消力池板块表面水流—缝隙水流动力荷载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消力池作为高坝泄洪时下游河床的防护结构,其自身的稳定性不论对消能防冲还是整体水工结构的安全都具有重大意义。消力池防护结构的工作和破坏机理十分复杂,相关的影响因素很多,因此消力池的稳定性一直是一个重要的研究课题。本文结合模型试验和数值分析,研究高坝消力塘水动力荷载特性。对缝隙内水流脉动压力传播进行了数值和试验研究,基于试验数据建立了简化二维数值模型,并基于此模型对脉动上举力各项形成因素进行了分析。利用支持向量机基于结构风险最小化原则的特点,建立了板块上举力预测模型。主要成果包括:
     (1)介绍了底流和挑流这两种主要消能形式的特点,分析了两种消能形式下消力池的典型脉动压力特性,包括幅值特性、频谱分布以及空间积分尺度沿程变化规律。并结合工程实例,介绍了几种新型消能工和消力池防护措施,并通过实测数据对比了采用消能工前后消力池的脉动特性变化,从而直观的表现了新型消能工及防护措施的作用。
     (2)对几个常见的研究缝隙水脉动压力的模型进行了分析,基于水体振荡模型对缝隙内脉动压力的分布规律进行了推导;并以单一余弦波为算例,运用瞬变流模型计算了缝隙中点脉动压力的变化过程。分析了通缝形成后的缝隙水脉动压力传播规律,并将瞬变流模型的计算结果与水体振荡模型计算结果进行了对比,分析了两种方法各自的特点。
     通过水槽内的底流试验,对板块上下表面脉动压力进行了分析。基于试验数据计算了脉动压力的概率分布以及频谱分布,总结了缝隙内水流脉动压力特性。通过小波分解,将实测脉动信号高低频分离,研究了低频范围内脉动压力的相关关系以及缝隙内脉动压力的转换系数Cg。
     (3)基于一维水体振荡模型的计算结果,提出了一种简化的二维模型。这个模型认为板块底部脉动压力由其上表面的几个点脉动压力决定,并考虑脉动压力在进入缝隙过程中的衰减,引入一个衰减系数k。通过实测数据反算验证了k的数值范围。进一步应用简化模型对上下表面中点脉动压力的相关系数的验证。基于该简化模型,对板块脉动上举力的相关要素进行了推导,并尝试仅通过上表面多点脉动压力及其相关关系估算板块可能承受的脉动上举力。通过在水槽中的二元水跃实验对理论分析进行了验证,对比结果表明简化二维模型基本能够反映上举力的变化特性。
     (4)将机器学习理论中的神经网络和支持向量机应用到板块的脉动上举力预测中来,分别构建了上举力的预测模型,通过实测数据检验了模型的预测能力,并基于预测结果对两种模型进行了比较。比较结果发现,两者均达到了较好的效果,说明基于机器学习方法的上举力预测系统有较好的应用前景。基于官地水电站的模型试验数据构建了BP神经网络上举力预测模型,经过数据的检验,模型对上举力的预测具有一定的精度。
The safety of protecting structure in high dam plunge pool is the key to success or failure of energy dissipation, there is are many destructive examples in and abroad. Working and destruction mechanism of protecting structure in high dam plunge pool is very complicated, mechanism of transmission of fluctuating pressure in gap is invoved ,also corelationship of dynamic loads on up and down surface of slabs, so the uplift force is very hard to forecast. Model test and numerical analysis were studied in this paper, and hydrodynamic characteristics in high dam plunge pool is researched.fluctuating pressure in gap is studied by model test and numerical analysis, a simplified two-dimension model is build to reveal the characteristics of fluctuatingpressure in gap by model experiment data, then factors of uplift force are calculated using this simplified model. making the best use of the support vector machine characteristic of structure risk minimization principle, the upport vector machine safety monitoring model of slab-upliftforce is established. Main achievement is included as follows:
     (1)Two kinds of energy dissipation mode and their characteristics were introduced, fluctuating pressure in stilling basins was analyzed, including their amplitude characteristics, spectrum distribution and change law of spatial integral scales . some new kinds of energy dissipator and protective measures of stilling basins were introduced combining with engineering examples, by comparing data from model test,effect of these dissipater was showed.
     (2)Research models of fluctuating pressure in gap were studied, distribution law of pulsating pressure in gap was deduced based on oscilation model. Use cosine wave as an example, process of fluctuating pressure was caculated using transient flow model. Canculation results of these two different model were compared, characters of two method were analyzed.
