径向基函数隐式曲面的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在计算机图形学中,隐式曲面是几何形体的一种重要表示方法,因为它是单一的解析函数,适合于碰撞检测、变形、融合、扭曲、布尔运算等许多方面。其中,径向基函数(简称RBF)隐式曲面能准确、稳定地解决散乱点数据的三维重建问题,是近年来最重要的隐式曲面算法之一。本论文创新地将RBF隐式曲面引入到基于图像的建模、极小曲面问题等领域,并研究了RBF隐式曲面的几何变换问题。相关的研究成果可应用于虚拟现实、场景建模、计算机视觉、图形学、可视化等领域,关于极小曲面的研究成果可应用于整形手术和牙科手术、商品包装设计、分子工程和材料科学、艺术、现代膜工程等许多领域。因此,本文的研究具有重要的学术意义和应用价值。
     本文以RBF隐式曲面为研究主线,在基于图像的建模、RBF隐式曲面的几何变换、极小曲面问题三个方面进行了深入研究并提出一些新的算法,主要内容包括:
     1)在基于图像的建模领域,给出了一个基于网格的特征检测算法,可以在图片序列中得到更多的匹配点,并引入RBF隐式曲面重建算法来重建出目标的三维模型。其主要思想是在首帧中手动指定相对密集的网格,在网格点附近确定最容易跟踪的特征点,利用迭代方法得到子像素精度的角点坐标,然后用稀疏特征集的多尺度光流跟踪算法跟踪这些角点。之后使用自标定算法,就可以重建出相对均匀和稠密的三维点云。最后,引入RBF隐式曲面重建算法,生成目标的三维表面模型。多个图像序列的重建结果表明,本文算法对纹理丰富的场景能够获得较为满意的曲面模型。
     2)推导了RBF隐式曲面在几何变换前后的系数变化公式。当使用RBF隐式曲面时,可能需要对它进行几何变换。传统的RBF隐式曲面几何变换算法是:在给定点使用逆变换,然后用逆变换后的点,在原函数中计算函数值。传统算法需要保持初始的RBF中心。有些时候,则需要几何变换后的RBF中心。在这种情况下,如果仍然使用传统算法,就需要同时保持初始的和几何变换后的RBF中心。显然,这是一个浪费存储空间的问题。本文推导的RBF系数变化公式则解决了上一问题。本文算法只需要保留变换后的RBF中心,因此在需要变换后的RBF中心时会节省很多存储空间。利用这个公式,可以很快计算出新的RBF曲面,并且对紧支撑和全局支撑的RBF都有效。在运算时间方面,本文也详细比较了本文算法和传统算法。理论分析和实验结果表明,本文算法在很多情况下比传统算法更快。将本文算法,应用到了基于RBF隐式曲面的碰撞检测和布尔运算等。并提出一个优化算法,可以加快隐式曲面进行布尔运算的速度。同时,对紧支撑RBF隐式曲面布尔运算中出现的鼓包问题,本文也提出了一个解决方案。
     3)极小曲面问题是数学领域的经典难题,特别是它的多解性问题尚未解决。本文提出一种新的算法可以从一个初始曲面迭代得到多个不同的极小曲面(即得到多个不同的解),包括不稳定的极小曲面。给定空间曲线,寻找以此曲线作为边界的面积最小或极小的曲面,称为Plateau问题,或极小曲面问题。对给定的边界曲线,本文算法从一个以此为边界的任意曲面开始迭代,最后得到一个极小曲面。对同一个初始曲面,当选择不同的参数时,本文算法就可能得到不同的极小曲面。目前检索到的其他同类算法都只能收敛到一个极小曲面。本文算法通过模拟一个非线性弹簧模型在空气阻力下的动态行为,来得到最终的极小曲面。对于如何生成该初始曲面的问题,目前很少有文献报道相关的算法。本文提出一个算法,使用RBF隐式曲面,可以半自动地生成指定亏格的初始曲面,只需要少量的用户操作,对任意多个边界曲线都有效。另外,对于规则的单根边界曲线,提出一个算法可以全自动地生成初始曲面。
In computer graphics field, implicit surface is an important.geometric representation, because it is a single analytic function, and it is suitable for collision detection, deformation, blending, warping, Boolean operations and many other aspects. Among them, the radial basis function (short for RBF) implicit surface can accurately and stably solve the 3D reconstruction issue of scattered points, and it is the most important implicit surface algorithms in recent years. This paper innovatively introduces the RBF implicit surface to the image-based modeling, minimal surface problem, and study on the geometric transformation of RBF implicit surface. Relevant research results can be applied to virtual reality, scene modeling, computer vision, graphics, visualization and other fields, research on minimal surfaces can be applied to plastic surgery and dental surgery, packaging design, molecular engineering and materials science, art, modern membranes engineering and many other fields. Therefore, this study has important significance on science and worthiness in practical application.
