结构振动控制的多目标优化和智能模糊控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构振动控制技术作为一种积极有效的抗震、抗风对策已成为土木工程研究的热点之一。考虑到目前理论研究和工程实际应用所存在的一些问题,本文开展了三个部分的工作:基于线性矩阵不等式技术与遗传算法的主动控制系统多目标优化设计,包括控制器的优化设计、控制器/作动器的一体化优化方法;非线性结构振动的智能控制,包括自适应模糊控制技术、具有在线诊断功能的容错控制技术;结合重大工程项目进行结构振动控制的试验研究,验证本文所提理论的可行性与正确性。
     主要研究内容如下:
     1.针对以往控制器参数需要反复试算才能确定的弊端,基于LMI优化技术和方差控制理论,研究结构振动控制的多目标方差控制方法。考虑了外部输入激励特性的影响,利用扩展的状态空间模型描述过滤白噪声激励-被控结构-控制器。推导得到了线性矩阵不等式组(LMIs),从而将结构的方差响应、控制力方差以及系统极点限制在预先给定的范围之内。基于MATLAB的线性矩阵不等式工具箱求解所推导的线性矩阵不等式组即可得到状态反馈和输出反馈控制器,通过仿真分析验证此方法的可行性。
     2.为使控制系统具有一定的鲁棒性来应对结构模型参数的不确定性,基于LMI技术和鲁棒控制理论,提出事先考虑结构动力特性具有不确定性的鲁棒H_2/H_∞控制方法。在设计控制器的过程中,将结构模型参数的不确定性引入到状态方程的摄动矩阵之中,使得闭环系统对所有允许的不确定性同时满足H干扰抑制和最优H_2性能。推导得到了相应的线性矩阵不等式组的表达式以进行鲁棒H_2/H_∞控制器的多目标优化设计。应用MATLAB的线性矩阵不等式工具箱设计了鲁棒H_2/H_∞控制器,通过仿真分析验证所设计的控制器的强鲁棒性。
     3.针对以往将控制器的优化设计与作动器的位置优化分开来进行两阶段优化设计以及优化目标单一的不足,结合基于Pareto最优解理论的遗传算法NSGA-II和随机振动理论,提出结构主动控制系统的多目标优化方法,对作动器位置与主动控制器进行一体化优化设计。用平稳过滤白噪声模拟随机地震激励,在状态空间内通过求解结构在平稳过滤白噪声作用下的Lyapunov方程,得到结构响应和主动控制力的方差,其中主动控制器采用LQG控制算法进行设计。以最小化结构位移和加速度均方值最大值与相应无控响应均方值的最大值之比,以及最小化控制力均方值的总和为目标函数向量。除了考虑结构与激励参数变化的影响之外,同时亦提出个数分区控制方法以优化作动器的数目。仿真分析结果表明所提优化方法简单、高效、实用且具有较好的普适性。
     4.为了改善传统模糊控制算法的控制性能,提出了非线性结构振动控制的变论域自适应模糊控制(VUAFLC)算法,基于Lyapunov函数方法推导得到了自适应律。以地震作用下高速公路桥梁非线性振动控制的Benchmark问题为背景进行主动控制仿真分析,结果表明该智能模糊控制算法的有效性和鲁棒性。在此基础上针对MR半主动控制系统,提出以变论域自适应模糊控制算法为前件、以限幅最优(Clipped-optimal)控制算法为后件的两级控制策略,结果表明所提出的MR智能半主动控制能够基本实现主动控制效果。
     5.探讨传感器失效时MR半主动控制系统的智能容错控制策略,以保证传感器发生故障时控制系统仍然具有良好的性能。在基于ANFIS的传感器故障在线检测方法的基础上,提出MR电压的切换控制策略:传感器正常工作时,基于传统模糊控制器直接确定MR的输入电压,当ANFIS检测出传感器处于故障状态时,将切换开关打开,采用Passive-on算法确定MR的输入电压。对公路桥梁振动控制的Benchmark问题进行了仿真分析,验证所提出的容错控制策略的有效性,并得到了一些有益的结论。
     6.以振动控制技术的工程应用为背景,设计制作了基于永磁同步直线电机的HMD控制试验模型并进行控制方案及本文所提控制策略的试验验证,并考虑TMD质量的不确定性进行控制策略的鲁棒性实验。在对试验用AMD(永磁同步直线电机)进行大量的测试分析与地震模拟振动台试验的基础上,建立起与试验结果吻合得较好的理论计算模型并设计了相应的控制策略,包括LQG、鲁棒H_2/H_∞、FLC、VUAFLC与ANFIS控制,最后通过振动台试验验证HMD控制方案与所提控制策略的可行性与有效性并对比分析了各控制策略的控制性能,为HMD控制的工程应用奠定了基础。
Being a kind of active and effective countermeasure against undesirable excitations such as seismic or strong wind, structural vibration control technology is one of the hotspots in the research field of civil engineering. Considering some existing problems in theoretical study and practical application of structural control system, the work in this study mainly consists of three parts: the first part deals with multi-objective optimization of control system based on linear matrix inequality (LMI) technique and evolutionary algorithm, including optimization design of controller and integrated optimization design of controllers and actuators; the second part focuses on the intelligent vibration control strategies for nonlinear structure, in which adaptive fuzzy logic control and intelligent fault tolerant control (FTC) are proposed; finally, based on application of vibration control system for important engineering structure, numerical analysis and experimental study are conducted to demonstrate the effectiveness and superiority of those methodologies.