     Fluctuations on upsurface and down surface were achieved by experiments of hydraulic jump in flume tank. Probability distribution and spectrum of fluctuating pressure were studied basing on the achieved data, and characters of fluctuations in gap was summarized. High and low frequency of experiment data were separated using wavelet decomposition. Corelationship between fluctuations in two ends of gap and conversion factor of fluctuations in gap Cg were researched.
     (3)Basing on conclusions of one dimension water oscillation model, a new simplified two dimension model is presented in this paper. It is considered that pressure fluctuation under slab can be determined by several points on the up surface, considering attenuation of pressure during transmission in gap,a attenuation coefficient K was introduced,and value range of K is calculated by experiment data. Corelation coefficient between fluctuations on the middle of up and down surface is verified using the simplified two dimension model. factors about uplift force were deduced using this model, and it is a new attempt to forecast uplift force by measuring fluctuating pressure on upsurface of slab using this model. Theoretical results and experiment results are compared by model test of hydraulic jump in flume tank.
     (4)BP neural network and support vector machine, which belong to machine learning theory, were used to forecast fluctuating uplift force by constructing forecast system, ability of the systems was test and compared by model test data. It is said that both these two uplift force forecast systems has good applied foreground for their good effect . a uplift force forecast model was construct by data from Guandi model test, and this model is precise to some extent in uplift force forecasting.
引文
[1]童显武,李桂芬等,高水头泄水建筑物收缩式消能工,北京:中国农业科技出版社,2000
    [2]高仪盛,汪世鹏,陈俊,隔河岩枢纽水力学原型观测及检查成果,长江科学院院报,2003.5
    [3]C. Edward Bowers and Joel Toso, Karnafuli Project, Model Studies of Spillway Damage J. Hydr. Eng, ASCE, 1988, 114 (5): 469~483
    [4]练继建、崔广涛、黄锦林,导墙结构的流激振动研究,水利学报,1998 (11):33~37
    [5]水流动水压强对溢流坝挑流鼻坎下游河床影响的模型试验和原型观测,高速水流译文集(长科院),北京,水利电力出版社
    [6]陈永灿、许协庆,射流对下游河床冲击作用的数值模拟,水动力学研究与进展:A辑,1992,7(3):319~326
    [7]B. B.布哈诺夫等,萨彦舒伸斯克水电站宣泄小流量时主要建筑物的振动(张志勇),水利水电快报,1994 (12):8~11
    [8]张声鸣、陈建,水垫塘底板稳定研究,长江科学院院报,1997,14(3):5~9
    [9]D. A.欧文、H. T.法尔维、W.威瑟斯,消力池底板上的压力脉动(高菁),水利水电快报,1998,19(5):9~13
    [10]张建民,挑流消能水垫塘底板冲刷稳定机理研究:[博士学位论文],成都,四川大学,2000
    [11]安芸周一,关于自由跌落水舌的水垫效果的研究,国外科技增刊(2),天津大学图书馆,1981,10,PP58。
    [12]Spyridon Beltaos and Nallamuthu Rajaratnam, Impinging Circular Turbulent Jets, Journal of the Hydraulics Division, ASCE, HY10, 1974,10.
    [13]石川中晴,自由跌落式消能工的水力机理(1),水工高速水流译文集,天津大学水工高速水流研究室,1980.7。
    [14]练继建,二元射流作用下边壁动水荷载极其应用,天津大学硕士研究生毕业论文,1987.12。
    [15]许多鸣,余常昭,平面射流对槽底的冲击压强极其脉动特性,水利学报,1983,5,PP52-58。
    [16]崔广涛,陈荣光,林继镛,关于挑跌流对河床的动水压力及基岩的防护问题[J],天津大学学报,1982(2):23-26。
    [17]崔广涛,林继镛,梁兴蓉,拱坝溢流水舌对河床作用力及其影响的研究,水利学报,1985.8。
    [18]黄种为,陈瑾,高拱坝泄洪与水垫塘底板动水压力问题的试验研究,水利学报,1992,11,PP50-56。
    [19]S.M.Borghei, Effect of Plunge Pool Width on Hydrodynamic Pressures due to Vertical Jet. 29 thIAHR Proceedings, 2001,Them D,Vol.Ⅰ, PP622-627.
    [20]F.A.罗切尔等.对水跃消力池水流脉动压力研究简介.人民长江,1990(10)(50~55页).
