efficiency of robot, time optimal trajectory planning method is researched. By setting the total executing time of trajectory as goal of optimization, and transforming the kinematic constraints to constraints on control points of B-spline, the optimal time nodes are seeked with sequential quadratic programming algorithm, then time-optimal and jerk-continous trajectory is generated. Similar procedures are used to generate smoothness-optimal trajectory by setting the cumulative jerk as the goal of optimization. The trajectory planning and optimization algorithm construct the foundation for robots to execute tasks efficiently and smoothly.
     In chapterⅣ, the arc welding robot named "Qianjiang I" and its key technologies are introduced, including system architecture, mechanical structrue, hardware and software of embedded teaching box, main controller and main software, motion controller and motion control software, digital transfer module of manual arc welding machine. Lagrange method is exploited to obtain the dynamic equations of serial robot with six degrees of freedom. Then structural parameters of "Qianjiang I" are substituted into the equations, and its characteristics of inertia, Coriolis force and centrifugal force, and gravitational moment are analyzed. The results provide a theoretical basis for optimal design of mechanical structure and reasonable selection of drivers and actuators, and also provide dynamic model for research and design of joint controller and trajectory tracking controller.
     In chapterⅤ, firstly, the control model of single joint driven by motor is analyzed. PID controller for AC servo motor is created in Matlab, by setting the transient characteristics and steady-state properties of step response as the optimizing target, optimal parameters of PI controller in velocity loop and PID controller in postion loop are seeked using the sequential quadratic programming method. And optimal parameters according to the largest inertial and the smallest inertial are obtained separately. Then, taking into account the dynamic, coupling and nonlinear characteristics when joints are runing simultaneously, fuzzy adaptive PID controller and PID controller with compensation of gravitational moment are designed. The performance of fuzzy adaptive PID controller in improving trajectory tracking accuracy is analyzed. The feasibility and effectiveness of PID controller with complete compensation of gravitational moment is discussed.
     In chapterⅥ, iterative learning techniques are researched. Because tasks that industrial robots execute are often repeated, so, dynamic characteristics can be learned and adapted while the robot executes a certain task repeatedly, the dynamic characteristics include coupling inertia, coupling torque, friction and noise, etc. An adaptive iterative learning controller for trajectory tracking is proposed, which learns from trajectory tracking error and error derivative, and generates an incremental value that appends to the output of PD controller, so the trajectory tracking accuracy is improved. Then, an input-type iterative learning strategy is discussed, which does not change the model and parameters of controller, but modifies the input reference trajectory to achieve improved tracking accuracy of desired trajectory. At last, experiments are carried out on "Qianjiang I", and results verify the effectiveness of input-type iterative learning strategy.
