在轨服务航天器相对测量及姿态控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主在轨服务凭借其成本低、风险小、隐蔽性高、军事利用价值强等特点,成为了目前乃至未来空间技术新的研究与发展方向,同时也对自主交会对接和组合航天器姿态控制等关键技术提出了新的要求。本文以此为背景,研究解决了几个关键问题,主要内容如下:
     设计了自主交会对接最终逼近段惯性/视觉组合相对测量系统。其基本思路是引入IMU测量追踪航天器的对接控制运动信息,利用相对运动方程解算两航天器的相对运动参数,克服视觉测量输出频率低、视场小等不足,提高测量系统可靠性。针对该系统的设计问题,首先基于C-W交会运动模型论证了引入IMU进行相对测量的可行性,研究了惯性/视觉组合相对导航算法;然后,设计了组合相对测量系统的地面演示验证方案,推导了地面试验相对运动模型及其组合导航算法,分析了地面试验方案的适用性,进行了数值仿真和地面试验。结果表明,该系统达到设计目标,满足自主交会对接相对导航精度要求。
     研究了在轨服务组合航天器姿态动力学参数在轨辨识问题。针对存在液体质量传输的在轨加注典型服务任务,基于六点基本假设对加注航天器和加注设备进行了合理简化,利用多体航天器惯量张量建模结论,建立了在轨加注全过程组合航天器质量特性参数的时变模型。针对一般的在轨服务任务,研究了组合航天器姿态动力学特性参数的最小二乘估计方案,引入总体最小二乘准则,对一般最小二乘方法进行了改进,借鉴牛顿迭代法的思想设计了非线性参数估计问题的解析算法。进一步研究了一般在轨服务任务姿态动力学特性参数的滤波方案,针对具有强非线性特性的滤波估计模型,引入非线性滤波算法SIEKF进行求解,分析了该算法的基本原理和实现过程。仿真结果表明,对于具有较强非线性特性的参数估计问题,SIEKF算法收敛速度较快,估计精度较高。
     研究了组合航天器多敏感器联合姿态确定方法。基于六个最小姿态测量系统,提出了组合航天器有陀螺姿态确定系统的联合式Kalman、无陀螺姿态确定系统的联合式UKF和联合式NPF三种融合定姿方案,进一步提高了组合航天器姿态确定系统的可靠性和容错性。针对联合姿态确定方案中各子滤波器没有私有状态变量的特点,对联合滤波器进行了算法改进,有效提高了算法的运算效率,在此基础上进一步研究了联合式Kalman方案和联合式UKF方案的算法实现过程。从算法结构和估计准则两个方面,论证了NPF算法与Kalman滤波算法的等效性,奠定了联合式NPF滤波算法提出的理论基础,研究了联合式NPF方案的算法实现过程。仿真结果验证了上述方案的有效性。
     研究了组合航天器分散协同姿态控制技术。根据分散协同控制思想,设计了组合航天器姿态控制方案,分别对中心刚体和挠性部件采用主动分散协同控制和被动集中控制,研究了分散协同控制指令分配的依据和卸载次数最少的指令分配准则。针对控制方案的实现问题,设计了反作用飞轮系统的复合非线性控制律和磁力矩器的卸载控制律,采用了基于输入输出线性化控制和自适应模糊滑模控制的复合控制算法,解决了存在动力学参数变化、不确定性干扰等非线性影响因素的组合航天器姿态高精度控制和挠性附件的振动控制问题。通过与集中控制方案的比较分析,说明该方案能够有效降低在轨服务航天器姿态控制系统的配置要求。
     自主在轨服务技术将是今后航天技术最重要的发展方向之一,本文的研究工作可为我国在轨服务自主交会对接相对测量和组合航天器姿态控制技术的发展提供方案参考和技术支持。
With the advantages of low-risk, relatively low-cost, potentially high concealment and important military value, on-orbit autonomous servicing has become the new research focus in the future space technology. The new GNC techniques of autonomous rendezvous and docking and attitude control for combined spacecrafts are claimed. Several key problems are studied, and the main results achieved in this dissertation are summarized as follows.
