飞行目标位置和姿态光电测量技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电测量技术具有非接触、精度高等优点,在测量飞行目标的相对位置和姿态的导航系统中具有重要的应用,如舰载直升机助降光电引导系统、航天器空间交会对接过程中的光电导航系统等。而这些应用在系统的测量精度和实时性方面都有较高的要求,因此对于精确、快速的光电测量技术进行研究有重要科学意义和应用价值。
     本文介绍了直升机助降光电引导系统和航天器空间交会对接光电导航系统中所采用光电测量技术的发展现状、趋势以及基本理论。从理论上和实验上分别对单目视觉的测量技术、双目视觉的测量技术和相位式激光测距技术进行了深入的研究。
     正交迭代OI(Orthogonal Iteration)算法是一种快速且能全局收敛的单目摄影测量算法。但是使用该算法在近距离对三维目标测量时,距离测量误差较大。本文提出了增加旋转矩阵约束条件的改进方法,建立了共面特征点的共线性方程,得到了一种快速、准确且能全局收敛的位置、姿态测量算法。计算机仿真表明,采用本文改进算法总能得到正确的旋转矩阵,同时也提高了距离测量精度。本文还对拍摄的三维目标真实图像进行了实验研究,使用改进算法测到的相对距离和旋转角的精度都优于OI算法的结果。改进算法对于二维或三维目标位置与姿态测量技术具有重要的理论和实用价值。
     针对舰载直升机助降光电引导技术,本文建立了一种双摄影测量算法模型,该模型是在目标模板两侧各安装了两台摄像机,分别获取飞行目标两侧特征点的图像,在提取出特征点的图像坐标后,使用线性算法计算出目标相对位置和姿态的初始解,再使用非线性优化算法得到了最优解。在研究双摄影测量算法模型的基础上,建立了一套直升机助降光电引导演示系统。它由两台大功率半导体激光照明装置和两台精密CCD(Charge Coupled Device)摄像机、目标模板以及高性能DSP(Digital Signal Processing)数据处理装置组成。实现了实时图像处理、目标跟踪和位姿参数的测量。进行了室外实验,测量得到目标的相对平移误差小于5cm,偏航角误差小于±3°,其精度与国外直升机光电助降系统ASIST(aircraftship integrated secure and traverse)的技术指标相近。该直升机着舰助降演示系统在国内尚未见报道。
     本文基于基因遗传算法求解病态矩阵的方法,对国外文献中一种经典的多平面摄像机镜头标定方法进行了改进,该标定方法可以同时利用目标空间和图像空间的特征,能得到较为精确的像机内部参数,但是在模板平面旋转角度较小时,计算结果会出现不稳定。仿真计算表明,采用本文改进方法后得到了更为稳定和准确的像机内部参数。由此求解出反向投影畸变模型下的镜头畸变系数,能够适用于实时测量系统。该方法具有重要的理论和实用价值。
     为了确定飞行目标位置,本文对传统的相位式激光测距方法进行了改进,提出了一种快速、高精度的相位式激光测距方法。该方法采用内、外光路替代传统机械转换光路的方法,去除了电路中的附加相移,提高了测量速率。使用单片机、复杂可编程逻辑器件进行数据处理与逻辑控制,简化了电路设计,提高了系统的稳定性。进行了室内测量,实验测量速率达到5Hz,测距数据精度3σ小于81.181mm,稳定度3ε小于3.688mm。本文研究的相位式激光测距方法对今后的工程系统研制具有重要的参考意义。
Electro-optical measurement technology has the advantage of non-contact and highaccuracy,and it has an important application in the areas of the relative position andpose sensing for a flying object,such as the landing guidance system for a ship-bornehelicopter,and the optical guidance system in the spacecraft rendezvous and docking(RVD) process.These applications have high requirements for the measurementaccuracy and data update rate.Hence,researching on the fast and accurateelectro-optical measurement technology has important scientific significance andapplication value.
     An overview of the electro-optical measurement technology,the tendency and thefundamental theories are given,which is used in the helicopter's landing guidancesystem and the navigation system for the spacecraft RVD.An intensive study has beenmaken in theory and experiment on the pose estimation method,which is based on themonocular vision and the dual camera vision respectively,and on the laser range findertechnology,which is based on the phase shift measurement.