     Focused on RBF implicit surface, the image-based modeling, the geometric transformation of RBF implicit surface and minimal surface problem are studied and a number of novel algorithms are proposed in this dissertation. The main contributions include:
     1) In image-base modeling field, we present a grid-based feature detection algorithm, which can match more points among a sequence of images, and then we introduce the RBF implicit surface reconstruction to obtain the 3D model of the object. We make relatively dense grids and look for the best features near the grid points. Then, the sub-pixel coordinates of the corners are found by iteration. Then we calculate optical flow for a sparse feature set using iterative Lucas-Kanade method in pyramids. By this technique, we can reconstruct comparatively even and dense 3D point-cloud with self-calibration algorithm. Implicit surface reconstruction was introduced to generate the surface model of the object. By experimenting with a number of image sequences, the reconstruction results show that the algorithm can obtain satisfied surfaces for a rich texture scene.
     2) We derived the relationship between the initial and the transformed RBF coefficients. When we use a Radial Basis Function (RBF) implicit surface, we may need to transform it. The conventional algorithm to transform an RBF implicit surface is to apply inverse transformation to the given point and to evaluate the original function at the inversely transformed point. The algorithm keeps the initial RBF centers. Sometimes, we need the transformed RBF centers. In these cases, if we still use the conventional algorithm, we need to keep both the initial and the transformed RBF centers. Obviously, this is a problem that wastes the memory. We have derived the relationship between the initial and the transformed RBF coefficients, which can solve the previous problem. Our method only needs to keep the transformed RBF centers, and save much memory. By this method, we can get the new RBF surface quickly and it works for both globally and compactly supported RBF. We also compare our algorithm with the conventional algorithm about the time efficiency in details. The theoretical analysis and experiment results show that our algorithm is faster than the conventional algorithm in many cases. We also applied our method on RBF-based collision detection and Boolean operations。We also propose a method to speed up the Boolean operations of implicit surface. Moreover, we present a solution to relieve the bumps in CSRBF Boolean operations.
     3) The minimal surface problem is a classic problem in mathematics, especially its multiple-solutions problem has not yet resolved. This paper proposed a new algorithm, which may iteratively obtain a number of different minimal surfaces from an initial surface (i.e. get a number of different solutions), including unstable minimal surface. Giving a space curve as the boundary, finding out the surfaces which have minimal area is called "Plateau's problem" or "minimal suface problem". For a given boundary, our algorithm will take an initial arbitrary surface and then derive a minimal surface. For the same initial surface, when we select different parameters, the algorithm may derive different minimal surfaces, which other existing methods cannot achieve. Our algorithm simulates a non-linear spring model in the impact of air drag to derive the results. For the problem of how to generate the initial surface, there are a few literatures that report the related algorithms. We propose an algorithm using RBF implicit surface, which can generate specified genus initial surface semi-automatically, only a small amount of user interaction is needed. Our method is valid for any number of boundary curves. Moreover, for a single regular boundary curve, we propose an algorithm to generate the initial surface automatically.
引文
[陈付幸2005]陈付幸.基于非定标图像序列的三维重建关键技术研究[D].国防科学技术大学.博士学位论文.2005.
    [陈维桓1993]陈维桓.极小曲面[M].长沙:湖南教育出版社.1993
    [陈笑2006]陈笑.有理Bezier极小曲面设计:Dirichlet方法的推广[D].浙江大学.硕士学位论文.2006.