     In chapterⅦ, the main work, results and innovations of the thesis are summarized. Further research and domestic industrialization of serial robot are prospected, which provides a reference for the following research and design.
引文
[1]朱世强,王宣银.机器人技术及其应用[M].浙江:浙江大学出版社,2007
    [2]朱世强.高空作业车多臂协调控制技术的研究[D].浙江大学,1994
    [3]蔡自新.机器人学.北京:清华大学出版社[M],2000
    [4]神原伸介,张炜.日本工业机器人最新发展动向[J].机器人技术与应用,2008,4:23-25
    [5]唐新华.焊接机器人的现状及发展趋势(二)[J].电焊机,2006,36(4):43-46
    [6]范永,谭艮机器人控制器的现状与展望[J].机器人,1999,21(1):25-31
    [7]孙斌,杨汝清.开放式机器人控制器综述[J].机器人,2001,23(4):374-378
    [8]谈世哲.工业机器人控制器开放性、实时性分析方法以及单处理器模式下的实现[D].上海交通大学,2002
    [9]基于PC+DSP模式的开放式机器人控制系统及其应用研究[D].浙江大学,2002
    [10]开放式机器人控制器的控制软件与图形仿真研究[D].中国科学院自动化研究所,2001
    [11]William E.E What is an open architec-ture robot controller?[C].//1994 IEEE Internat-ionalSymposium on Intelligent Control,Columbus,Ohio,USA,1994
    [12]康存锋,杨建武,费仁元等.开放式PC型运动控制器的研究[J].中国机械工程,2004,5:800-802
    [13]陈宗雨,郭伟,王立峰等.基于Windows NT与实时扩展的开放式数控系统的研究[J].计算机集成制造系统,2006,12(4):568-572
    [14]J.S.Gu,C.W.de Silva.Development and implementation of a real-time open-architecture control system for industrial robot systems[J].Engineering Applications of Artificial Intelligence,2004,17:469-483
    [15]陈忠泽,颜国正,林良明.一种新的机器人最优轨迹的规划算法[J].光学精密工程,2001,9(3):242-246
    [16]郭彤颖,曲道奎.一种基于遗传算法的机器人加工路径规划方法[J].华中科技大学学报,2004,32:123-125
    [17]靳保,付宜利,王树国.未知环境下机器人实时模糊路径规划方法[J].哈尔滨工业大学学报,2005,37(10):1315-1399
    [18]LUO Xiong,FAN Xiaoping.Two new algorithms for minimum time motion path planning of robot manipulators and their implementations on PVR-based control platform[J].Chinese Journal of Control Theory and Applications,2003,20(5):700-706
    [19]刘维来,干方建,张平等.基于遗传算法的机器人装配顺序规划的研究[J].系统仿真学报,2005,17(9):2199-2230
    [20]郭路生,吕维先,杨林权.基于时间最优的足球机器人路径规划[J].哈尔滨工业大学学报,2005,37(7):918-920
    [21]周律,陈善本,林涛等.基于局部视觉的弧焊机器人自主焊缝轨迹规划[J].焊接学报,2006,27(1):49-52
    [22]陈国梁,黄心汉,王敏.机器人圆周运动的轨迹规划与实现[J].华中科技大学学报,2005,33(11):63-66
    [23]杨国军,崔平远.机器人时间最优轨迹规划方法研究[J].中国机械工程,2002,13(20):1715-1717
    [24]邹继刚,曾昭龙,张锐.机器人时间-能量综合最优轨迹规划[J].应用科学学报,2002,20(4):346-349
    [25]吴镇炜,谈大龙.机器人空间圆弧运动的一种有效轨迹规划方法[J].机器人,1999,21(1):8-11
    [26]TAN Guanzheng,WANG Yuechao.Theoretical and experimental research on time-optimal trajectory planning and control of industrial robots[J].Chinese Journal of Control &Applications,2003,20(2):185-192
    [27]谭冠政,徐雄,肖宏峰.工业机器人实时高精度路径跟踪与轨迹规划[J].中南大学学报,2005,36(1):102-107
    [28]黄献龙,梁斌,吴宏鑫.机器人避碰规划综述[J].航天控制,2002,1:34-40
    [29]Y.Ting,W.I.Lei,H.C.Jar.A path planning algorithm for industrial robots[J].Computers & industrial engineering,2002,42:299-308
    [30]DAVID Y.LENG,MINGYUAN CHEN.Robot trajectory planning using simulation[J].Robotics & Computer-Integrated Manufacturing,1997,13(2):121-129
    [31]Taha Chettibi.Synthesis of dynamic motions for robotic manipulators with geometric path constraints[J].MECHATRONICS,2006,16:547-563
    [32]Zhenwang Yao,Kamal Gupta.Path planning with general end-effector constraints[J].Autonomous Systems,2006,55:316-327
    [33]Weimin Yun,Yugeng Xi.Optimum motion planning in joint space for robots using genetic algorithms[J].Robotics and Autonomous Systems,1996,18:373-393