     The Orthogonal Iteration (OI) Algorithm is introduced,which has a fast convergentspeed,but the results have a large translation error in the close range,when using thethree-dimensional feature points.After the rotation matrix solution in the OI algorithmbeing refined,an efficient pose estimation algorithm is derived.Simulation results of theimproved algorithm show that the proper rotation matrix is always obtained,which inturn improves the accuracy of the translation vector.The comparison experiments showthat,when using the improved algorithm,the results of the relative distance and therotational angles are better than those using the OI algorithm.The improved algorithmhas a great theory and application value on the pose estimation system for atwo-dimensional object or a three-dimensional object.
     A relative position and pose determination algorithm is proposed based on the dualcamera vision,which can be used for the shipboard helicopter landing aid system.Twocameras are set on two sides of the object to acquire the characteristc points' image;the initial value of the pose of the object can be caluculated using the linear algorithm afterthe pointes coordinates extracted;then the nonlinear algorithm is used to obtain anoptimal solution.Based on the research of binocular vision measurement algorithm,thehelicopter landing aid demonstration system is setup.In this system,two high powersemiconductor laser illuminator devices and two precise CCD (Charge Coupled Device)cameras,a model plane and a high performance DSP signal process device are used.And the real-time image processing,object tracking,and pose estimation are realized.The outside experiments show that,the error of the relative object distance from thecamera is less than 5cm,and the rotational angle error is within±3°.The accuracy ofthe results is close to those of the ASIST (aircraft ship integrated secure and traverse)system.This demonstration system has not been reported in domestic.
     We use the Genetic Algorithm (GA) to solve the ill-conditioned equations,and awell-known camera calibration method based on the multi-plane is improved.Using themulti-plane calibration algorithm,both the characters of object space and image spaceare used,and accurate intrinsic parameters could be obtained,but the results may beunstable when the rotation angle of the pattern plane is small.Simulation shows thatmore stable and accurate results are obtained after it being improved.The distortioncoefficients under the backward projection model are computed,which can be appliedto a real-time measurement system.This calibration algorithm has important theory andapplication value.
     To determinate the flying object's position,we make some improvement on theconventional laser range finder based on the phase-shift measurement,and a fast andhigh accurate laser range finder method based on the phase-shift measurement isproposed.Instead of conventional mechanical switch and single receiving circuit,separate circuits and optical units were designed for the inside and outside beams,usingwhich the appended electornic phase shift is eliminated and the measurement speed isincreased.The Micro-Controller Unit (MCU) and Complex Programmable LogicDevice (CPLD) are used in the data processing and the logical control,which makes thecircuit design easier and improves the measurement stability.The experimental dataaccuracy is 81.181 mm (3σ),stability is 3.688mm (3ε) and data update rate is better than5Hz with the indoor measurements.This method provides an important reference for theengineering research.
引文
1.何照才,胡保安,董书法等.光电测量.国防工业出版社,2002:1-20.
    2.Kumar,R.and A.R.Hanson.Robust methods for estimating pose and a sensitivity analysis.CVGIP.Image understanding,1994,60:313-342.
    3.Thomas S.Huang,Arun N.,Netravali.Motion and structure form feature corespondences:A Review.Proceedings of IRRR,1994,82(2):252-267.
    4.R.M.Haralick,C.Lee,K.Ottenberg,and M.Nolle.Analysis and Solutions of the Three Point Perspective Pose Estimation Problem.in Proc.IEEE Conf.Computer Vision and Pattern Recognition,1991:592-598
    5.Xiao-Shan Gao,X.-R.H.,Jianliang Tang.Complete Solution Classification for the Perspective-Three-Point Problem.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):930-943.
    6.Dhome,M.,M.Richetin,et al..Determination of the attitude of 3-D objects from a single perspective view.IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11:1265-1278.
    7.S.H.Or,W.S.L.,K.H.Wong,I.King.An efficient iterative pose estimation algorithm.Image vision computing,1998,16:353-362.
    8.Haralick,R.M.,H.Joo,et al.,Pose estimation from corresponding point data.IEEE Transactions on Systems,Man and Cybernetics,1989,19:1426-1446.