    [孟晓桥2002]孟晓桥,胡占义.一种新的基于圆环点的摄像机自标定方法[J].软件学报,2002,13(5):957-965.
    [孟晓桥2003]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报.2003.29(1):110-124.
    [秦绪佳2001]秦绪佳.医学图象三维重建及可视化技术研究[D].大连理工大学.博士学位论文.2001
    [韦穗2002]韦穗,杨尚骏,章权兵,胡茂林译.计算机视觉中的多视图几何[M].合肥:安徽大学出版社,2002
    [吴玲达2007]吴玲达,邓宝松,高宇,魏迎梅.基于近似相机内参数的精确三维欧氏重建算法[J].系统仿真学报,2007,19(10):2235-2240.
    [杨军2007]杨军.点模型的降噪与三维重建算法研究[D].西南交通大学.博士学位论文.2007.
    [杨军2008]杨军,诸昌钤.带噪声的点云数据的隐式曲面重建算法[J].西南交通大学学报,2008,43(1):29-34.
    [张爱武2005]张爱武,胡少兴,孙卫东,李风亭.基于激光与可见光同步数据的室外场景三维重建[J].电子学报,2005,33(5):810-815.
    [章国峰2009]章国峰.视频场景的重建与增强处理[D].浙江大学.博士学位论文.2009.
    [周廷方2004]周廷方,汤锋,王进,王章野,彭群生.基于径向基函数的图像修复技术.中国图象图形学报:A辑,2004.9(10):1190-1196.
    [Barr 1984] A. Barr, "Global and local deformations of solid primitives." In Computer Graphics (Proceedings of SIGGRAPH 84),1984, ACM, vol.18, pp.21-30.
    [Barnhill 1982] R. Barnhill, "Coons'patches." Computers in Industry,1982,3:37-43.
    [Beatson 1992] R. K. Beatson, G. Newsam, "Fast Evaluation of Radial Basis Functions," Computational Mathematics and Applications,1992,24(12):7-20.
    [Beatson 1997] R. K. Beatson, W. A. Light, "Fast Evaluation of Radial Basis Functions: Methods for Two-Dimensional Polyharmonic Splines," IMA Journal of Numerical Analysis,1997,17(3):343-372.
    [Bickel 2007] B. Bickel, M. Botsch, R. Angst, W. Matusik, M. Otaduy, H. Pfister, M. Gross, "Multi-scale capture of facial geometry and motion." A CM Transactions on Graphics, 2007,26:33-41.
    [Bickel 2008] B. Bickel, M. Lang, M. Botsch, M. A. Otaduy, M. Gross. "Pose-space animation and transfer of facial details." In Proceedings of Symposium on Computer Animation, Dublin, Ireland:Eurographics Association,2008:57-66.
    [Bloomenthal 1994] J. Bloomenthal, "An implicit surface polygonizer." Graphics gems Ⅳ, San Diego:Academic Press Professional,1994:324-349.
    [Botsch 2005] M. Botsch, L. Kobbelt, "Real-Time Shape Editing using Radial Basis Functions." Computer Graphics Forum,2005,24(3):611-621.
    [Bouguet 1999] J. Y. Bouguet, "Pyramidal implementation of the Lucas Kanade feature tracker:description of the algorithm." Santa Clara:Intel Microprocessor Research Labs, Technical Report,1999.
    [Cani-Gascuel 1997] M. Cani-Gascuel, M. Desbrun, "Animation of Deformable Models Using Implicit Surfaces." IEEE Transactions on Visualization and Computer Graphics, 1997,3(1):39-50.
    [Carr 2001] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell,W. R. Fright, B. C. McCallum, T. R. Evans, "Reconstruction and representation of 3D objects with radial basis functions." In:ACM Siggraph 2001. Los Angeles:Springer Press,2001:67-76.
    [Cecil 2005] T. Cecil, "A numerical method for computing minimal surfaces in arbitrary dimension." Journal of computational physics,2005,206:650-660.