    [34]P.Th.Zacharia,N.A.Aspragathos.Optimal robot task scheduling based on genetic algorithms[J].Robotics and Computer-Integrated Manufacturing,2005,21:67-79
    [35]Francisco Valero,Vicente Mata,Antonio Besa.Trajectory planning in workspaces with obstacles taking into account the dynamic robot behaviour[J].Mechanism and Machine Theory,2006,41:525-536
    [36]L.G Van Willigenburg,C.W.J.Hol,E.J.van Henten.On-line near minimum-time path planning and control of an industrial robot for picking fruits[J].Computers and electronics in agriculture,2004,44:223-237
    [37]T.Chettibi,H.E.Lehtihet,M.Haddad,et.al.Minimum cost trajectory planning for industrial robots[J].European Journal of Mechanics,2004,703-715
    [38]E.J.Solteiro Pires,P.B.de,Moura Oliveira,et.al.Manipulator trajectory planning using a MOEA[J].Applied Soft Computing,2007,7(3):659-667
    [39]Jean Bosco Mbede,Xinhan Huang,Min Wang.Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators[J].Robotics and Autonomous Systems,2000,32:61-72
    [40]Sezimaria F.P.Saramago,Marco Ceccarelli.Effect of basic numerical parameters on a path planning of robots taking into account actuating energy[J].Mechanism and Machine Theory,2004,39:247-260
    [41]A.Gasparetto,V.Zanotto.A new method for smooth trajectory planning of robot manipulators[J].Mechanism and Machine Theory,2007,42:455-471
    [42]Lianfang Tian,Curtis Collins.An effective robot trajectory planning method using a genetic algorithm[J].Mechatronics,2004,14:455-470
    [43]Za'er S.Abo-Hammour,Masir M.Mirza,Sikander M.Mirza,et.al.Cartesian path generation of robot manipulators using continuous genetic algorithms[J].Robotics and Autonomous Systems,2002,41:179-223
    [44]Young Dae Lee,Beom Hee Lee,Han Gyoo Kim.An evolutionary approach for time optimal trajectory planning of a robotic manipulator[J].Information Sciences,1999,113:245-260
    [45]Simon X.Yang,Max Meng.An efficient neural network method for real-time motion planning with safety consideration[J].Robotics and Autonomous System,2000,32:115-128
    [46]W.Li,X.G Chang,F.M.Wahl,et.al.Tracking control of a manipulator under uncertainty by FUZZY P+ID controller[J].Fuzzy Sets and System,2001,122:125-137
    [47]J.Aleotti,S.Caselli.Robust trajectory learning and approximation for robot programming by demonstration[J].Robotics and Autonomous Systems,2006,54:409-413
    [48]Use Cervantes,Jose Alvarez-Ramirez.On the PID tracking control of robot manipulators[J].Systems & Control Letters,2001,42:37-46
    [49]M.K.Madrid,A.G.P.Badan.Heuristic search method for continuous-path tracking optimization on high-performance industrial robots[J].Control Eng.Practice,1997,5(9):1261-1271
    [50]F.Alonge,F.D'Ippolito,F.M.Raimondi.Globally convergent adaptive and robust control of robotic manipulators for trajectory tracking[J].Control Engineering Practice,2004,12:1091-1100
    [51]Shiliang Zhou,Pu Han,Dongfeng Wang,et.al.Fuzzy-neural net based control strategy for robot manipulator trajectory tracking[C].//Proceedings of the second International Conference on Machine Learning and Cybernetics,2003,597-601
    [52]Jindong Tan,Ning Xi,Yuechao Wang.A singularity-flee motion control algorithm for robot manipulators—a hybrid system approach[J].Automatica,2004,40:1239-1245