     An integrated IMU/Vision relative navigation system for the final approach phase of autonomous rendezvous and docking is designed. The inertial measurement unit to measure the motion information of chaser spacecraft, and the method of using relative motion equations to calculate relative motion parameters, are intreducted, overcoming the angles-only output shortcomings including low output frequency and small field of view and improving the system reliability. Based on the C-W rendezvous motion model, the feasibility of applying IMU into relative navigation system is verified, and the integrated IMU/Vision relative navigation algorithm is studied. On-the-ground experimental relative motion model and integrated measurement algorithm are formulated, and on-the-ground validation experiment for integrated IMU/Vision relative navigation system is designed. Analyzing the applicability of the proposed scheme, numerical simulation and on-the-ground experiment show that the system achieves the design goals and satisfies the control precision requirements for autonomous rendezvous and docking.
     The on-line identification approaches concerning attitude dynamic parameters of on-orbit servicing combined spacecrafts are studied and proposed. Based on the six basic hypotheses, the refueling spacecrafts and equipments for on-orbit refueling missions are simplified, and the mass property time-variation model for the whole refueling process is formulated by using the inertia tensor model conclusions of multi-body spacecraft. The least squares estimate scheme for attitude dynamic parameters of combined spacecrafts is studied, and the theoretical method for nonlinear parameter estimation problem is designed by introducing total least squares principle improving the general least square method. The filter approaches related to attitude dynamic parameters for general on-orbit missions are furtherly studied, and a new nonlinear filter algorithm– Super Iterated Extended Kalman Filter is introduced to solve the strong nonlinear filtering model. The simulations demonstrate that the SIEKF algorithm has rapid convergence rate and high estimation precision for strong nonlinear parameter estimation problem.
     The multi-sensors united attitude determination approaches for combined spacecraft are studied and proposed. Based on the six minimum attitude measurement systems, three of the filter algorithms are proposed for attitude determination fusing system, specifically the combined Kalman filter algorithm with gyroscope, combined Uncented Kalman filter and combined Nonlinear Predictive Filter without gyroscope, in order to improve the reliability and fault-tolerance of attitude determination system for combined spacecrafts. Considering each local filters having no private state variables, the combined filter algorithms are improved and the compute efficiency is enhanced. From algorithm structure and algorithm principle, the equivalent of both NPF and Kalman filter is demonstrated to establish the theoretical basis of NPF algorithm. The simulations demonstrate the proposed schemes are efficient.
     The decentralist cooperative attitude control approaches for combined spacecraft are studied and proposed. Based on the active distributed collaboration control to central rigid body and the passive control scheme to flexible components, the attitude control scheme for combined spacecrafts is designed. Aiming at the realization of the control scheme, the basis of command allocation for decentralist cooperative attitude control is studied, and the command allocation criterions for least unloading times are analyzed. The hybrid nonlinear control law of reaction wheel system and the unload control law of magnetic moment are studied. Based on the hybrid algorithms containing input-output nonlinear control and adaptive fuzzy control, the high precision attitude control problem for combined spacecraft including the variety of system dynamic parameter and uncertainty disturbance, and the vibration control problem for flexible accessories, are solved. Compared with the centralized control scheme, the proposed scheme can reduce the configuration requirements of attitude control system for on-orbit servicing spacecraft.
     On-orbit servicing technology will be one of the most important developing directions for spacecraft technologies, the research in this dissertation can provide scheme references and technique support.
引文
[1]崔乃刚,王平,郭继峰,程兴.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805~811.
    [2]谭春林,刘永健,于登云.在轨维护与服务体系研究[J].航天器工程,2008,17(3):45~50.
    [3]陈小前,袁建平,姚雯,赵勇.航天器在轨服务技术[M].北京:中国宇航出版社,2009.
    [4] Danald M, Waltz. On-Orbit Servicing of Space Systems [M]. Malabar, Florida: Krieger Publishing Company, 1993.
    [5] Sale J, Lamassoure E, Hastings D. Space System Flexible Provided by On-Orbit Servicing: Part I [J]. Journal of Spacecraft and Rockets, 2002, 39(4): 551~560.
    [6] Sale J, Lamassoure E, Hastings D. Space System Flexible Provided by On-orbit Servicing: Part II [J]. Journal of Spacecraft and Rockets, 2002, 39(4): 561~570.
    [7] Dorglas Z, Peter K, Seamus T. Autonomous Rendezvous, Capture and In-Space Assembly: Past, Present and Future [C]. 1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida, AIAA 2005-2523, 2005.
    [8] Gary A P, Horsham. Envisioning a 21st Century National Spacecraft Servicing and Protection Infrastucture and Demand Potential: A Logical Development of the Earth Orbit Economy [R]. NASA/TM-2003-212462, 2003.