    9.Chien-Ping Lu,Gregory D.Hager.Fast and globally convergent pose estimation from video images.IEEE transactions on pattern analysis and machine inteligence,2000.22(6):610-622.
    10.Lowe,D.G.,Fitting parameterized three-dimensional models to images.IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13:44 1-450.
    11.Qiang Ji,Mauro S.,Robert M.Haralick,etc.,An integrated linear technique for pose estimation from different geometric features.International Journal of Pattern Recognition and Artificial Intelligence,1999,13(5):705-733.
    12.zhiguang zhong,Jianqiang Yi,Dongbin Zhao,Yiping Hong,Effective pose estimation form point paris.Image vision computing,2005.23:651-660.
    13.张世杰,曹喜滨,陈雪芹.航天器相对位姿参数光学测量解析算法.航空学报,2005,26(2): 214-218.
    14.Fakhr-eddine Ababsa, Malik Mallem. Robust camera pose estimation using 2d fiducials tracking for real-time augmented reality systems. in Proceedings VRCAI 2004 - ACM SIGGRAPH International Conference on Virtual Reality Continuum and its Applications in Industry. 2004:431-435
    15.张广军,机器视觉.科学出版社. 2005: 69-88.
    16.David salt. An electro-optic precision approach and landing system. SPIE, 1995, 2463: 102-114.
    17.A. Azrbayejani, A.P., Recursive estimation of motion, structur and focal length. IEEE Transaction on Pattern Analysis and Machine Intellegence, 1995, 17(6): 562-575.
    18.T.J. Broida, R. Chellappa, Estimation of object motion parameters from noisey images. IEEE Transaction on Pattern Analysis and Machine Intellegence, 1986, 8(1): 90-99.
    19.Goddard, J.S., Pose and motion estimation from vision using dual quqternion-based extended kalman filtering. The University of Tennessee, Knoxville, 1997:1-10.
    20.Joaquim Salvi, Xavie Armangue and Joan Batlle. A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition, 2002, 35: 1617-1635.
    21.O.D. Faugeras, G. Toscani. The calibration problem for stereo. in Proceedings of the IEEE Computer Vision and Pattern Recognition. 1986: 15-20.
    22.Tsai, R.Y., A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 1987, 3(4): 323-344.
    23.Ehrenfried, K., Processing calibration grid images using the hough transformation. Measurement Science and Technology, 2002,13: 975-983.
    24.R. Cucchiara, C. Grana, A. Prati, R. Vezani. A hough transform-based method for radial lens distortion correction. Proc. Int. IEEE Conf. Image Analysis Processing, 2003: 182-187.
    25.Moumen T. Ahmed and Aly A. Farag. Differential methods for nonmetric calibration of camera lens distortion. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'01), 2001, Vol. 2: 477-482.
    26.Moumen Ahmed, Aly Farag. Nonmetric calibration of camera lens distortion: differential methods and roubust estimation. IEEE Transactions on Image Processing, 2005, 14(8): 1215-1229.
    27.Zhang, Zhengyou. A flexible new technique for camera calibration. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
    28.Zhengyou, Z., A flexible new technique for camera calibration[R], Redmond, Editor. 1998, USA:Microsoft Research.
    29.shanxi Deng, Yongyue Yang, Xunsi Wang. A calibration method using only one plane for 3D machine vison. in Machine Vision Applications in industrial InspectionXII, Proceedings of SPIE-IS&T Electronic Imaging. 2004. Fabrice Meriaudeau.2004, 5303: 52-63.
    30.Jun-sik Kim, Ho-Won Kim, In-So Kweon. A Camera calibration method using concentric circles for vision applications. in The 5th Conference on Computer Vision. 2002. Melbourne, Australia, 2002:1-6.
    31.Jun-sik Kim, Pierre Gurdjos, In-So Kweon, Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE Transaction on Pattern Analysis and Machine Intellegence, 2005,27(4): 637-642.
    32.Vincent Fremont, Ryad Chellali. Direct camera calibration using two concentric circles from a single view. in Proceedings of theinternational Conference on the Artificial Reality and Telexistence. 2002:93-98.
    33.Heikkila, J., Geometric camera calibration using circular control points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1066-1077.
    34.J. Weng, P.C., and M. Hemiou. Camera calibration distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(10): 965-980.