    [53]Ertugrul Akbas,E.Murat Esin.A simulational comparison of intelligent control algorithms on a direct drive manipulator[J].Robotics and Autonomous Systems,2004,49:235-244
    [54]Seung-bok Choi,Jung-sik Kim.A fuzzy-sliding mode controller for robust tracking of robotic manipulators[J].Mechatronics,1997,7(2):199-216
    [55]Shuanghe Yu,Xinghuo Yu,Bijan Shirinzadeh,et.al.Continuous finite-time control for robotic manipulators with terminal sliding mode[J].Automatica,2005,41:1957-1964
    [56]Magdy M.Abdelhameed.Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators[J].Mechatronics,2005,15:439-458
    [57]刘远江.中国工业机器人市场调查[J].机器人技术与应用,2005,2:24-26
    [58]范永,谭民.机器人控制器的现状及展望[J].机器人,1999,21(1):75-80
    [59]李瑞峰,于殿勇,孙立宁,等.新一代弧焊机器人的产业化开发[J].哈尔滨工业大学学报,2002,34(2):145-147
    [60]谈世哲,梅志千,杨汝清.基于DSP的工业机器人控制器的设计与实现[J].机器人,2002,24(2):134-139
    [61]潘炼东,黄心汉.基于PMAC的机器人控制器设计[J].华中理工大学学报,2000,28(4):69-71
    [62]武传宇.基于PC+DSP模式的开放式机器人控制系统及其应用研究[D].浙江大学,2002
    [63]时培涛.开放式机器人控制器的控制软件与图形仿真研究[D].中国科学院,2001
    [64]林尚扬,陈善本等.焊接机器人及其应用[M].北京:机械工业出版社,2000
    [65]熊有伦.机器人学[M].北京:机械工业出版社,1993
    [66]R.P.Paul,H.Zhang.Computational efficient kinematics for manipulators with spherical wrists based on homogeneous transformation representation[J].International Journal of Robotics Research,1986,5(2):30-42
    [67]J.U.Dolinsky,I.D.Jenkinson,G J.Colquhoun.Application of genetic programming to the calibration of industrial robots[J].Computers in Industry,2007,58:255-264
    [68]Yan Meng,Hanqi Zhuang.Autonomous robot calibration using vision technology[J].Robotics and Computer-Integrated Manufacturing,2007,23(4):436-446
    [69]Robert P.Judd,AL.B.Knasinski.A Technique to Calibrate Industrial Robots with Experimental Verification[J].IEEE Transaction on Robotics and automation,1990,6(1):20-30
    [70]J.Angeles.On the numerical solution to the inverse kinematics problem[J].International Journal of Robotics Research,1985,4(2):21-37
    [71]Jovanovic V.T,Kazerounian K.Using Chaos to Obtain Global Solutions in Computational Kinematics[J].Transactions of the ASME,Journal of Mechanical Design,1998,120:299-304
    [72]Primrose E J F.On the Input-Output Equation of the General 7R Mechanism[J].Mechanism and Machine Theory,1986,21(6):509-510
    [73]Lee H Y,Liang C G.Displacement analysis of the general spatial 7-link 7R mechanicsm[J].Mechanism and Machine Theory,1988,23(3):219-226
    [74]Raghavan M,Roth B.Kinematic Analysis of the 6R Manipulator of General Geometry[C].//In International Symposium on Robtics Research,1989:314-320
    [75]Manocha D,Canny J F.Efficient inverse kinematics for general 6R manipulators[J].IEEE Transaction on Robotics and Automation,1994,5(10):648-657
    [76]Kohli D,Osvatic M.Inverse kinematics of general 6R and 5R,P serial manipulators[J].ASME Journal of Mechanical Design,1993,115(4):922-931.
    [77]于艳秋,廖启征.基于有理数运算的一般6R机器人位置逆解算法[J].机械工程学报,2005,41(3):229-233
    [78]Manfred L.Husty,Martin Pfurner,Hans-Peter Schrocker.A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator[J].Mechanism and Machine Theory,2007,42:66-81
    [79]F.Chapelle,P.Bidaud.A Closed Form for Inverse Kinematics Approximation of General 6R Manipulators using Genetic Programming[C].//IEEE International Conference on Robotics &Automation,2001:3364-3369