    [Chaim 2002] G. S. Chaim, J. M. Sullivan, "Cubic Polyhedra." 2002. arXiv.org: math/0205145.
    [Chen 2001] J. X. Chen, Y. Yang, X. Wang, "Physics-based modeling and real-time simulation." Computing in Science & Engineering,2001,3(3):98-102.
    [Chopp 1993] D. Chopp, "Computing Minimal Surfaces via Level Set Curvature Flow.' Journal of Computational Physics,1993,106:77-91.
    [Ciaret 1978] P.G. Ciaret, "The Finite Element Method for Elliptic Problems.' North-Holland:North Holland Publishing Company,1978:301-311.
    [Cline 1988] H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, B. C. Teeter, "Two algorithms for the Three-Dimensional Construction of Tomograms." Medical Physics, 1988,15(3):320-327.
    [Clough 1975] R. W. Clough, J. Penzien, "Dynamics of Structures." New York:Mc-Graw Hill Inc.,1975, ISBN 0-07-011392-0.
    [Concus 1967] P. Concus, "Numerical solution of the minimal surface equation," Mathematics of Computation.1967,21(99):340-350.
    [Coons 1964] S. Coons, "Surfaces for computer aided design." Technical Report. MIT,1964. Available as AD 663 504 from the National Technical Information service, Springfield, VA 22161.
    [Deng 2006] Z. Deng, P. Y. Chiang, P. Fox, U. Neumann. "Animating blendshape faces by cross-mapping motion capture data." In Proceedings of the 2006 symposium on Interactive 3D graphics and games, New York:ACM,2006:43-48.
    [Deng 2008] Z. Deng, U. Neumann, "Expressive speech animation synthesis with phoneme-level control."Computer Graphics Forum,2008,27:2096-2113.
    [Desbrun 1995] M. Desbrun, M. Gascuel. "Animating Soft Substances with Implicit Surfaces." In SIGGRAPH 95 Conference Proceedings, New York:ACM,1995:287-290
    [Desbrun 1996] M. Desbrun, N. Tsingos, M. P. Gascuel, "Adaptive Sampling of Implicit Surfaces for Interactive Modeling and Animation." Computer Graphics Forum,1996, 15(5):171-185.
    [Dierkes 1992] U. Dierkes, S. Hildebrandt, A. Kuster, O. Wohlrab, "Minimal Surfaces (I): Boundary Value Problems." Berlin:Springer-Verlag,1992.
    [Doi 1991]A. Doi, A. Koide, "An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells." IEICE Transactions,1991, E74 (1):214-224.
    [Douglas 1928] J. Douglas, "A Method of Numerical Solution of the Plateau Problem." The Annals of Mathematics.1928,29 (2):180-188.
    [Douglas 1931] J. Douglas, "Solution of the Problem of Plateau." Trans. Amer. Math. Soc., 1931,33:263-321.
    [Dziuk 1999] G. Dziuk, J. E. Hutchinson, "The discrete Plateau problem." Math. Comp., 1999,68(225):1-23.
    [Euler 1744] Euler, "Methodus inveniendi lineas curves maximi minimive proprietate gaudentes." Berlin:Berlin Press,1744.
    [Farin 1999] G. Farin, D. Hansford, "Discrete Coons patches." Computer Aided Geometric Design,1999,16(7):691-700.
    [Faugeras 1992] O. Faugeras, Q. T. Luong, S. Maybank, "Camera self-calibration:theory and experiments." In Proceedings of the 2th European Conference on Computer Vision, Italy,1992:321-334.
    [Franke 1982] R. Franke, "Scattered Data Interpolation:Tests of Some Methods," Mathematics of Computation,1982,38(157):181-200.
    [Fischler 1981] M. A. Fischler, R. C. Bones, "Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography." CACM,1981,24(6):381-395.
    [Goesele 2007] M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. M. Seitz, "Multi-view stereo for community photo collections." In:Proceedings of 11th IEEE International Conference on Computer Vision, Rio de Janeiro, IEEE Press,2007:14-20.