    35.W.Faig, Calibration of close-range photogrammetry systems. Mathematical formulation. Photogrammetric Eng. Remote Sensing, 1975,41(2): 1479-1486.
    36.G. Q. Wei, S.D.M., Implicit and explicit camera calibration: Theory and experiments. IEEE Transaction on Pattern Analysis and Machine Intellegence, 1994, 16(5): 469-480.
    37.Karara, Y.I.A.-A.a.H.M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. in Proceedings of the ASP Symposium on Close-Range Photogrammetry, 1971:1-18.
    38.http://kwon3d.com/theory/dlt/dlt.html.
    39.Hatze, H., High precision three dimensional photogrammetric calibration and object space reconstruction using a modified DLT approach. Journal of Biomechanics, 1988, 21: 533-538.
    40.R. K. Lenz and R. Y. Tsai. Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10:713-720.
    41.戴永江.激光雷达.北京:国防工业出版社,2002:144-243.
    42.M L SimPoson,M J Paulus.Discriminator design considerations for time-interval measurement circuits in collider detector systems.IEEE Trans.Nuel.Sci.,1998.45(1):98-104.
    43.任明冰,半导体脉冲激光测距机的硬件电路设计:[硕士学位论文]南京理工大学,2004年.
    44.SHUMAKER,J.S.A.D.L.(著),孙再龙,熊辉丰(译).红外光电系统手册(第6卷),天津:航天8358所,1996:1-24.
    45.S.Perez,E.Garcia,H.L.,AMCW laser rangefinder for machine vision using two modulation frequencies for wide measurement range and high resolution.SPIE,1999,3326:48-52.
    46.Journet B.,Bazing,Bras F.Conception of an adaptive laser range finder based on phase shift measurement,in IECON Proceedings (Industrial Electronics Conference),1996,2:784-789
    47.B.Journet,S.Poujouly.High resolution laser range finder bsed phase shift measurement mentod,in SPIE conference on three dimensional imaging,optical metrology,and inspection Ⅳ.1998,3520:123-130.
    48.Poujouly,S.,Journet,Bernard A twofold modulation frequency laser range finder.Journal of Optics A:Pure and Applied Optics,2002,4(6):S356-S363.
    49.刘灿涛,赵伟,袁俊.基于数字相关原理的相位差测量新方法.计量学报,2002,23(3):119-223.
    50.K.Bertling,J.R.Tucker,A.D.Rakic.Optimum injection current waveform for a laser range finder based on the self-mixing effect,in Proceedings of SPIE Photonics:Design,Technology,and Packaging.2004,5277:334-338.
    51.黄正英,李季,陈结祥,张毅.向量内积法检相在激光测距系统中的应用.光电子技术与信息,2002,15(6):31-34.
    52.高嵩.数字鉴相式激光测距系统几个关键问题的研究:[硕士学位论文].2007年3月,大连海事大学.
    53.宋丰华.现代空间光电系统及应用.北京:国防工业出版社.2004:185-186.
    54.杨林颖.空间交会对接激光雷达中准直系统设计:[硕士学位论文]2006年5月,电子科技大学.
    55.孙斌,舰载直升机的助降装置.现代兵器,1995,10:37-38.
    56.豫章,舰载直升机拉降装置的发展.直升机技术,1998,4:4043.
    57.臧靖,舰载直升机捕获系留机构仿真设计:[硕士学位论文],2007年6月,吉林大学.
    58.David M.Shemwell,Alan A.Vetter and R.I.Gellert Laser Centerline Localizer and Laser Glideslope Indicator for Visual Guidence on Approach to Landing.in Proceedings of SPIE, Sensors and Sensor Systems for Guidance and Navigation Ⅱ.1992,Vol.1649:40-47.
    59.金仲林,舰载直升机系留座分布及系留载荷:[硕士学位论文],2006年3月,南京航空航天大学.
    60.李博,王孝通,徐晓刚,杨常青.基于计算机视觉的舰载直升机助降技术研究.兵工学报.2007:370-373.
    61.David C.Woffinden and David K.Geller.Navigating the road to autonomous orbital rendezvous.Joural of Spacecraft and Rockets,2007,44(4):898-909.