    [9] Shane S, Pejmun M. Orbit Express Capture System: concept to reality [J]. SPIE Vol.5419, 2004: 78~91.
    [10] Fred R, Kevin B, Connie C. Hydra Rendezvous and Docking Sensor System [C]. 2007 IEEE Aerospace Conference, 2007, 3: 1~10.
    [11] Richard W, Madison. Micro-Satellite based, On-Orbit Servicing Work at the Air Force Research [C]. Aerospace Conference Proceedings, USA, 2000: 215~225.
    [12] David A, Barnhart, Roger C, etal. XSS-10 Micro-Satellite Demonstration [C].American Institute of Aeronautics and Astronautics, USA, 1998, 339~346.
    [13] Franklin D. Moblie Servicing System(MSS) Canada’s Contribution to Space Station Freedom [C]. AIAA Space Programs and Technologies Conference, AIAA-09-3625.
    [14] Noriyasu I, Mitsushige O. Autonomous Satellite Capture by a Space Robot: World First On-Orbit Experiment on a Japanese Robot Satellite EST-VII [C]. IEEE Inernational Conference on Robotics and Automation, San Francisco, 2000, 4: 1169~1174.
    [15] Mitsushige O. Experience and Lessons Leaned from the ETS-VII Robot Satellite [C]. IEEE International Conference on Robotics and Automation, SanFrancisco, 2000, 4: 914~919.
    [16] Philippe L. ATV Mission Operations System Testing and Operability with Space Network System [C]. 24th AIAA International Communications Satellite Systems Conference, San Diego, California, AIAA 2006-5407.
    [17] Walther S, Thaeter J, Reimers, etal. New Space Application Opportunities Based on the Inflatable Reentry & Descent Technology [C]. 2003 AIAA/ICAS International Air and Space Symposium and Exposition, AIAA 2003-2839.
    [18] NASA. Satellite Servicing. A NASA report to Congress [R]. NASA Office of Space Flight, Washington, DC, 1988.
    [19] Swahi M. Reconfiguration Methods for On-Orbit Servicing, Assembly and Operations with Application to Space Telescopes [D]. Department of Aeronatics and Astronautics, Massachusetts Institute of Technology, 2007.
    [20]马婷婷,魏晨曦.空间交会对接测量技术的发展[J].中国航天,2004(7):30~34.
    [21]张淑琴.空间交会对接测量技术及工程应用[M].北京:中国宇航出版社,2005.
    [22]朱仁璋.航天器交会对接技术[M].北京:国防工业出版社,2007.
    [23]唐国金,罗亚中,张进.空间交会对接任务规划[M].北京:科学出版社,2008.
    [24]林来兴.四十年空间交会对接技术的发展[J].航天器工程,2007,16(4):70~77.
    [25]林来兴,李灿.交会对接最后逼近阶段CCD相机的测量方法[J].宇航学报,1994,15(2):24~34.
    [26]蔡喜平,戴永江,赵远,王岩.运用计算机视觉对空间飞行器交会对接中的位置和姿态的测量[J].宇航学报,1995,16(4):80~84.
    [27] Mukundan R, Ramakrishan K R. A Quaternion Solution to the Pose Determination Problem for Rendezvous and Docking Simulations [J]. Mathematics and Computers in Simulation, 1995, 39(2): 143~153.
    [28] Calboun P, Dabney R. A Solution of to the Problem of Determining the Relative 6 DOF State for Spacecraft Automated Rendezvous and Docking [C]. SPIE Vol.5799, 1995: 175~184.
    [29] Machula M F, Sandboo G S. Rendezvous and Docking for Space Exploration [C]. 1st Space Exploration Conferece: Continuing the Voyage of Discovery, Orlando, Florida, AIAA-2005-2716, 2005.
    [30]朱仁璋,张磊,林彦.航天器交会视觉导航系统相对状态确定算法[J].中国空间科学技术,2007,2:29~35.
    [31] Chi C, Mclamroch N H. Automatic spacecraft Docking using Computer Vision-based Guidance and Control Techniques [J]. Journal of Guidance, Control, andDynamics, 1993, 16(2): 281~288.
    [32]曹喜滨,张世杰.航天器交会对接位姿视觉测量迭代算法[J].哈尔滨工业大学学报,2005,37(8):1123~1126.
    [33]张世杰,曹喜滨,李晖.交会对接航天器间相对位姿参数单目视觉测量的解析算法[J].光学技术,2005,31(1):6~10.