    [80]Saleh Tabandeh,Christopher Clark,William Melek.A genetic Algorithm Approach to solve for Multiple Solutions of Inverse Kinematics using Adaptive Niching and Clustering[C].//IEEE Congress on Evolutionary Computation,2006:1815-1822
    [81]Bekir Karlik,Serkan Aydin.An improved approach to the solution of inverse kinematics problems for robot manipulators[J].Engineering Applications of Artificial Intelligence,2000,13:159-164
    [82]Ali T.Hasan,A.M.S.Hamouda,N.Ismail,et.al An adaptive-learning algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot manipulator[J].Advances in Engineering Software,2006,37:432-438
    [83]杭鲁滨,王彦,杨廷力.基于Groebner基法的一般串联6R机器人机构逆运动学分析[J].上海交通大学学报,2004,38(6):853-856
    [84]朱向阳,钟秉林.机器人运动学反解中的奇异点处理.机器人,1996,18(5):264-267
    [85]Krzysztof Tchon,Robert Muszynski.Singular Inverse Kinematic Problem for Robotic Manipulators:A Normal Form Approach[J].IEEE Transactions on Robotics and Automation,1998,14(1):93-104
    [86]陈忠泽,颜国正,林良明.一种新的机械手最优轨迹的规划算法[J].光学精密工程,2001,9(3):242-246
    [87]郭彤颖,曲道奎.一种基于遗传算法的机器人加工路径规划方法[J].华中科技大学学报,2004,32:123-125
    [88]靳保,付宜利,王树国.未知环境下机器人实时模糊路径规划方法[J].哈尔滨工业大学学报,2005,37(10):1315-1399
    [89]LUO Xiong,FAN Xiaoping.Two new algorithms for minimum time motion path planning of robot manipulators and their implementations on PVR-based control platform[J].Chinese Journal of Control Theory and Applications,2003,20(5):700-706
    [90]刘维来,干方建,张平等.基于遗传算法的机器人装配顺序规划的研究[J].系统仿真学报,2005,17(9):2199-2230
    [91]郭路生,吕维先,杨林权.基于时间最优的足球机器人路径规划[J].哈尔滨工业大学学报,2005,37(7):918-920
    [92]周律,陈善本,林涛等.基于局部视觉的弧焊机器人自主焊缝轨迹规划[J].焊接学报,2006,27(1):49-52
    [93]陈国梁,黄心汉,王敏.机械手圆周运动的轨迹规划与实现[J].华中科技大学学报,2005,33(11):63-66
    [94]吴镇炜,谈大龙.机械手空间圆弧运动的一种有效轨迹规划方法[J].机器人,1999, 21(1):8-11
    [95]杨国军,崔平远.机械手时间最优轨迹规划方法研究[J].中国机械工程,2002,13(20):1715-1717
    [96]邹继刚,曾昭龙,张锐.机械手时间-能量综合最优轨迹规划[J].应用科学学报,2002,20(4):346-349
    [97]TAN Guanzheng,WANG Yuechao.Theoretical and experimental research on time-optimal trajectory planning and control of industrial robots[J].Chinese Journal of Control Theory &Applications,2003,20(2):185-192
    [98]谭冠政,徐雄,肖宏峰.工业机器人实时高精度路径跟踪与轨迹规划[J].中南大学学报,2005,36(1):102-107
    [99]黄献龙,梁斌,吴宏鑫.机器人避碰规划综述[J].航天控制,2002,1:34-40
    [100]Y.Ting,W.I.Lei,H.C.Jar.A path planning algorithm for industrial robots[J].Computers & industrial engineering,2002,42:299-308
    [101]DAVID Y.LENG,MINGYUAN CHEN.Robot trajectory planning using simulation[J].Robotics & Computer-Integrated Manufacturing,1997,13(2):121-129
    [102]Taha Chettibi.Synthesis of dynamic motions for robotic manipulators with geometric path constraints[J].Mechatronics,2006,16:547-563
    [103]Zhenwang Yao,Kamal Gupta.Path planning with general end-effector constraints[J].Autonomous Systems,2006,55:316-327
    [104]Weimin Yun,Yugeng Xi.Optimum motion planning in joint space for robots using genetic algorithms[J].Robotics and Autonomous Systems,1996,18:373-393
    [105]P.Th.Zacharia,N.A.Aspragathos.Optimal robot task scheduling based on genetic algorithms[J].Robotics and Computer-Integrated Manufacturing,2005,21:67-79
    [106]Francisco Valero,Vicente Mata,Antonio Besa.Trajectory planning in workspaces with obstacles taking into account the dynamic robot behaviour[J].Mechanism and Machine Theory,2006,41:525-536