     The main contents of this dissertation are listed as follows:
     1. To improving the traditional design method of controller, in which the parameters of controller are determined by repeated calculation, multi-objective variance control is investigated for structural vibration control based on the LMI optimization technique and variance control theory. The stationary filtered white noise-controlled structure-controller is simulated using extended state space model, in which the influence of external exciting is taken into account. The general expression of linear matrix inequalities (LMIs) are deduced to satisfy the closed-loop poles and the steady variance responses of structure and control force with certain constraints assigned in advance. LMI Toolbox of MATALB is employed for solving those LMIs to get the state feedback and output feedback controller. Simulation results demonstrate the effectiveness of the proposed method.
     2. Based on the LMI optimization technique and robust control theory, the robust H_2/H_∞control strategy is investigated to cope with the uncertainty of dynamic characteristic of the structure, in which the uncertainty is taken into account in advance. In the process of controller design, uncertain parameters of structure are introduced into perturbation matrix, meanwhile, both the H disturbance suppression and the optimal H2 performances of the closed-loop control system are satisfied simultaneously for all allowable uncertainties. To solve the proposed multi-objective optimization problem, LMIs are also deduced based on the LMI optimization technique. Simulation results show that the performance of the proposed controller is of strong robustness.
     3. Aimed at the disadvantage of traditional optimization method, such that the placement and controller are optimized sequentially, single objective is considered, a new integrated design and multi-objective optimization method for active control system based on a pareto genetic algorithms and random vibration theory is proposed, in which both the controller and actuator allocation can be optimized simultaneously. Random seismic excitation is simulated by the stationary filtered white noise, and then the root-mean square (RMS) quantities of structural responses and active control forces are obtained by solving the Lyapunov equation in the state space. LQG algorithm is employed herein. Minimization of the maximal RMS displacement and acceleration which are normalized by the uncontrolled counterparts, together with minimizing the sum of RMS control force of actuators, have been used as the three objective functions for multi-objective optimization. The effects of structural parameters and excitation characteristic are considered in the multi-objective optimization procedure, and number-based zoning control method is also proposed for determining the number of actuators. Numerical simulation results show that the proposed integrated design and optimization method is simple, efficient and practical, and of good universality.
     4. Based on adaptive control theory and intelligent fuzzy control, variable universe adaptive fuzzy control (VUAFLC) algorithm is put forward to improve the performance of traditional FLC, and the adaptive law of output universes is developed based on Lyapunov function method. Benchmark structural control problem for a seismically excited highway bridge is used as a numerical example to demonstrate the effectiveness and robustness of the proposed method. Furthermore, VUAFLC is integrated with clipped-optimal control algorithm for semi-active control system with MR damper. Results show that MR damper can achieve almost the same control performance as active control system, which promises a good prospect of popularization and application of semi-active MR dampers.
     5. An intelligent fault tolerant control (FTC) strategy is investigated for MR semi-active control system with sensor failure. Performance and effectiveness of the control system are protected in case of sensor failure. Based on the adaptive neuro fuzzy inference system (ANFIS), sensor failure can be on-line detected and switching control strategy of determining the commanded voltage for MR dampers is proposed. When sensor is healthy, voltage determined by FLC will be applied to the corresponding MR damper. On the other hand, if sensor has failed and will be detected using ANFIS, switch is activated and passive-on voltage will be applied to MR damper. Numerical simulations are carried out to demonstrate the effectiveness of the proposed method, and some useful conclusions are also obtained.
     6. On the background of application of HMD control system for important engineering structure, HMD control system model base on permanent magnet synchronous linear motor (PMSLM) for experimental study is designed and manufactured to verify the effectiveness of the control system and the proposed control strategies mentioned above, while the uncertainty of mass of TMD is taken into account to demonstrate the robustness of the proposed control strategies. Based on lots of test for AMD and shaking table test, the reasonable theoretical model have been established and some control strategies have been designed, including LQG, robust H_2/H_∞, FLC, VUAFLC and ANFIS control. Finally, experimental verification studies are conducted to test the performance of the proposed HMD control system and control strategies, and comparative analysis of control strategies is also discussed, which provides a foundation for engineering application of HMD control system.