    [21]张声鸣.消力池护坦板上水跃脉动压力的特性分析.长江科学院院报.1989年2月
    [22]尤季茨基,依沃依洛夫,西沃洛式斯卡亚等,水流动水压力对溢流坝挑流鼻坎下游河床影响的模型试验和原型观测,高速水流译文集,长科院译,水利电力出版社,1979,PP242-252。
    [23]梁兴蓉,挑流冲刷过程的压力谱场特性的随机分析,高速水流,1984.2。
    [24]崔广涛,关于急流脉动压力振幅取值问题的探讨,高速水流情报网第二界全网大会论文集,1986.10。
    [25]谢省宗,《水工脉动荷载规范》水流脉动压力研究专题总结,水利水电科学研究院,1993.7
    [26]朱荣林,乌江构皮滩拱坝泄洪消能试验报告,水利水电科学研究院,1995.6。
    [27]A.斯波里亚里克等,B.马克西莫维克,G.哈依丁,因压强脉动而作用在消力池底板上的不恒定冲击力,国际水工模型试验会议译文选集,泄水建筑物高速水流情报网,1984.1。
    [28]黄涛,高坝泄水建筑物的几个水力学问题,水利学报,1983.2,PP44-49。
    [29]崔广涛,水流点脉动压力和面脉动荷载转换问题的探讨,溢洪道设计规范专题六,天津大学水工高速水流研究室,1985.10
    [30]林继镛,练继建,二元射流作用下点面脉动壁压的幅值计算,水利学报,1988,12,PP34-40。
    [31]Gao-Jizhang et al, Astudy of hydrodynamic loads on concrete slab of plunge pool, Int. Symp. On Hydraulic Research in Nature and Laboratory, Wuhan, China, 1992 .
    [32]高盈孟,唐建华,陈雪珍,高水头大流量泄洪消能研究—小湾水垫塘保护型式及衬砌结构稳定研究,电力工业部昆明勘测设计研究院科学研究所,1995.5,PP27。
    [33]Fiorotto, V. and Rinaldo , A . , Turbulent pressure fluctuations under hydraulic jumps, J. Hydr. Res., IAHR, VOL. 30, NO. 4, 1992
    [34]廖华胜、许唯临、杨永全等,多股射流入射水垫塘点面脉动压力特性,四川联合大学学报(工程科学版),1999,3(1):20~24
    [35]G.Rehbinder, Slot Cutting in Rock with A High Speed A Water Jet, Int. J.Rock Mech. Min. Sic., Vol.14, 1977, PP 229-234.
    [36]姜文超,梁兴蓉,应用紊流理论探讨脉动压力沿缝隙的传播规律,水利学报,1983,9,PP53-59。
    [37]赵耀南,梁兴蓉,水流脉动压力沿缝隙的传播规律,天津大学学报,1988,3,PP55-65。
    [38]Fiorotto.V and Rinaldo.A. Fluctuating uplift and lining design in spillway stilling basins, Journal of Hydraulic Engineering, ASCE, VOL. 118, NO. 4, 1992:578-596.
    [39]刘沛清,冬俊瑞,余常昭,在岩缝中脉动压力传播机理探讨,水利学报,1994(12):31-36
    [40]刘沛清,李忠义,冬俊瑞,用二维瞬变流方程分析缝面层中脉动压力传播规律,水利学报,1996,4,PP27-32。
    [41]刘沛清,邓学蓉,多级板块缝隙中脉动压力传播过程数值研究,力学学报,1998.11 V.30 NO.06P662-671
    [42]张建民,杨永全,戴光清,周著.水垫塘底板缝隙中脉动压力传播特性.四川大学学报(工程科学版),2000(05),V.32 NO.3 P:5-8
    [43]王玉蓉,张建民,刁明军,曲景学。脉动水压力沿缝隙传播的实验研究[J].水利学报,2002,(12):44-48.