    [107]L.G.Van Willigenburg,C.W.J.Hol,E.J.van Henten.On-line near minimum-time path planning and control of an industrial robot for picking fruits[J].Computers and electronics in agriculture,2004,44:223-237
    [108]T.Chettibi,H.E.Lehtihet,M.Haddad,et.al.Minimum cost trajectory planning for industrial robots[J].European Journal of Mechanics,2004,703-715
    [109]E.J.Solteiro Pires,P.B.de,Moura Oliveira,et.al.Manipulator trajectory planning using a MOEA[J].Applied Soft Computing,2007,7(3):659-667
    [110]Jean Bosco Mbede,Xinhan Huang,Min Wang.Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators[J].Robotics and Autonomous Systems,2000,32:61-72
    [111]Sezimaria F.P.Saramago,Marco Ceccarelli.Effect of basic numerical parameters on a path planning of robots taking into account actuating energy[J].Mechanism and Machine Theory,2004,39:247-260
    [112]A.Gasparetto,V.Zanotto.A new method for smooth trajectory planning of robot manipulators[J].Mechanism and Machine Theory,2007,42:455-471
    [113]Lianfang Tian,Curtis Collins.An effective robot trajectory planning method using a genetic algorithm[J].Mechatronics,2004,14:455-470
    [114]Za'er S.Abo-Hammour,Masir M.Mirza,Sikander M.Mirza,et.al.Cartesian path generation of robot manipulators using continuous genetic algorithms[J].Robotics and Autonomous Systems,2002,41:179-223
    [115]Young Dae Lee,Beom Hee Lee,Han Gyoo Kim.An evolutionary approach for time optimal trajectory planning of a robotic manipulator[J].Information Sciences,1999,113:245-260
    [116]Simon X.Yang,Max Meng.An efficient neural network method for real-time motion planning with safety consideration[J].Robotics and Autonomous System,2000,32:115-128
    [117]XIAN B,QUEIROZ M S,DAWSON D,et al.Task-Space Tracking Control of Robot Manipulators via Quaternion Feedback[J].IEEE Transaction on Robotics and Automation,2004,20(1):160-167.
    [118]YUN Xiao-ping,ERIC R B.Design,Implementation,and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking[J].IEEE Transaction on Robotics,2006,22(6):1216-1223
    [119]金小刚,彭群生.四元数及其在计算机动画中的应用[J].计算机辅助设计与图形学报,1994,6(3):174-180
    [120]虞铭财,杨勋年,汪国昭.高阶连续的单位四元数插值曲线[J].计算机辅助设计与图形学学报,2005,17(3):437-441
    [121]Xiaoping Yun,Eric R.Bachmann.Design,Implementation,and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking[J].IEEE Transaction on robotics,22(6):1216-1227
    [122]Awad EL-Gohary,Ebrahim R.Elazab.Exponential control of a rotational motion of a rigid body using quaternions[J].Applied Mathematics and Computation,2003,137:195-207
    [123]B.Xian,M.S.de Queiroz,D.Dawson,et.al.Task-Space Tracking Control of Robot Manipulators via Quaternion Feedback[J].IEEE Transaction on Robotics and Automation,2004,20(1):160-168
    [124]Kenjiro T.Miura.Unit quaternion integral curve:A new type of fair free-form curves[J].Computer Aided Geometric Design,2000,17:39-58
    [125]Myoung-Jun Kim,Myung-Soo Kim,Sung Shin,et.al.A General Construction Scheme for Unit Quaternion Curves with Simple High Order Derivatives[C].//Proc.of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,1995:369-376
    [126]Gregory M.Nielson,Senior.Nu-Quaternion splines for the smooth interpolation of orientations[J].IEEE Transaction on visualization and computer graphics,2004,10(2):224-229
    [127]谭民,徐德,侯增广,等.先进机器人控制[M].北京:高等教育出版社,2007
    [128]勃拉涅茨.四元数在刚体定位问题中的应用[M].北京:国防工业出版社,1977