引文
1 J. T. P. Yao. Concept of Structure Control. Journal of the Structural Division, ASCE. 1972, 98(ST7): 1567~1574
    2 T. T. Soong. Active Structural Control: Theory and Practice. Longman Scientific & Technical, New York, USA. 1990
    3周福霖.工程结构减震控制.地震出版社. 1997
    4欧进萍.结构振动控制-主动,半主动和智能控制.科学出版社. 2003
    5李宏男,李忠献,祁皑,贾影.结构振动与控制.中国建筑工业出版社. 2005
    6 S. Aizawa et al. An Experimental Study on the Active Mass Damper. Proceedings of 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan. 1987, 5: 871~876
    7 B. F. Spencer, S. Nagarajaiah. State of the Art of Structural Control. Journal of Structural Engineering. 2003, 129(7): 845~856
    8宋根由.结构主动控制(AMD)系统试验分析.哈尔滨建筑大学博士学位论文. 1996
    9田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动. 1999, 19(4): 90~94
    10李惠,铃木祥之,吴波. AMD控制结构地震反应的试验研究.振动工程学报. 1999, 12(2): 223-228
    11欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究.高技术通讯. 2002, 10: 85~90
    12张微敬,欧进萍.基于单片机模糊控制器的AMD主动控制试验研究.建筑结构学报. 2006, 27(1): 37~42
    13张春魏,欧进萍.电磁驱动AMD系统控制结构地震响应的振动台试验.地震工程与工程振动. 2006, 26(2): 104~110
    14张春巍.结构振动的电磁驱动AMD控制系统及其相关理论与试验研究.哈尔滨工业大学博士论文. 2005
    15 H. Cao, A.M. Reinhornn and T.T. Soong. Design of an Active Mass Damper for a tall TV Tower in Nanjing, China. Engineering structures. 1997, 20: 134~143
    16 T. T. Soong, A. M. Reinhorn and J. N. Yang. Active Response Control ofBuilding Structures under Seismic Excitation. Proceedings of 9th World Conference on Earthquake Engineering, Tokyo, Japan. 1988, 8:453~458
    17 L. L. Chung, A. M. Reinhorn and T. T. Soong. Experiments on Active Control of Seismic Structures. Journal of Engineering Mechanics. 1988, 114: 241~256
    18 T. Kobori, H. Kanayama and S. Kamagata. A Proposal of New Anti-seismic Structure with Active Seismic Response Control System-Dynamic Intelligent Building. Proceedings of 9th World Conference on Earthquake Engineering. Tokyo, Japan. 1988, 8: 465~470
    19 T. Kobori et al. Seismic-response-controlled Structure with Active Variable Stiffness System. Earthquake Engineering and Structural Dynamics. 1993, 22: 925~ 941
    20李敏霞,刘季.非线性阻尼变刚度半主动结构振动控制.振动工程学报. 1998, 11(3): 333~339
    21刘季,李敏霞,变变刚度半主动结构振动控制.振动控制学报. 1999, 12(2): 166~172
    22李敏霞,欧进萍,王刚,硅丽萍.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动. 2000, 20(4): 96~100
    23孙作玉.变阻尼半主动结构控制,哈尔滨建筑大学博士学位论文. 1998
    24谭平.主动变阻尼变刚度控制.湖南大学博士学位论文. 2000
    25欧进萍,关新春.土木工程智能结构体系的研究与发展.地震工程和工程振动. 1999, 6, 19(2): 21~28
    26 J. D. Carlson, B. F. Spencer. Magneto-Rheological Fluid Dampers for Semi-Active seismic Control. Proceedings of Third International Conference on Motion and Vibration Control, Chiba, Japan. 1996, 8: 35~40
    27 J. D. Carlson, B. F. Spencer. Magneto-Rheological Fluid Dampers: Scalability and Design Issues for Application to Dynamic Hazard Mitigation. Proceedings of Second International Workshop on Structural Control, Hong Kong. 1996: 99~109
    28 S. J. Dyke. Acceleration Feedback Control Strategies for Active and Semi-active Control Systems: Modeling, Algorithm Development and Experimental Verification. Dissertation of University of Notre Dame, USA. 1996
    29 S. J. Dyke, B. F. Spencer, M. K. Sain, J. D. Carlson. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materialand Structures. 1996, 5(5): 565~575
    30 B. F. Spencer, S. J. Dyke, M. K. Sain, J. D.Carlson. Phenomenological Model for Magnetorheological Damper. Journal of Engineering Mechanics. 1997, 123(3): 230~238
    31 G. Yang. Large-scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control. Dissertaion of University of Notre Dame, USA. 2001
    32 H. J. Jung, B. F. Spencer and Y. Q. Ni. State-of-the-art of Semi-Active Control Systems using MR Fluid Dampers in Civil Engineering Applications. Structural Engineering and Mechanics. 2004, 17(3): 493~526
    33关新春,欧进萍.磁流变阻尼器的阻尼力模型及其参数确定.振动与冲击, 2001, 20(1): 5~8
    34欧进萍,关新春.磁流变液及结构减振智能驱动器.地震工程与工程振动. 2001, 21(4): 1~7
    35关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究.工程力学. 2005, 22(6): 207~211
    36李忠献,徐龙河,姜南,周云.基于MRF2-04K阻尼器的结构减震控制模型试验研究.地震工程与工程振动. 2004, 24(1): 148~153
    37丁阳,张路,李忠献.两种全通道有效磁流变阻尼器的设计及性能分析.振动工程学报. 2008, 21(6): 565~570
    38李秀领,李宏男.磁流变阻尼器的双Sigmoid模型及试验验证.振动工程学报. 2006, 19(2): 168~172
    39闫维明,纪金豹,涂建维,闰淼.逆变型阻尼器磁路设计与试验研究.北京工业大学学报. 2006, 32(7): 592~595
    40瞿伟廉,刘嘉,涂建维,闰淼,程海斌. 500kN足尺磁流变液阻尼器设计的关键技术.地震工程与工程振动. 2007, 27(2): 124~130
    41 Y. Q. Ni, J. M. Ko, Z. Q. Chen, B. F. Spencer. Lessons Learned from Application of Semi-Active MR Dampers to Bridge Cables for Wind-Rain-Induced Vibration Control. Proceedings of China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control. Shanghai, China. 2002
    42瞿伟廉.土木工程结构振动的智能控制.工程力学. 2008, 25(增刊II): 106~116
    43 G. W. Housner et al. Structure Control: Past, Present and Future. Journal of Engineering Mechanics. 1997, 123(9): 897~971
    44 J. N. Yang, Z. Li and S. Vongchavalitkul. Generalization of Optimal Control Theory: Linear and Nonlinear Control. Journal of Engineering Mechanics, 1994, 120(2): 266~283
    45 J. N. Yang. New Optimal Control Algorithms for Structural Control. Journal of Engineering Mechanics. 1987, 113(9): 1369~1381
    46 R. C. Martin and T. T. Soong. Modal Control of Multistory Structures. Journal of Engineering Mechanics. 1976, 102: 613-623.