    [44]李爱华,刘沛清.脉动压力在消力池底板缝隙传播的瞬变流模型和渗流模型统一性探讨,水利学报,2005(10):1236-1240
    [45]李爱华,刘沛清.脉动压力在板块缝隙中传播衰变机理研究,水利水电技术,2006(6):33-37
    [46]J. F. Melo, A. N. Pinheiro, and C. M. Ramos, Forces on Plunge Pool Slabs: Influence of Joints Location and Width, Journal of Hydraulic Engineering, 2006, 132(1): 49~60
    [47]刘昉.水流脉动壁压特性及其相似率研究[D].天津大学博士学位论文.2007.5
    [48]夏毓常,张黎明,水工水力学原型观测与模型试验,中国电力出版社,1999
    [49]黄涛,水流脉动压力特征及其模型相似律,水利学报,1993.1,51~57
    [50]赵耀南,重力相似水力模型中紊流微结构的相似律,水利学报,1988.8,97~101
    [51]王木兰,水流脉动压力的数据处理、工程应用及机理研究的进展,河海大学科技情报,1990.9,28~43。
    [52]阎诗武,泄水结构流激振动研究进展,泄水工程与高速水流,1984.3
    [53]崔广涛,练继建,彭新民,林继镛,安刚等,水流动力荷载与流固相互作用,中国水利水电出版社,1999,46~51
    [54]张声鸣,水跃区水流脉动压力相似律的试验研究,长江科学院院报,1991.12,1~9
    [55]练继建,王继敏,辜晋德.水跃区水流脉动压力频谱相似律研究.科学通报.2007(8):1832~1839
    [56]钟用升,脉动壁压的空-时特征与积分尺度,南昌大学学报(工程版),1989.1
    [57]彭新民,王继敏,崔广涛,拱坝水垫塘拱形底板受力与稳定性实验研究,水力发电学报,1999,(2):52-59
    [58]杨敏,彭新民.高坝消力塘底板上举力特性与预测方法.水利水电技术,2003(9):p29-31
    [59]张建民,杨永全,王玉蓉,许唯临.消力塘底板上举力的数值研究.水动力学研究与进展,2003(01):p63-67
    [60]孙健,陈长植.平底消力塘底板块失稳的数值模拟.水利学报,2002(11):p84-88
    [61]孙健.反拱消力塘底板块上举力变化规律的试验研究.应用力学学报,2004(12):p47-51
    [62]侯庆国.消力塘反拱底板单块体上举力的试验研究.中国农村水利水电,2006(7):p88-90
    [63]林继镛、彭新民,挑跌流作用下底板稳定性试验研究,水利水电系统应用概率统计学术讨论会文集,1985.11
    [64]毛野,有关岩基冲刷机理的探讨,水利学报,1982,2(2):46-53
    [65]崔莉、张廷芳,射流冲击下护坦板块失稳机理的随机分析,水动力学研究与进展A辑,1992,7(2):212-218
    [66]郭航忠,水垫塘底板稳定性判别标准研究,[硕士学位论文],天津;天津大学,2003,12
    [67]刘沛清,侯建国.坝下游水垫塘混凝土底板块的稳定性分析,水利学报,1998,7:1-7
    [68]杨敏,彭新民,崔广涛,水垫塘底板的试验仿真模拟研究,水力发电技术,2002,33(3):40-42
    [69]刘喜珠.水垫塘衬砌结构的破坏模式研究[D].天津大学硕士学位论文.2007(6)
    [70]刘沛清,挑射水流对岩石河床的冲刷机理研究,清华大学博士学位论文,1994.12
    [71]王继敏,王珮璜,长潭岗水电站反拱形水垫塘研究及应用,水利水电技术,2002,33 (7):10-12
    [72]杨令强,练继建,张社荣等,高拱坝水垫塘反拱底板衬砌结构的非线性静力分析,水利学报,2002,9:77-81
    [73]符晓,水垫塘衬砌结构非线性静动力特性研究,[硕士学位论文],天津;天津大学,2004.12
    [74]史军,反拱底板稳定性分析的块体——弹簧元数值方法,[硕士学位论文],天津;天津大学,2003.01
    [75]马斌.高拱坝及反拱水垫塘结构泄洪安全分析与模拟[D].天津大学:天津大学博士学位论文,2006.10
    [76]中川博次,洪崎一博,多田敏一,拱坝泄水建筑物的水力学性能研究,国外科技增刊(1),天津大学图书馆,1981,10
    [77]岩佐义郎,中川博次,藤本成,日本多目标工程消能工的历史性发展,高速水流译文集,水利水电出版社,1979,12,433-440
    [78]MH Abdul Khader, K elango.Turbulent pressure field beneath a hydraulic jump[J].Journal of Hydraulic Research,1974,12(4):469-489
    [79]R A Lopardo, J C Delio, G F Vernet.水跃大尺度紊动引起空穴趋势的物理模拟[C]国际水工模型实验会议论文选集。1984.1
    [80]Schiebe F,Bowers C E.Boundary pressure fluctuations due to macroturbulence in hydraulic jumps[C]. Proc. Symp. On Turbulence in Liquids, University of Missouri, Columbia, 1971.
    [81]钟用升,水跃区脉动压力的随机分析[D],华北水利水电学院,1981.
    [82]丁灼仪,低弗洛德数消力池水流脉动压力频率特性试验研究,水力发电学报,1990.3,19~26
    [83]Narayanan R. Pressure fluctuations beneath submerged jump[J]. J. Hydr. Div., ASCE, 1978, 104 (9): 1331-1342.