    [34]张世杰,曹喜滨,陈雪芹.航天器相对位姿参数光学测量解析算法[J].航空学报,2005,26(2):214~218.
    [35]江刚武,龚辉,王净,姜挺.空间飞行器交会对接相对位置和姿态的在轨自检校光学成像测量算法[J].宇航学报,2007,28(1):15~21.
    [36]王保丰,李广云,于志坚,唐歌实.飞行器自主交会对接逼近阶段单台CCD测量方法研究[J].宇航学报, 2007, 28(1):22~27.
    [37] Leonid N, Eric F. Encoded LED System for Optical Trackers [C]. The IEEE International Symposium on Mixed and Augmented Reality, 2005, 10: 150~153.
    [38]解永春,张昊,石磊,孙承启.交会对接光学成像敏感器设计中的关键问题[J].航天控制,2006,24(5):35~39.
    [39]王一凡,卢欣.空间交会对接光学敏感器测量实验研究[J].控制工程,1995(5):28~32.
    [40]郭碧波,梁斌,李成等.航天器最终逼近段的相对导航研究与半实物仿真验证[J].宇航学报,2008,29(4):1245~1254.
    [41] Marcello R. Laboratory Experimentation of Autonomous Spacecraft Proximity-Navigation using Vision and Inertia Sensors [C]. Guidance, Navigation, and Control Conference and Exhibit, SanFrancisco, California, AIAA-2005-6461, 2005.
    [42] Tracy Shay. Design and Fabrication of a Planar Autonomous Spacecraft Simulator with Docking and Fluid Transfer Capability [D]. Naval Postgraduate School, Master’s Thesis, Monterey, CA, 2005.
    [43] Friedman D A. Laboratory Experimentation of Autonomous Spacecraft Docking using Cooperative Vision Navigation [D]. Naval Postgraduate School, Master’s Thesis, Monterey CA, 2005.
    [44] Marcello R, David A F, Tracy S. Laboratory Experimentation of Autonomous Spacecraft Approach and Docking to a Collaborative Target [C]. Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, AIAA-2006-6798, 2006.
    [45] Bergmann E V, Walker B K, Levy D R. Mass Property Estimation for Control of Asymmetircal Satellites [C]. Snowmass, CO, USA, AIAA, 1985: 83~93.
    [46] Bergmann E V, Walker B K, Levy D R. Mass Property Estimation for Control of Asymmetircal Satellites [J]. Journal of Guidance, Control, and Dynamics, 1987, 10(5): 483~491.
    [47] Bergmann E V, Dzielski J. Spacecraft Mass Property Identification withTorque-Generating Control [J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1): 99~103.
    [48] Richfield R F, Walker B K, Bergmann E V. Input Selection for a Second-Order Mass Property Estimator [J]. Journal of Guidance, Control, and Dynamics, 1988, 11(3): 207~212.
    [49] Palimaka J, Burlton B V. Estimation of Spacecraft Mass Properties Using Angular Rate Gyro Data [C]. AIAA/AAS Astrodynamics Conference, Hilton Head Island, 1992: 21~26.
    [50] Tanygin S, Williams T. Mass Property Estimation Using Coasting Maneuvers [J]. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625~632.
    [51] Keim J A, Aqikmese A B, Shields J F. Spacecraft Inertia Estimation Via Constrained Least Squares [C]. Big Sky, MT, United States, IEEE, 2006: 1~6.
    [52] Vreeburg J P B. Sloshsat Spacecraft Calibration at Stationary Spin Rates [J]. Journal of Spacecraft and Rockets, 2008, 45(1): 65~75.
    [53] Peck M A. Mass-Properties Estimation for Spacecraft with Powerful Damping [C]. AIAA/AAS Astrodynamics Specialist Conference, Amercian Astronautical Society, San Diego, CA, 1999: 625~632.
    [54] Peck M A. Estimation of Inertia Parameters for Gyrostats Subject to Gravity-Gradient Torques [J]. Advances in the Astronautical Sciences, 2002, 109: 113~131.
    [55] Peck M A. Estimation of Wheel and CMG Alignments form on Orbit Telemetry [C]. Proceeding of the Flight Mechanics Symposium, Lynch J P, NASA Center for Aerospace Information, Hanover, MD, 2001: 187~201.
    [56] Wertz J A. Inflight Estimation of the Cassini Spacecraft Inertia Tensor [J]. Advances in the Astronautical Sciences, 2001, 108: 1087~1102.