    47 M. Abdel-Rohman, H. H. E. Leipholz. Structural Control by Pole Assignment Method. Journal of Engineering Mechanics. 1978, 104(5): 1159~1175
    48 J. N. Yang, J. C. Wu and A. K. Agrawal. Sliding Mode Control for Nonlinear and Hysteretic Structures. Journal of Engineering Mechanics. 1995, 121(12): 1330~1339
    49 E. Safak. Adaptive Modeling, Identification and Control of Dynamic Structural Systems, I: Theory. Journal of Engineering Mechanics. 1989, 115(11): 2386~2405
    50 E. Safak. Adaptive Modeling, Identification and Control of Dynamic Structural Systems, II: Applications. Journal of Engineering Mechanics. 1989, 115(11): 2406~2426
    51 J. Rodellar, A. H. Barbat et al. Predictive Control of Structures. Journal of Engineering Mechanics. 1987, 113(6): 797~812
    52 F. Lopez-Almansa, R. Andrade, J. Rodellar and A. M. Reinhorn. Modal Predictive Control of Structures, I: Formulation. Journal of Engineering Mechanics. 1994, 120(8): 1743~1760
    53 F. Lopez-Almansa, R. Andrade, J. Rodellar and A. M. Reinhorn. Modal Predictive Control of Structures, II: Implementation. Journal of Engineering Mechanics. 1994, 120(8): 1761~1772
    54 R. Kumar, S. P. Singh and H. N. Chandrawat. Predictive Optimal Linear Control of Elastic Structures during Earthquake, Part I. Journal of Engineering Mechanics. 2005, 131(2): 131~141
    55 R. Kumar, S. P. Singh and H. N. Chandrawat. Predictive Optimal Linear Control of Elastic Structures during Earthquake, Part II. Journal of EngineeringMechanics. 2005, 131(2): 142~152
    56 J. Suhardjo. Frequency Domain Technique for Control of Civil Engineering Structures with Some Robustness Consideration. Dissertation of University of Notre Dame, USA, 1990
    57 W. E. Schmitendor, J. Faryar and J. N. Yang. Robust Control Techniques for Building under Earthquake Excitation. Earthquake Engineering and Structural Dynamics. 1994, 23: 539~552
    58 J. C. Wu, H. H. Chih and C. H. Chen. A Robust Control Method for Seismic Protection of Civil Frame Building. Journal of Sound and Vibration. 2006, 294: 314~328
    59 D. Hrovat, P. Barak and M. Robins. Semi-Active Versus Passive or Active Tuned Mass Dampers for Structural Control. Journal of Engineering Mechanics. 1983, 109: 691~701
    60 L. M. Jansen, S. J. Dyke. Semiactive Control Strategies for MR Dampers: Comparative Study. Journal of Engineering Mechanics. 2000, 126(8): 795~803
    61 S. J. Dyke. Current Directions in Structural Control in the US. 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Kobe, Japan. 2005
    62李秀领,李宏男.磁流变阻尼器结构控制策略研究进展.防灾减灾工程学报. 2004, 24(3): 335~342
    63 Z. Wu, T. T. Soong. Modified Bang-Bang Control Law for Structural Control Implementation. Journal of Structural Engineering. 1996 , 122(8): 771~777
    64 G. P. Cai, J. Z. Huang et al. Modified Sliding-Mode Bang-Bang Control for Seismically Excited Linear Structures. Earthquake Engineering and Structural Dynamics. 2000, 29: 1647~1657
    65 C. W. Lim, T. Y. Chung and S. J. Moon. Adaptive Bang-Bang Control for the Vibration Control of Structures under Earthquakes. Earthquake Engineering and Structural Dynamics. 2003, 32: 1977~1994
    66赵大海,李宏男.半主动摩擦阻尼器的模糊次优Bang-Bang控制.应用力学学报. 2007, 24(4): 660~663
    67杨润林,闫维明,周锡元.结构半主动控制研究中存在的若干问题.建筑结构学报. 2007, 28(4): 64~75
    68刘金琨.智能控制理论.电子工业出版社. 2005
    69 K. Goto, H. Kubota et al. Active Vibration Control using Fuzzy Theory, Part I: on Control Algorithm and Control Results. Proceedings of 1st World Conference on Structure Control, Pasadena, USA. 1994
    70 B. M. Ayyub, A. Guran and A. Haldar. Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural System. World Scientific, Singapore. 1997
    71 M. Bataini, F. Casciati and L. Faravelli. Fuzzy Control of Structural Vibration. An Active System Driven by a Fuzzy Controller. Earthquake Engineering and Structural Dynamics, Special Issue on the Benchmark Structural Control, Switzerland. 1998, 27(11): 1267~1276
    72 M. Aldawod, B. Samali and F. Naghdy. Active Control of Along Wind Response of Tall Building using a Fuzzy Controller. Engineering structures. 2001, 23(11): 1512-1522
    73闫石.结构振动智能控制的人工神经网络与模糊逻辑方法研究.大连理工大学博士论文. 2000