    [84]王木兰,水流脉动压力的数据处理、工程应用及机理研究的进展,河海大学科技情报,1990.9,28~43。
    [85]孙勉.水垫塘透水底板水动力特性研究[D].天津大学硕士研究生毕业论文,2006.
    [86]水利水电泄水工程与高速水流信息网,东北勘测设计研究院编,泄水建筑物的破坏与防治[M].成都:成都科技大学出版社,1996
    [87]G.Rehbinder, Slot Cutting in Rock with A High Speed A Water Jet, Int. J.Rock Mech. Min. Sic., Vol.14, 1977, PP 229-234.
    [88]Fiorotto.V and Rinaldo.A. Fluctuating uplift and lining design in spillway stilling basins, Journal of Hydraulic Engineering, ASCE, VOL. 118, NO. 4, 1992:578-596.
    [89]李会平.消力池底板缝隙水流脉动压力传播规律研究[D].天津大学硕士学位论文.2008(6)
    [90]杨弘,高坝消力塘耦合动力分析与健康诊断[D].天津大学博士学位论文.2008
    [91]张力霆、齐清兰,固体边壁上点面脉动压力转换的数学推导,数学的实践与认识,2003.10,78~84
    [92]Vapnik V N,Levin E,Le C Y. Measuring the VC-dimension of a learning machine[J]. Neural Computation,1994,(6):851~876.
    [93]Everett J G,Thompson W S. Experience Modification Rating For Workers’Compensation Insurance[J]. Journal of Construction Engineering and Management,1995,121(1):66~78.
    [94]Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Disco-very,1998,2 (2):57~60.
    [95]Cortes C,Vapnik V. Support-vector networks[J]. Machine Learning,1995,20:273~297.
    [96]Scholkopf B,Burges C,Vapnik V N. Extracting support data for a given task. In:Fayyad U MUthurusamy R(eds.). Proc. Of First Intl. Conf. On Knowledge Discovery & Data Mining,AAA I Press,1995:262~267.
    [97]Vapnik V N,Golowich S,Smola A. Support vector method for function approximation,regression estimation,and signal processing. In:Mozer M,Jordan M,Petsche T (eds)[C]. Neural Information,2003.
    [98]Muller K-R,Smola A J,Ratsch G,et al. Predicting time series with support vector machines.In:Proc. of ICANN'97[C],Springer Lecture Notes in Computer Science,1997,999~1005.
    [99]Zhang H B,Zhong P, Zhang C H. The Newton-PCG Algorithm via Automatic Differentiation. OR Transaction,2003,7(1):28~38.
    [100]Bartlett P L. The sample complexity of pattern classification with neural network: the size of the weights is more important than the size of network[J]. IEEE Transactions on Information Theory,1998,44(2):525~536.
    [101]Scholkopf B,Smola A,MllerK-R. Nonlinear componen tanalysis as kernel eigenvalue problem[J].
    [102]Scholkopf B,Sung K-K,Burges C,et al. Comparing support vector machineswith Gaussian kernels to radial basis function classifiers[C]. IEEE Trans. On Signal Processing,1997,45(11):2758~2765.
    [103]Zhang XG. Using class-center vectors to build support vector machines[C]. Madison:Proc. Of NNSP'99,1999.
    [104]邓乃扬,田英杰,数据挖掘中的新方法——支持向量机,北京:科学出版社,2004
    [105]Vapnik V N,统计学习理论的本质,北京:清华大学出版社,2000
    [106]张学工,关于统计学习理论与支持向量机,自动化学报,2000,25(1):32~42
    [107]赵洪波,冯夏庭.位移反分析的进化支持向量机研究,岩石力学与工程学报,2003,22(10):1618~1622
    [108]姜谙男,冯夏庭,由工程实例获取隧洞围岩最大变形的支持向量机方法,东北大学学报(自然科学版),2004,25(8):793~795
    [109]田执祥,乔春生,滕文彦,刘开云,基于支持向量机的隧道变形预测方法,中国铁道科学,2004,25(1):86~90
    [110]ZHU Yong-sheng, ZHANG You-you, the study to some problems of support vector classifier, Computer engineering and applications, 2003, 39(13):36~38
    [111]PLATT J C, Sequertial Minimal Optimization:A Fast Algorithm for Training Support Vector Machines, Technical Report, 1998
    [112]WANG Jiaqi, TAO Qing, WANG Jue, Kernel Projection Algorithm for Large scale SVM Problems, Journal of Computer Science & Technology, 2002, 17(5):556~ 564

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700