    [Greengard 1987] L. Greengard, V. Rokhlin, "A Fast Algorithm for Particle Simulation." Journal of Computational Physics,1987,73:325-348.
    [Hartley 1992] R. Hartley, R.Gupta, T. Chang, "Stereo from uncalibrated cameras." In: Proceedings of Computer Vision and Pattern Recognition,1992:761-764.
    [Hartley 1994] R. Hartley. "Euclidean reconstruction and invariants from multiple images." IEEE Trans. PAMI,1994,16(10):1036-1041.
    [Hartley 1997] R. Hartley. "Self-calibration of stationary cameras." International Journal of Computer Vision,1997,22(1):5-23.
    [Hartley 2004] R. Hartley, A. Zisserman, "Multiple View Geometry in Computer Vision, Second Edition." England:Cambridge University Press,2004.
    [Heyden 1997] A. Heyden, K. Astrom, "Euclidean reconstruction from image sequences with varying and unknown focal length and principal point." In:Proceedings of Computer Vision and Pattern Recognition,1997:438-443.
    [Hoppe 1992] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, "Surface reconstruction from unorganized points." In:Proceedings of ACM SIGGRAPH 92, 1992.
    [Jolliffe 1986] I. Jolliffe, "Principle Component Analysis." Berlin:Springer-Verlag,1986.
    [Kojekine 2003] N. Kojekine, I. Hagiwara, V. Savchenko, "Software Tools Using CSRBFs for Processing Scattered Data," Computers & Graphics,2003,27(2):311-319.
    [Lhuillier 2005] M. Lhuillier, L. Quan, "A quasi-dense approach to surface reconstruction from uncalibrated images." IEEE Transaction on Pattern Analysis and Machine Intelligence,2005,27(3):418-433.
    [Lin 1998]M. C. Lin, S. Gottschalk, "Collision detection between geometric models:a survey." In:Proc. of IMA Conference on Mathematics of Surfaces,1998:37-56
    [Lorenson 1987] W. E. Lorenson, H. F. Cline, "Marching Cubes:A High Resolution 3D Surface Construction Algorithm." Computer Graphics,1987,21(4):163-169.
    [Lorensen 1994] W. E. Lorensen, "Extracting Surfaces from Medical Volumes." SIGGRAPH 94 Course Notes, ACM,1994.
    [Lowe 2004] D. Lowe, "Distinctive image features from scale-invariant keypoints." International Journal of Computer Vision,2004,60(2):91-110.
    [Lucas 1981] B. D. Lucas, T. Kanade, "An Iterative Image Registration Technique with an Application to Stereo Vision." International Joint Conference on Artificial Intelligence, 1981:674-679.
    [Ludovic 2008] D. Ludovic, A. Meyer, S. Bouakaz, "Feature points based facial animation retargeting." In:Proceedings of the 2008 ACM symposium on Virtual reality software and technology, New York:ACM,2008:197-200.
    [Ma 1996]S. Ma. "A self-calibration technique for active vision system." IEEE Trans. on robot automation,1996,12(1):114-120.
    [Ma 2003]Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, "An invitation to 3-D vision:from images to geometric models." New York:Springer Verlag,2003:375-410.
    [Maurin 1998] B. Maurin, R. Motro, "The surface stress density method as a form-finding tool for tensile membranes." Engineering Structures,1998,20(8):712-719.
    [Maurin 2001] B. Maurin, R. Motro, "Investigation of minimal forms with conjugate gradient method." International journal of solids and structures,2001,38:2387-2399.
    [Maybank 1992] S. Maybank, O. Faugeras, "A theory of self-calibration of a moving camera." International Journal of Computer Vision,1992,8(2):123-151.
    [Mclauchlan 1995] P. F. Mclauchlan, D. W. Murray, "A unifying framework for structure and motion recovery from image sequences." In:Proceedings of the 5th International Conference on Computer Vision, Boston, USA,1995:314-320.
    [Micchelli 1986] C. A. Micchelli, "Interpolation of scattered data:distance matrices and conditionally positive definite functions." Constructive Approximation,1986,9(2): 11-22.