    74杨润林.结构模糊振动控制的研究.中国建筑科学研究院博士论文. 2000
    75李宏男,金峤.基于Takagi-Sugeno模型的半主动TLCD对偏心结构的减震控制.计算力学学报. 2003, 20(5): 523~529
    76周建中.基于模糊-神经元的抗震结构智能混合控制.西安建筑科技大学博士论文. 2003
    77李波,瞿伟廉. MR阻尼器对桅杆结构风振响应的模糊控制.北京交通大学学报. 2005, 29(1): 32~35
    78邢德进,李忠献.应用SMA智能阻尼器的结构模糊控制.工程力学. 2008, 25(10): 224~234
    79 S. B. Kim, C. B. Yun. Sliding Model Fuzzy Control: Theory and Verification on a Benchmark Structure. Earthquake Engineering and Structural Dynamics. 2000, 29: 1587~1608
    80 A. P. Wang, Y. H. Lin. Vibration Control of a Tall Building Subjected to Earthquake Excitation. Journal of Sound and Vibration. 2007, 299: 757~773
    81张吉礼,欧进萍,于达仁.基于模糊集相容性的模糊控制规则优化方法.模糊系统与数学. 2002, 16(4): 81~88
    82张利芬,欧进萍.结构模糊控制规则优化生成的遗传算法.地震工程与工程振动. 2001, 21(4): 47~53
    83杨世浩,瞿伟廉,郑明燕.用多种群遗传算法优化结构振动模糊控制器.武汉理工大学学报. 2004, 26(10): 46~48, 59
    84 H. Kim, P. N. Roschke. Design of Fuzzy Logic Controller for Smart Base Isolation System using Genetic Algorithm. Engineering Structures. 2006, 28: 947~958
    85 G. Yan, L. Zhou. Integrated Fuzzy Logic and Genetic Algorithm for Multi-objective Control of Structures using MR Dampers. Journal of Sound and Vibration. 2006, 296: 368~382
    86颜桂云,陈福全,孙炳楠.模糊神经网络在高层建筑横风向振动控制中的应用研究.振动与冲击. 2007, 26(1): 69~161
    87 Q. Zhi, S. Gu, O. Olutunde. Application of MR Damper in Structural Control using ANFIS Method. Computers and Structures. 2008, 86: 427~436
    88 W. L. Chiang, K. Yeh and M. Y. Liu. Adaptive Fuzzy Sliding Mode Control for Base-Isolated Buildings. International Journal on Artificial Intelligence Tools. 2000, 9(4): 493~508
    89 L. Zhou. Vibration Control of Buildings using Smart Magnetorheological Dampers. Dissertaion of Hong Kong University of Science and Technology, Hong Kong. 2002
    90李芦钰,欧进萍.结构非线性振动的自适应模糊滑模控制.振动工程学报. 2006, 19(3): 319~325
    91李芦钰,欧进萍.基于AFSMC算法的结构非线性振动MR控制与仿真分析.地震工程与工程振动. 2006, 26(2): 96~103
    92司洪伟,李东旭.自适应变论域模糊控制器在结构振动控制中的应用.振动与冲击. 2007, 26(5): 81~84, 155~156
    93 G. G. Yen. Identification and Control Large Structures using Neural Networks. Computers and Structures. 1995, 52(5): 859~870
    94 J. Ghaboussi and A. Joghataie. Active Control of Structures using Neural Networks. Journal of Engineering Mechanics. 1995, 121(4): 555~567
    95 H. M. Chen et al. Neural Network for Structure Control. Journal of Computing in Civil Engineering. 1995, 9(2): 168~176
    96 K. Nikzad, J. Ghaboussi and S. L. Paul. Actuator Dynamics and Delay Compensation using Neurocontrollers. Journal of Engineering Mechanics. 1996, 122(10): 966~975
    97 K. Bani-Hani, J. Ghaboussi. Nonlinear Structural Control using Neural Networks, Journal of Engineering Mechanics. 1998, 124(2): 319~327
    98 J. Kim, H. Jung, I. Lee. Optimal Structural Control using Neural Networks, Journal of Engineering Mechanics. 2000, 26(2): 201~205
    99 B. Xu, Z. S. Wu, K Yokoyama, T. Harada. Adaptive Localized Control of Structure-actuator Coupled System using Multi-Layer Neural Networks. Journal of Structural Mechanics and Earthquake Engineering. 2001, 18(2): 81~93
    100 A. Madan. Vibration Control of Building Structures using Self-organizing and Self-Learning Neural Networks. Journal of Sound and Vibration. 2005, 287: 759~784
    101 S. M. Yang, C. J. Chen and W. L. Huang. Structural Vibration Suppression by a Neural-Network Controller with a Mass-Damper Actuator. Journal of Vibration and Control. 2006, 12(5): 495~508
    102李宏男,霍林生,闫石.神经网络半主动TLCD对偏心结构的减震控制.地震工程与工程振动. 2001, 21(4): 135~141
    103张顺宝,程文襄,李爱群,蔡丹绎.南京电视塔风振的神经网络预测控制.特种结构. 2002, 3: 31~33
    104瞿伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法.地震工程与工程振动. 2002, 22(1): 43~481
    105李宏男,金峤.遗传BP神经网络主动AMD对偏心结构的减震控制.地震工程与工程振动.2003, 23(2): 134~142
    106李忠献,杨晓明,丁阳.应用人工神经网络技术的大型斜拉桥子结构损伤识别研究.地震工程与工程振动. 2003, 23(3): 92~99
    107李宏男,常治国,王苏岩.基于智能算法的MR阻尼器半主动控制.振动工程学报. 2004, 17(3): 344~349
    108徐晓龙.高层建筑结构的智能半主动控制研究.浙江大学博士论文. 2006
    109杨钦谱,孙炳楠,金虎.人工神经网络在土木工程忠的应用.低温建筑技术. 2006, 6: 64~66
    110 M. Abdullah, A. Richardson and J. Hanif. Placement of Sensors/Actuators on Civil Structures using Genetic Algorithms. Earthquake Engineering and Structural Dynamics. 2001, 30(8): 1167~1184