    [57] Lee A Y. In-flight Estimation of the Cassini Spacecraft Inertia Tensor [J]. Journal of Spacecraft and Rockets, 2002, 39(1): 153~155.
    [58] Feldman A. In-flight Estimation of the Cassini Spacecraft Inertia Tensor and Thruster Magnitude [J]. Advances in the Astronautical Sciences, 2006, 125: 35~54.
    [59] Psiaki M L, Theiler J, Bloch J, etal. ALEXIS Spacecraft Attitude Reconstruction with Thermal/Flexible Motion due to Launch Damage [J]. Journal of Guidance, Control, and Dynamics, 1997, 20(5): 1033~1041.
    [60] Psiaki M L, Klatt E M, Kintner P M, etal. Attitude Estimation for Flexbile Spacecraft in an Unstable Spin [J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 88~95.
    [61] Psiaki M. L, Oshman Y. Spacecraft Attitude Rate Estimation from Geomagnetic Field Measurement [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 244~252.
    [62] Psiaki M L. Global Magnetometer-Based Spacecraft Attitude and RateEstimation [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 240~250.
    [63] Psiaki M L. Estimation of a Spacecraft’s Attitude Dynamics Parameters by Using Flight Data [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 594~603.
    [64] Wilson E, etal. On-line, Gyros-Based, Mass-property Identification for Thruster-Controlled Spacecraft Using Recursive Least Squares [C]. Midest Symposium on Circuits and Systems, 2002, 2: 334~337.
    [65] Wilson E, Sutter D W, etal. MCRLS for On-Line Spacecraft Mass and Thruster-Property Identification [C]. IASTED International conference on Inerlligent System and Control, Honolulu, 2004: 324~329.
    [66] Wilson E, Lages C, etal. Gyro-Based Maximun-Likelihood Thruster Fault Detection and Identification [C]. The American IEEE Control Conference, Anchorage, AK, 2002, 5: 4525~4530.
    [67] Wilson E, Sutter D W, etal. Spacecraft On-Board Mass and Thruster Property Identification with SPHERES Flight Exoeriments [C]. Arlington, VA, United States, AIAA 2005-6907.
    [68] Paynter S J, Bishop R H. Indirect Adaptive Nonlinear Attitude Control and Momentum Management of Spacecraft Using Feedback Linearization [J]. Advances in the Astronautical Sciences, 1996, 90(1): 1085~1091.
    [69] Ma O, etal. Simulation Study of a Robotics-Based Method for On-Oribt Identification of Spacecraft Inertia Properties [C]. SPIE Vol.6555, 2007: 1~6.
    [70] Ma O, etal. On-Orbit Identification of Inertia Properties of Spacecraft Using Robotic Arm [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1761~1771.
    [71]张大伟.基于类杆锥机构的航天器对接动力学与组合控制[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文,2009.
    [72]赵超.大型复合航天器分散协同控制技术研究[D].西安:西北工业大学研究生院博士学位论文,1999.
    [73] Zhang D W. Mass Property Estimation for Mated Flight Control [C]. Proceedings of 2009 International Conference on Computer Modeling and Simulation, ICCMS, 2009: 84~87.
    [74]李立宏.适用于星跟踪器的星图识别算法及飞行器姿态估计研究[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文,2000.
    [75] Wright P S, Wong H S. An Overview of Sensors in Spacecraft Engineering [C]. IEEE Colloquium on Satellite Instrumenation, 1988(1): 1~4.
    [76]李琳琳.卫星自主轨道确定及姿态确定技术研究[R].北京:中科院空间科学与应用研究中心博士后出站报告,2003.
    [77]林玉荣.基于星敏感器确定卫星姿态的滤波算法研究[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文,2002.
    [78]钱勇.高精度三轴稳定卫星姿态确定和控制系统研究[D].西安:西北工业大学研究生院博士学位论文,2002.
    [79] Hsing J C, Ramos A, Barrentt M F. Gyro-Based Attitude Reference Systems for Communications Satellites [J]. Journal of Guidance and Control, 1980, 3(3): 239~244.
    [80] Farrenkopf R L. Generalized Results for Precision Attitude Reference Systems Using Gyros [C]. AIAA-74-0903, 1974.
    [81] Reid D B. Description of the Milstar Attitude Determination System [C]. The American IEEE Control Conference, Proceedings of the 1997, 1997(4): 2313~2322.
    [82] Shuster M D,Oh S D. Three-Axis Attitude Determination from Vector Observations [C]. AIAA-81-4003, 1981.