    [129]K.J.KYRIAKOPOULOS,G.N.SARIDIS.Minimum jerk path generation[C].//IEEE International Conference on Robotics and Automation,Philadelphia,1988,1:364-369
    [130]J.E.BOBROW,B.MARTIN,G.SOHL,et al.Optimal robot motions for physical criteria[J].Journal of Robotic Systems,2001,18(12):785-795
    [131]A.PIAZZI,A.VISIOLI.Global minimum-jerk trajectory planning of robot manipulators[J].IEEE Transaction on Industrial Electronics,2000,47(1):140-149
    [132]S.MACFARLANE,E.A.CROFT.Jerk-bounded manipulator trajectory planning:design for real-time applications[J].IEEE Transactions on Robotics and Automation,2003,19(1):42-52
    [133]K.PETRINEC,Z.KOVACIC.Trajectory planning algorithm based on the continuity of jerk[C].//Mediterranean Conference on Control and Automation,Greece,2007:1-5
    [134]A.GASPARETTO,V.ZANOTTO.A technique for time-jerk optimal planning of robot trajectories[J].Robotics and Computer-Integrated Manufacturing,2008,24:415-426
    [135]范永,谭民.机器人控制器的现状与展望[J].机器人,1999,21(1):25-31
    [136]孙斌,杨汝清.开放式机器人控制器综述[J].机器人,2001,23(4):374-378
    [137]谈世哲.工业机器人控制器开放性、实时性分析方法以及单处理器模式下的实现[D].上海交通大学,2002
    [138]基于PC+DSP模式的开放式机器人控制系统及其应用研究[D]。浙江大学,2002
    [139]开放式机器人控制器的控制软件与图形仿真研究[D]。中国科学院自动化研究所,2001
    [140]William E.F.What is an open architec-ture robot controller?[J].//1994 IEEE Internat-ionalSymposium on Intelligent Control,Columbus,Ohio,USA,1994
    [141]康存锋,杨建武,费仁元等.开放式PC型运动控制器的研究[J].中国机械工程,2004,5:800-802
    [142]陈宗雨,郭伟,王立峰等.基于Windows NT与实时扩展的开放式数控系统的研究[J].计算机集成制造系统,2006,12(4):568-572
    [143]J.S.Gu,C.W.de Silva.Development and implementation of a real-time open-architecture control system for industrial robot systems[J].Engineering Applications of Artificial Intelligence,2004,17:469-483
    [144]时国平,刘赣伟.工业机器人示教盒系统的设计[J].兵工自动化,2006,25(5):49-50
    [145]陈锡爱,徐方.基于CAN总线的机器人示教盒通讯系统的设计[J].微计算机信息,2006,22(1-2):14-16
    [146]陈珊.机器人示教盒系统研制[J].制造业自动化,2005,27(2):75-78
    [147]张爱红,张秋菊.机器人示教编程方法[J].组合机床与自动化加工技术,2003(4):47-49
    [148]冯培恩,邵力平,高宇,等.液压挖掘机器人多关节协调控制研究.中国工程机械学报[J],2006,4(3):253-258
    [149]Y.Measson,O.David,E Louveau,et.al.Technology and control for hydraulic manipulators[J].Fusion Engineering and Design,2003,69:129-134
    [150]陶国良,王宣银,路甬祥.3自由度气动比例/伺服机器人连续轨迹控制的研究[J].机械工程学报,2001,37(3):65-69
    [151]Ilse Cervantes,Jose Alvarez-Ramirez.On the PID tracking control of robot manipulators[J].Systems & Control Letters,2001,42:37-46
    [152]Jose Alvarez-Ramirez,Ilse Cervantes,Rafael Kelly.PID regulation of robot manipulators:stablility and performance[J].Systems & Control Letters,2000,41:73-83
    [153]Jose Alvarez-Ramirez,Rafael Kelly,Ilse Cervantes.Semiglobal stability of saturated linear PID control for robot manipulator[J].Automatica,2003,39:989-995
    [154]王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355
    [155]Tae-Yong Kuc,Woong-Gie Han.An adaptive PID learning control of robot manipulators[J].Automatica,2000,36:717-725
    [156]Vicente Parra-Vega,Suguru Arimoto,Yun-Hui Liu,et.al.Dynamic sliding PID control for tracking of robot manipulators:theory and experiments[J].IEEE Transactions on Robotics and Automation,2003,19(6):967-976
    [157]N.Nahapetian,M.R.Jahed Motlagh,M.Analoui.PID gain tuning using genetic algorithm and fuzzy logic for robot manipulator control[C].//Intemational Conference on Advanced Comupter Control,2009:346-350