    111 D. K. Liu, Y. L. Yang, Q. S. Li. Optimum Positioning of Actuators in TallBuildings using Genetic Algorithm. Computers and Structures. 2003, 81: 2823~2827
    112 N. Wongprasert, M. D. Symans. Application of a Genetic Algorithm for Optimal Damper Distribution within the Nonlinear Seismic Benchmark Building. Journal of Engineering Mechanics. 2004, 130(4): 401~406
    113 Q. S. Li, D. K. Liu, J. Tang, N. Zhang and C. M. Tam. Combinatorial Optimal Design of Number and Positions of Actuators in Actively Controlled Structures using Genetic Algorithms. Journal of Sound and Vibration. 2004, 270: 611~624
    114 P. Tan, S. J. Dyke, A. Richardson and M. Abdullah. Integrated Device Placement and Control Design in Civil Structures using Genetic Algorithms. Journal of Structural Engineering. 2005, 131(10): 1489~1496
    115刘福强,张令弥.遗传算法在主动构件优化配置中的应用.振动与冲击. 1999, 18(4): 16~21
    116孙作玉,何玉敖.结构振动的变阻尼半主动遗传控制算法.天津大学学报. 2000, 33(1): 29~32
    117周星德,汪凤泉.基于遗传算法的智能框架结构作动器最优配置.应用科学学报. 2002. 3, 20(1): 90~93
    118王爱文,史杨,缪升.基于遗传算法的TMD系统参数优化和设计.昆明理工大学学报. 2002, 27(1): 69~72
    119郭惠勇,张陵,周进雄,蒋健.采用改进遗传算法的结构主动控制器优化布置.振动工程学报. 2003, 16(1): 119~123
    120郭惠勇,蒋健,张陵.改进遗传算法在MRFD半主动控制系统优化配置中的应用.工程力学. 2004, 21(2): 145~151
    121郑伟,阎石,莫巨华.基于遗传算法的高层建筑MR阻尼器优化布置.沈阳建筑大学学报. 2005, 21(6): 606~611
    122张延年,李艺,董锦坤,范鹤.智能振动控制装置布局优化设计.沈阳建筑大学学报. 2006, 22(2): 217~220
    123李宏男,董松员,李宏宇.基于遗传算法优化阻尼器空间位置的结构振动控制.振动与冲击. 2006, 25(2): 1~4, 11
    124曹源,汪凤泉.高层多自由度结构作动器优化配置的遗传算法.应用科学学报. 2006, 24(2): 171~175
    125司洪伟,李东旭.桁架结构振动的主动模糊控制中主动拉杆数目的位置优化.动力学与控制学报. 2006, 4(3): 259~266
    126郭勇,孙炳楠,叶尹.多目标优化方法在输电塔阻尼器布置中的应用.浙江大学学报(工学版). 2006, 40(10): 1755~1760
    127刘福强,张令弥.作动器/传感器优化配置的研究进展.力学进展. 2000, 30(4): 506~516
    128 A. K. Agrawal, J. N. Yang. Optimal Placement of Passive Dampers on Seismic and Wind Excited Buildings using Combinatorial Optimization. Journal of Intelligent Material Systems and Structures. 1999, 12(10): 997~1014
    129任建亭,姜伟胜.一种逆优化设计振动控制作动器的数目和位置的方法.固体力学学报. 2002, 23(1): 120~124
    130滕军.相邻结构间控制器位置及控制律的降阶优化方法研究.建筑结构学报. 2003, 24(4): 17~24
    131任文敏,汪正兴.结构振动控制参数多目标满意优化方法.清华大学学报. 2007, 47(5): 714~717
    132 G. S. Chen, J. Bruno and M. Salama. Optimal Placement of Active/Passive Members in Truss Structures using Simulated Annealing. AIAA Journal. 1991, 29(8): 1327~1334
    133 X. J. Liu, D. W. Begg and D. R. Matravers. Optimal Topology/Actuator Placement Design of Structures using SA. Journal of Aerospace Engineering. 1997, 10(3): 119~125
    134 F. Y. Cheng, C. P. Pantelides. Optimal Placement of Actuators for Structural Control. Technical Report No.NCEER-88-0037, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York. 1998
    135 Fereidoun Amini., Mohammad Reza Tavassoli. Optimal Structural Active Control Force, Number and Placement of Controllers. Engineering Structures. 2005, 27: 1306~1316
    136 M. P. Singh, L. M. Moreschi. Optimal Placement of Dampers for Passive Response Control. Earthquake Engineering and Structural Dynamics. 2002, 31: 955~976
    137 A. Rama Mohan Rao, K. Sivasubramanian. Optimal Placement of Actuators for Active Vibration Control of Seismic Excited Tall Building using A Multiple Start Guided Neighbourhood (MSGNS) Search Algorithm. Journal of Sound and Vibration. 2008, 311: 133~159
    138郑金华.多目标进化算法及其应用.科学出版社. 2007
    139 A. S. Ahlawat, A. Rmaswamy. Multi-Objective Optimal Structural Vibration Control using Fuzzy Logic Control System. Journal of Structural Engineering. 2001, 127(11): 1330~1337
    140 A. S. Ahlawat and A. Ramaswamy. Multiobjective Optimal FLC Driven Hybrid Mass Damper System for Torsionally Coupled, Seismically Excited Structures. Earthquake Engineering and Structural Dynamics. 2002, 31: 2121~2139
    141 A. S. Ahlawat and A. Rmaswamy. Multi-Objective Optimal Absorber System for Torsionally Couple Seismically Excited-Structures. Engineering Structures. 2003, 25: 941~950
    142 A. S. David, N. R. Paul and P. Y. Lin. GA-Optimized Fuzzy Logic Control of a Large-Scale Building for Seismic Loads. Engineering Structures. 2007, 30(2): 436~449
    143张连振,黄侨,王潮海.基于多目标遗传算法的传感器优化布点研究.工程力学. 2007, 24(4): 168~172
    144 S. Ankireddi and T. Y. Yang. Multiple Objective LQG Control of Wind-Excited Buildings. Journal of Structural Engineering. 1997, 123: 943~951