    62.Piotr Jasiobedzki,Michael Greenspan,Gerhard Roth,HoKong Ng,etc.Video-based system for satellite proximity operations.in 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2002' ESTEC,2002:1-8.
    63.http://www.people.com.cn/GB/channe12/10/20001122/322455.html.
    64.周前详,连顺国.航天器交会对接技术的进展.航天医学与医学工程,1998,11(4):305-309.
    65.林平.日本工程试验卫星7的空间自动交会对接试验.中国航天,1997,1:29-32.
    66.林来兴.交会对接技术,北京:国防工业出版社,1995:142-159.
    67.戴永江,赵远,南京达,皮名嘉.空间交会对接用激光雷达敏感器.激光与红外,1992,22(2):38-43.
    68.Masaaki Mokuno,I.K.,Takashi Suzuki.In-orbit demonstration of rendezvous laser radar for unmanned autonoumous rendezvous docking.IEEE Transactions on Aerospace and Electronic Systems,2004,40(2):617-626.
    69.Winkel,S.V.Advanced Video Guidance Sensor(AVGS) Project Summary.in Advanced Video Guidance Sensor(AVGS) Project Summary,Spaceborne Sensors,Proceedings of SPIE.Belingham,WA.2004,5418:10-20.
    70.Vilas K.Chitrakaran,D.M.D.,Jian Chen,and Matthew Feemster.Vision assited autonomous landing of an unmanned aerial vehicle.in Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference,2005:1465-1470.
    71.Mario Luca Fravolini,A.F.,Giampiero Campa,etc.,Modeling and control issues for autonomous aerial refueling for UAV's using a probe-drogue fefueling system.Aerospace Science and Technology,2004,8:611-618.
    72.Rocco V.Dell' Aquila,G.C.,Marcello R.Napolitano,Marco Mammarella.Real-time machine-vision-based position sensing system for UAV aerial refueling.Journal of Real-Time Image Process,2007,1:213-224.
    73.章毓晋.图像工程(中册)—图像分析(第二版)清华大学出版社,2005:243-252.
    74.陆宗琪.C/C++图像处理编程.清华大学出版社,2005:277-376.
    75.Milan Sonka,V H.,RogerBoyle,(艾海舟,武勃等翻译).图像处理、分析与机器视觉(Image Processing,Analysis,and Machine Vision,).人民邮电出版社,2003:204-211.
    76.唐荣锡,计算机图形学教程.北京:科学出版社,1991.
    77.于起峰,陆宏伟,刘肖琳,基于图像的精密测量与运动测量.科学出版社,2002.
    78.张贤达,矩阵分析.清华大学出版社,2004.
    79.Sharp,C.A Vision System for Landing an Unmanned Aerial Vehicle.in Proceeding of IEEE International Conference on Robotics and Automation.Seoul,Korea.2001:1720~1727
    80.黄玉明,航天器位姿光学测量.中国空间科学技术,1993(4):22-29.
    81.K.S.Arun,T.S.Huang,and S.D.Blostein Least squares fitting of two 3D point sets.IEEE Transaction on Pattern Analysis and Machine Intellegence,1987,9(5):698-670.
    82.Jose A.Ramos,E.I.V.Total least squares fitting of two point sets in m-D.in Proceedings of the 36th conference on decision and control.1997,San Diego,California USA,1997:5048-5053.
    83.B.K.P.Horn,H.M.H.S.N.,Closed-form solution of absolute orientation using orthonormal matrices.J.Optical Soc.Am.,1988.5:1127-1135.
    84.D.Dupuy,M.L.,M./cousineau.A FMCW laser range-finder based on a delay line technique.in IEEE Instrumentation and measurement technology conference.Budapest,Huangry.2001:1084-1088
    85.Bazing,J.B.,A new laser range-finder based on FMCW-like method.IEEE Instrumentation and Measurement Technology Conference,1996,1:90-93.
    86.袁宇正,电磁波测距技术基础.北京:国防工业出版社,1990.
    87.Stephane Poujouly,B.J.,Dominique Placko.Digital laser range finder:Phase-shift estimation by undersampling technique.IECON Proceedings (Industrial Electronics Conference),1999,3:1312-1217.