    [Mohr 1993a] R. Mohr, B. Boufama, P. Brand, "Accurate projective reconstruction." In: Proceedings of Applications oflnvariance in Computer Vision.1993,257-276.
    [Mohr 1993b] R. Mohr, F. Veillon, L. Quan. "Relative 3D reconstruction using multiple uncalibrated images." In:Proceedings of Computer Vision and Pattern Recognition, New-York,1993:543-548.
    [Moons 1996] T. Moons, L. Gool, M. Proesmans, E. Pauwels, "Affine reconstruction from perspective image pairs with a relative object-camera translation in between." IEEE Trans. PAMI,1996,18(1):77-83.
    [Morse 2001] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, K. R. Subramanian, " Interpolating Implicit Surfaces from Scattered Surface Data Using Compactly Supported Radial Basis Functions," In:Proc. Shape Modeling International 2001,2001: 89-98.
    [Nitsche 1988] J. C. C. Nitsche, "Lectures on Minimal Surface Volume Ⅰ." England: Cambridge University Press,1988.
    [Noh 2001]J. Noh, U. Neumann, "Expression cloning."In Proceedings of ACM SIGGRAPH 2001, New York:ACM,2001:277-288.
    [Ogale 2007] A. S. Ogale, Y. Aloimonos, "A roadmap to the integration of early visual modules." International Journal of Computer Vision:From the Special issue entitled "ECOVISION:Challenges in Early-Cognitive Vision",2007,72(1):9-25.
    [Ohtake 2003] Y. Ohtake, A. Belyaev, H. P. Seidel, "A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions." In: Proceedings of the Shape Modeling International 2003,2003:153-161.
    [Pauly 2002] M. Pauly, M. Gross, L. P. Kobbelt, "Efficient Simplification of Point-Sampled Surfaces." In:Proceedings of the conference on Visualization,2002:163-170.
    [Pentland 1989] A. Pentland, J. Williams, "Good vibrations:Modal dynamics for graphics and animation." In Computer Graphics (SIGGRAPH '89 Proceedings),1989,23: 215-222.
    [Pighin 1998] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, D. H. Salesin, "Synthesizing realistic facial expressions from photographs." In:Proceedings of ACM SIGGRAPH 1998, New York:ACM,1998:75-84.
    [Pinkall 1993] U. Pinkall, K. Polthier. "Computing discrete minimal surface and their conjugates." Exp. Math.1993,2(1):15-36.
    [Plateau 1873] J. Plateau, "Experimental and theoretical statics of liquids:subject to molecular forces only." Paris:Gauthier-Villars.1873. (Translated to English by Ken Brakke:http://www.susqu.edu/brakke/PlateauBook/PlateauBook.html)
    [Pollefeys 1996] M. Pollefeys, L. V. Gool, A. Oosterlinck, "The modulus constraint:a new constraint for self-calibration." In:Proceedings of International Conference of Pattern Recognition, Vienna,1996:349-353.
    [Pollefeys 1998] M. Pollefeys, R. Koch, L. V. Gool, "Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters." In Proceedings of the 6th International Conference on Computer Vision, India,1998: 90-95.
    [Pollefeys 2004] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch, "Visual modeling with a hand-held camera." International Journal of Computer Vision,2004,59(3):207-232.
    [Press 1988] W. Press, B. Flannery, S. Teukolsky, W. Vetterling, "Numerical Recipes in C.' England:Cambridge University Press,1988.
    [Rado 1930] T. Rado, "On Plateau's problem." Ann. of Math.1930,31(2):457-469.
    [Rick 2002] P. Rick, "Computer Animation:Algorithms and Techniques." Morgan Kaufmann Press,2002:264-265.
    [Rodriguez 2003] T. Rodriguez, P. Sturm, M. Wilczkowiak, A. Bartoli, M. Personnaz, N. Guilbert, F. Kahl, M. Johansson, A. Heyden, J. M. Menendez, J. I. Ronda, "VISIRE: photorealistic 3D reconstruction from video sequences." In:Proceedings of IEEE International Conference on Image Processing, Barcelona:IEEE Press,2003: 705-708.