    145 A. S. Brown. Multi-Objective Civil Structural Control Incorporating Neural Networks. Dissertaion of University of California, Santa Barbara. 2000
    146俞立.鲁棒控制-线性矩阵不等式处理方法.清华大学出版社. 2002
    147 S. Lin. Multi-Objective Control for Civil Engineering Structures. Dissertation of University of California, Irvine, 2003
    148 J. N. Yang, S. Lin and F. Jabbari. Linear Multiobjective Control Strategies for Wind-Excited Buildings. Journal of Engineering Mechanics. 2004, 130: 471~477
    149孙万泉,李庆斌.建筑结构鲁棒性H控制与作动器优化配置一体化.清华大学学报. 2006, 46(12): 1965~1968
    150张远勤,林桐,穆静,严世榕.基于LMI的建筑结构地震动H2/H混合控制.福州大学学报(自然科学版). 2004, 32(1): 60~64
    151孙万泉,李庆斌.基于LMI的高层建筑结构分散H2/H鲁棒控制.地震工程与工程振动. 2007, 27(6): 218~222
    152周星德,郜中文.含饱和作动器的基准建筑物混合控制研究.应用力学学报. 2007, 24(1): 62~65
    153周星德,竺启泽,徐艳红.基于LMI的基准建筑物鲁棒控制研究.振动工程学报. 2008, 21(1): 7~12
    154 H. Du, J. Lam and K. Y. Sze. Non-fragile H Control for Uncertain Structural Sysytems. Journal of Sound and Vibration. 2004, 273: 1031~1045
    155 B. F. Spencer, S. J. Dyke and H. S. Deoskar. Benchmark Problems in StructuralControl-Part I: Active Mass Driver System. Earthquake Engineering and Structural Dynamics. 1998, 27(11): 1127~1139
    156 B. F. Spencer, S. J. Dyke, H. S. Deoskar. Benchmark Problems in Structural Control-Part II: Active Tendon System. Earthquake Engineering and Structural Dynamics. 1998, 27(11): 1140~1147
    157 B. F. Spencer Jr., R. E. Christenson and S J Dyke. Next Generation Benchmark Control Problems for Seismically Excited Buildings. Proceedings of 2nd World Conference on Structural Control. 1998, 2: 1135~1360
    158 J. N. Yang, J. C. Wu, B. Samali, A. K. Agrawal. A Benchmark Problem for Response Control of Wind-Excited Tall Buildings. Proceedings of 2nd World Conference on Structural Control. 1998, 2: 1408~1416
    159 Y. Ohtori, B. F. Spencer. A MATLAB-based Tool for Nonlinear Structural Analysis. 13th Engineering Mechanics Conference, Baltimore, Maryland. 1999
    160 B. Samali, K. C. S. Kwok, G. S. Wood, J. N. Yang. Wind Tunnel Tests for Wind-Excited Benchmark Building. ASCE Journal of Engineering Mechanics. 2004, 130(4): 447~450
    161 B. F. Spencer. Benchmark Structural Control Problems for Seismic- and Wind-Excited Structures. Journal of Engineering Mechanics.2004, 130(4): 363~365
    162 B. Samali, M. Al-Dawod, K. C. S. Kwok, and F. Naghdy. Active Control of Cross Wind Response of 76-Story Tall Building using a Fuzzy Controller. ASCE Journal of Engineering Mechanics. 2004, 130(4): 492~498
    163 A. K. Agrawal, P. Tan, S. Nagarajaiah, J. Zhang. Benchmark Structural Control Problem for a Seismically Excited Highway Bridge-Part I: Phase I Problem Definition. Journal of Structural Control and Health Monitoring. 2009, 16(5): 509~529
    164 P. Tan, A. K. Agrawal. Benchmark Structural Control Problem for a Seismically Excited Highway Bridge-Part II: Phase I Sample Control Design. Journal of Structural Control and Health Monitoring. 2009, 16(5): 530~548
    165 S. Nagarajaiah, S. Narasimhan, A. K. Agrawal, P. Tan. Benchmark Structural Control Problem for a Seismically Excited Highway Bridge-Part III: Phase II Sample Controller for the Fully Base-Isolated Case. Journal of Structural Control and Health Monitoring. 2009, 16(5): 549~563
    166 X. L. Ning, P. Tan, D. Y. Huang, F. L. Zhou. Application of Adaptive Fuzzy Sliding Mode Control to a Seismically Excited Highway Bridge. Structural Control and Health Monitoring. 2009, 16(6): 639~656
    167张春巍,欧进萍.结构振动控制Benchmark研究发展综述.现代土木工程理论与实践.河海大学出版社. 2003,489~496
    168韩兵康,张静怡.土木工程结构鲁棒控制的发展.地震工程与工程振动. 2004, 24(6): 131~135
    169 A. Hotz, R. Skelton. Covariance Control Theory. International Journal Control. 1987, 46(1): 13~32
    170 Z. Wang, X. Chen, Guo Z. Controller design for continuous systems with variance and circular pole constrains. International Journal of Systems Science. 1995, 26: 1249~1256
    171李德权,崔莉莉.不确定系统具有圆形极点与方差约束的输出反馈鲁棒控制.合肥工业大学学报. 2004, 27(9): 1103~1106
    172 K. Yang, J. Lu. Robust Variance-Constrained Control for a Class of Continuous Time-Delay Systems with Parameter Uncertainties. Chaos, Solitons & Fractals. 2007, doi:10.1016/j.chaos