    88.Poujouly,S.,Journet,Bernard,Miller.Dominique Laser range finder based on fully digital phase-shift measurement.in 16th IEEE Instrumentation and Measurement Technology Conference.1999:1773-1776.
    89.S.W.Shih,Y.P.H.,and W.S.Lin.When should we consider lens distortion in camera calibration.Pattern Recognition,1995,28(3):447-461.
    90.Beiwei Zhang,Y.F.L.,Fu-Chao Wu.Planar Pattern for Automatic Camera Calibration.Optical Engineering,2003,42(6):1542-1549.
    91.Hartley,R.In defence of the 8-point algorithm.in Proc.5th International Conference on Computer Vision.Boston,MA.1995:1064-1070.
    92.Hartley,R.,In defence of the 8-point algorithm.IEEE Transactions on Pattem Analysis and Machine Intelligence,1997,19(6):19-27.
    93.Wojciech Chojnacki,M.J.B.,Anton van den Hengel,and Darren Gawley,Revisiting Hartley's Normalized Eight-Point Algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1172-1177.
    94.Wojciech Chojnacki,M.J.B.,On the Consistency of the Normalized Eight-Point Algorithm.Journal of Math Imaging vision,2007,28:19-27.
    95.孟晓桥,胡占义.一种新的基于圆环点的摄像机自标定方法.软件学报,2002.13(5):957-965.
    96.Joanna,L.,Genetic algorithm with the dynamic probability of mutation in the classification problem.Pattern Recognition Letters,1995,16(12):1311-1320.
    97.Goldberg David E,D.,A comparative analysis of selection schemes used in genetic algorithms.Foundations of genetic algorithms,1991,1:69-73.
    98.Leandro N.de Castro and Fernando J.Von Zuben.Learing and optimization using the clonal selectin principle.IEEE Transactions on Evolutionary Computation,2002,6(3):239-251.
    99.张光澄,王文娟,韩会磊,张雷.非线性最优化计算方法.高等教育出版社,2005:356-360.
    100.阎平凡,张长水.人工神经网络与模拟进化计算.清华大学出版社,2005:549-551.
    101.李士勇,陈永强,李研.蚁群算法及其应用.哈尔滨工业大学出版社,2004:53-57.
    102.雷英杰,张善文,李继武等.遗传算法及matlab工具箱的应用.西安电子科技大学出版社,2005:1-160.
    103.M.Muhlich,R.M.,A considerable improvement in non-iterative homography estimation using TLS and equilibration.Pattern Recognition Letters,2001,22:1182-1189.
    104.费业泰,误差理论与数据处理(第5版).机械工业出版社.2005:63-67.
    105.杜小平,赵继广,崔占忠.航天器位置姿态的光学测量方法研究.兵工学报,2004.25(1):121-123.
    106.Umeyama,S.,Least-squares estimation of transformation parameters between two point patterns.IEEE transactions on pattern analysis and machine inteligence,1991.13 (4):376-380.
    107.林成森.数值计算方法(下).北京:科学出版社,2005.
    108.辜青萍.拐点和一元三次方程的求根公式.江汉大学学报(自然科学版),2002(1).
    109.马知恩,王绵森,数学分析基础(下),北京:高等教育出版社,1999.
    110.郁道银,工程光学.北京:机械工业出版社,1999:64-73.
    111.曹志峰,张希艳,赵志强,高熙英.激光合作目标用玻璃微珠的研制,光学技术,1997(1):25-27.
    112.中国国家标准汇编,中国标准出版社总编室.1987:中国标准出版社.
    113.中华人民共和国国家军用标准GJB<470A-97>,1997,附录A激光器分类(内部资料).
    114.马洛.激光安全手册.人民卫生出版社,1984.
    115.谭显裕.激光雷达测距方程研究.电光与控制,2001.81(1):12-18.
    116.张乐.激光雷达发射和接收光学系统研究:[硕士学位论文].湖南:国防科学技术大学.2004:24-26.
    117.C.G.Bachman(著),胡桂兰(译).激光雷达系统与技术.北京:国防工业出版社,1982:6-102.
    118.王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究,光学学报,2007,27(2):360-364.
    119.何浩东.高速红外成像跟踪处理器的研究与实现:[硕士学位论文],2007年1月,西安电子科技大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700