    [Savchenko 1995] V. V. Savchenko, A. Pasko, O. G. Okunev, T. L. Kunii, "Function Representation of Solids Reconstructed from Scattered Surface Points and Contours," Computer Graphics Forum,1995,14(4):181-188.
    [Savchenko 1998] V. Savchenko, A. Pasko, "Transformation of functionally defined shapes by extended space mappings." The Visual Computer,1998,14(5/6):257-270.
    [Scharstein 2003] D. Scharstein, R. Szeliski, "High-accuracy stereo depth maps using structured light." In:Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition, Madison, IEEE Press,2003:195-202.
    [Shaffer 2001] E. Shaffer, M. Garland, "Efficient Adaptive Simplification of Massive Meshes." IEEE Visualization 01,2001.
    [Shi 1994]J. Shi J, C. Tomasi, "Good features to track." In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, IEEE Press,1994: 593-600.
    [Struwe 1989] M. Struwe, "Plateau's Problem and the Calculus of Variations." New Jersey: Princeton University Press,1989.
    [Sturm 1996] P. Sturm, B. Triggs, "A factorization based algorithm for multi-image projective structure and motion." In:Proceedings of the 4th European Conference on Computer Vision, Cambridge, U.K.,1996:709-720.
    [Taylor 2003] C. J. Taylor, "Surface reconstruction from feature based stereo." In: Proceedings of 9th International Conference on Computer Vision 2003, Nice, IEEE Press,2003:184-190.
    [Tobor 2004] I. Tobor, P. Reuter, C. Schlick, "Multi-scale reconstruction of implicit surfaces with attributes from large unorganized point sets." In Shape Modeling International 2004,2004:19-30.
    [Tomasi 1991] C. Tomasi, T. Kanade, "Detection and Tracking of Point Features." Carnegie Mellon University, Technical Report CMU-CS-91-132, April 1991.
    [Treece 1999] G. M. Treece, R. W. Prager, A. H. Gee, "Regularised marching tetrahedra: improved iso-surface extraction." Computers and Graphics,1999,23(4):583-598.
    [Triggs 1996] B. Triggs, "Factorization methods for projective structure and motion." In: Proceedings of Computer Vision and Pattern Recognition, San Francisco, CA,1996: 845-851.
    [Triggs 1997] B. Triggs, "Auto-calibration and the absolute quadric." In:Proceedings of Computer Vision and Pattern Recognition,1997:609-614.
    [Tsai 1986] R. Y. Tsai, "An efficient and accurate camera calibration technique for 3D machine vision." In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, IEEE Press,1986:364-374.
    [Tsuchiya 1986] T. Tsuchiya, "On two methods for approximating minimal surfaces in parametric form." Math. Comp.,1986,46(174):517-529.
    [Walter 1961] L. Walter, J. R. Wilson, "On discrete Dirichlet and Plateau problem." Numer. Math.,1961,3:359-373.
    [Wendland 1995] H. Wendland, "Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree." Advances in Computational Mathematics,1995,4:389-396.
    [Wikipedia 2010] Wikipedia. "Minimal surface." [EB/OL]. http://en.wikipedia.org/wiki /Minimal surface.2010-12-02
    [Wu 2004]Y. Wu, H. Zhu, Z. Hu, F. Wu, "Camera Calibration from the Quasi-Affine Invariance of Two Parallel Circles." In:The 8th European Conference on Computer Vision (ECCV),2004:190-202.
    [Wyvill 1999] B. Wyvill, E. Gallin, A. Guy, "Extending the CSG Tree:Warping, Blending and Boolean Operations in an Implicit Surface Modeling System." Computer Graphics Forum,1999,18(2):149-158.
    [Xu 2005]G. Xu, Q. Pan, "Geometric modeling by discrete surfaces patches based on Geometric partial differential equations." Journal of Computer-Aided Design & Computer Graphics,2005,17(12):2596-2606.
    [Zhang 1999] Z. Y. Zhang, "Flexible Camera Calibration by Viewing a Plane from Unknown Orientations." In:Proc.ICCV'99,1999:666-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700