    173 L. Yu,Q. Han. Robust Output Feedback Controller Design with Covariance and Disc Closed-Loop Pole Constraints. Asian Journal of Control. 2005, 7: 337~343
    174程相权,郭治,王远钢.满足H ,区域极点和方差指标约束的输出反馈控制研究.控制与决策. 2002, 17(3): 282~286
    175薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究.土木工程学报. 2003, 36(5): 5~10
    176张景绘,王超.工程随机振动理论.西安交通大学出版社. 1988
    177王曦,陈华荣.不确定性系统鲁棒H /H2混合控制在航空发动机中的应用.航空动力学报. 2002, 17(2): 250~254
    178宋刚,林家浩,吴志刚.考虑参数不确定性的主动悬架鲁棒H2/H混合控制.动力学与控制学报. 2008, 6(2): 156~164
    179 Deb K, Pratap A, Agrawal S, Meyarivan T. A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002, 6(2): 182~197
    180王立新.自适应模糊系统与控制-设计与稳定性分析.国防工业出版社. 2000
    181王立新.模糊系统与模糊控制教程.清华大学出版社. 2003
    182佟绍成.非线性系统的自适应模糊控制.科学出版社. 2006
    183 J. Wang, A. B. Rad, P. T. Chan. Indirect Adaptive Fuzzy Sliding Mode Control: Part I: Fuzzy Switching. Fuzzy Sets and Systems. 2001, 122: 21~30
    184李洪兴.变论域自适应模糊控制器.中国科学E辑. 1999, 29(1): 32~42
    185李洪兴,苗志宏,王加银.非线性系统的变论域稳定自适应模糊控制.中国科学(E辑). 2002, 32(2): 211~223
    186 H. X. Li, Z. H. Miao and E. S. Lee. Variable Universe Stable Adaptive Fuzzy Control of a Nonlinear System. Computers and Mathematics with Applications. 2004, 44: 799~815
    187候国莲,李泉,张建华.变论域自适应模糊滑模多变量控制算法及其在单元机组协调控制种的应用.中国机电工程学报. 2005, 25(9): 114~121
    188刘云峰,刘华峰,黄世奇.导弹电液伺服机构的变论域自适应模糊滑模控制.上海航天. 2007, 5: 5~9, 64
    189 F. Yi, S. J. Dyke, J. M. Caicedo, J. D. Carlson. Experimental Verification of Multi-Input Seismic Control Strategies for Smart Dampers. Journal of Engineering Mechanics. 2001, 27(11): 1152~1164
    190周东华, X. Ding.容错控制理论及其应用.自动化学报. 2000, 26(6): 787~797
    191王敏,臧曙,周东华.非线性动态系统的容错控制.计算技术与自动化. 2004, 23(4): 7~10
    192 M. Battaini, S. J. Dyke. Fault Tolerant Structural Control Systems for Civil Engineering Applications. Journal of Structural Control. 1998, 5: 5~29
    193 S. Ankiredd, H. Yang. Neural Networks for Sensor Fault Correction in Structural Control. Journal of Structural Engineering. 1999, 125(9): 1056~1064
    194马扣根,朱晓峰,顾仲权.结构振动主动控制中传感器故障的在线检测.振动工程学报, 1999, 12(1): 9~14
    195 B. H. Koh, Z. Li, P. Dharap, S. Nagarajaiah, M. Q. Phan. Actuator Failure Detection through Interaction Matrix Formulation. Journal of Guidance, Control, and Dynamics. 2005b, 28(5): 895~901
    196 Z. Li, B. H. Koh, S. Nagarajaiah. Detecting Failure via Decoupled Error Function and Inverse Input-Output Model. Journal of Engineering Mechanics. 2007, 133(11): 1222~1228
    197 S. Narasimhan, S. Suresh, S. Nagarajaiah, N. Sundararajan. On-Line Learning Failure-Tolerant Neural-Aided Controller for Earthquake Excited Structures. Journal of Engineering Mechanics. 2008, 134(10): 258~268
    198刘春生.复杂非线性系统的智能故障诊断与容错控制.南京航空航天大学博士论文. 2006
    199 D. L. Yu, T. K. Chang, D. W. Yu. Adapitve Neural Model~Based Fault Tolerant Control for Multi-Varialbe Processes. Enginering Application of Artificial Intelligence. 2005, 18: 393~411
    200 Y. Diao, K. M Passino. Intelligent Fault-Tolerant Control using Adaptive and Learing Methods. Control Engineering Practice. 2002, 10: 801~817
    201 A. Evsukoff, S. Gentil. Recurrent Neuro-Fuzzy System for Fault Detection and Isolation in Nuclear Reactors. Advanced Engineering Informatics. 2005, 19: 55~66
    202 S. Williams. Fault-Tolerant Control Design for Smart Damping Systems. Dissertation of Washington University, USA. 2004
    203 S. Williams, S. J. Dyke and O.Yoshida. Fault Tolerant Design of a Semiactive Structural Control System. Proceedings of 7th International Conference onMotion and Vibration Control. St. Louis, Missouri, USA. 2004
    204周东华,叶银忠.现代故障诊断与容错控制.清华大学出版社. 2000
    205张宇声,孙丰瑞.基于解析冗余的容错控制-控制律重构研究.海军工程大学学报. 2004, 16(1): 30~34
    206陈雪芹,耿云海,张世杰,张迎春.基于混合H2/H的集成故障诊断与容错控制研究.宇航学报. 2007, 28(4): 890~902
    207韩笑冬,葛龙,王执铨.多性能指标约束下输出反馈容错控制.清华大学学报. 2008, 48(s2): 1799~1804
    208 J. S. R. Jang. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. System, Man and Cybernetics. 1993, 23(3): 665~685
    209 J. R. S. Jang, C. T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence. Prentice Hall. 1997
    210刘国平.机械系统中的摩擦模型及仿真.西安理工大学硕士论文. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700