    [158]叶建雄,张华.机器人焊缝跟踪的Fuzzy-PD控制[J].焊接学报,2005,26(11):97-100
    [159]孙炜,王耀南.模糊B养条基神经网络及其在机器人轨迹跟踪中的应用[J].动力学与控制学报,2005,3(1):56-61
    [160]孟正大,杨振.一种基于神经网络的机器人轨迹跟踪方法[J].华中科技大学学报,2004,32:120-122
    [161]W.Li,X.G.Chang,E M.Wahl,et.al.Tracking control of a manipulator under uncertainty by FUZZY P+ID controller[J].Fuzzy Sets and System,2001,122:125-137
    [162]F.Alonge,F.D'Ippolito,F.M.Raimondi.Globally convergent adaptive and robust control of robotic manipulators for trajectory tracking[J].Control Engineering Practice,2004,12:1091-1100
    [163]Shiliang Zhou,Pu Han,Dongfeng Wang,et.al.Fuzzy-neural net based control strategy for robot manipulator trajectory tracking[C].//Proceedings of the second International Conference on Machine Learning and Cybernetics,2003,597-601
    [164]Seung-bok Choi,Jung-sik Kim.A fuzzy-sliding mode controller for robust tracking of robotic manipulators[J].Mechatronics,1997,7(2):199-216
    [165]Shuanghe Yu,Xinghuo Yu,Bijan Shirinzadeh,et.al.Continuous finite-time control for robotic manipulators with terminal sliding mode[J].Automatica,2005,41:1957-1964
    [166]Magdy M.Abdelhameed.Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators[J].Mechatronics,2005,15:439-458
    [167]Meng-Shiun Tsai,Hao-Wei Nien,Hong-Tzong Yau.Development of an integrated look-ahead dynamics-based NURBS interpolator for high precision machinery[J].Computer-Aided Desing,2008,40:554-566
    [168]L.X.Wang.Adaptive Fuzzy Systems and Control[M].Englewood Cliffs,NJ:Prentice Hal,1994
    [169]Slotine J J E,Li W.Applied Nonlinear Control[M].Englewood Cliff,NJ:Prentice-Hall,1991
    [170]林辉,王林.迭代学习控制理论[M].西安:西北工业大学出版社,1998
    [171]谢胜利,田森平,谢振东,等.迭代学习控制的理论与应用[M].北京:科学出版社,2005
    [172]刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008
    [173]Abdelhamid Tayebi.Adaptive iterative learning control for robot manipulators[J].Automatica,2004,40:1195-1203
    [174]A.Tayebi,S.Islam.Adaptive iterative learning control for robot manipulators:experimental results[J].Control Engineering Practice,2006,14:843-851
    [175]P.R.Ouyang,W.J.Zhang,Madan M.Gupta.An adaptive switching learning control method for trajectory tracking of robot manipulators[J].Mechatronics,2006,16:51-61
    [176]S.Gopinath,I.N.Kar.Iterative learning control scheme for manipulators including actuator dynamics[J].Mechanism and Machine Theory,2004,39:1367-1384
    [177]XU Jian-Xin,XU Jing,CAO Wen-Jun.A PD type fuzzy logic learning control approach for repeatable tracking control tasks[J].ACTA Automatica SINICA,2001,27(4):434-446
    [178]YANG Sheng-yue,LUO An,FAN Xiao-ping.Adaptive robust iterative learning control for uncertain robotic systems[J].Chinese Journal of Control Theory & Applications,2003,20(5):707-712
    [179]方忠,韩正之,陈彭年.迭代学习控制新进展[J].控制理论与应用,2002,19(2):161-166
    [180]李书臣,李平,徐心和.迭代学习控制理论现状与展望[J].系统仿真学报,2005,17(4):904-908
    [181]谢振东,谢胜利,刘永清.非线性系统学习控制理论的发展与展望[J].控制理论与应用,2000,17(1):4-9
    [182]谢胜利,田森平,谢振东.具有n个传动器的n个关节机器人系统的学习控制方法[J].自动化学报,2002,28(2):176-182
    [183]徐敏,林辉,刘震.可变学习增益的迭代学习控制率[J].控制理论与应用,2007,24(5):857-861
    [184]姚仲舒,王宏飞,杨成梧.一种机器人轨迹跟踪的迭代学习控制方法[J].兵工学报,2004,25(3):330-334
    [185]蒋平,UNBEHAUEN Rolf.无奇异间接迭代学习控制及其在机器人运动模仿中的应用.自动化学报,2002,28(6):888-896

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700