    [83] Wahba G. A Least Squares Estimate of Spacecraft Attitude [J]. SIAM Review, 1965, 7(3): 409~415.
    [84] Bar-Itzhack I Y, Richard H. Optimized TRIAD Algorithm for Attitude Determination [C]. AIAA/AAS Astrodynamics Cnference, San Diego, CA, AIAA-1996-3616.
    [85] Choukroun D, Bar-Itzhack I Y, Oshman Y. Optimal Request Algorithm for Attitude Determination [C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Montreal, Canada, AIAA 2001-4153, 2001.
    [86] Bar-Itzhack I Y.“Request”- A Recursive Quest Algorithm for Sequential Attitude Determination [C]. AIAA-1996-3616, 1996.
    [87] Markley F L. Attitude Determination Using Vector Observation: A Fast Optimal Matrix Algorithm [J]. Journal of the Astronautical Sciences, 1993, 41(2): 261~280.
    [88] Mortari D. Euler-q Algorithm for Attitude Determination from Vector Observations [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 328~334.
    [89] Shuster M D. A Comment on Fast Three-Axis Attitude Determination Using Vector Observations and Inverse Iteration [J]. Journal of the Astronautical Sciences, 1983, 31(4): 579~584.
    [90] Pittelkau M E. Square Root Quaternion Estimation [C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, AIAA 2002-4914.
    [91]张金槐,蔡洪.飞行器试验统计学[M].长沙:国防科技大学出版社,1995.
    [92] Markley F L. Attitude Determination and Parameter Estimation Using Vector Observations Theory [J]. Journal of the Astronautical Sciences, 1989, 37(1): 41~58.
    [93] Murdin D. Standby Attitude Estimation [C]. Position Location and Navigation Symposium, IEEE 2000: 429~436.
    [94] Chu D, Harvie E. Accuracy of the ERBS Definitive Attitude Determination System in the Presence of Propagation Noise [C]. The Flight Mechanics Estimation Theory Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 1990: 97~114.
    [95] Lefferts E J, Markley F L, Shuster M D. Kalman Filtering for Spacecraft Attitude Estimation [J]. Journal of Guidance, Control, and Dynamics, 1982, 5(5): 417~429.
    [96] Hill M, Mccusker T J. Real-time Optimal Attitude Estimation Using Horizon Sensor and Magnetometer Data [J]. Journal of Spacecraft and Rockets, 1998, 35(6): 778~784.
    [97] Kadirkamanathan V, Li P, Kirubarajan T. Sequential Monte Carlo Filtering vs. the IMM Estimator for Fault Detection and Isolation in Nonlinear Systems [C]. SPIE Vol. 4389, 2001: 263~274.
    [98]屠善澄.卫星姿态动力学与控制II[M].北京:宇航出版社,1998.
    [99]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998.
    [100]廖晖.对地定向三轴稳定卫星姿态确定和控制系统研究[D].西安:西北工业大学研究生院博士学位论文,2000.
    [101]李鹏奎.在轨服务组合平台姿态确定与控制研究及地面试验相对测量系统设计[D].长沙:国防科学技术大学研究生院硕士学位论文,2008.
    [102]倪新国.空间平台姿态确定及武器系统传递对准技术[D].长沙:国防科学技术大学研究生院博士学位论文,2009.
    [103] Julier S J, Uhlmann, Durran-Whyte. A New Approach for the Nonlinear Transformation of Means and Covariance in Linear Filters [C]. IEEE Transactions on Automatic Control, 2000: 477~482.
    [104]张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598~601.
    [105]蔡洪.Unscented Kalman滤波用于再入飞行器跟踪[J].飞行器测控学报,2003,22(3):12~16.
    [106]张红梅.非线性滤波及其在姿态确定和导航中的应用[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文[D],2004.
    [107]朱建丰,徐世杰.基于地磁场测量估计卫星姿态的UKF算法[J].宇航学报,2006,27(6):1401~1405.
    [108] Crassidis J L, Markley F. Minimum Model Error Approach for Attitude Estimation [J]. Journal of Guidance, Control, and Dynamics, 1997, 20(6): 1241~1247.
    [109] Crassidis J L, Landis F. Predictive Filtering for Nonlinear Systems [J].Journal of Guidance, Control, and Dynamics, 1997,20(3): 566~571.
    [110]林玉荣.基于星敏感器确定卫星姿态的滤波算法研究[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文,2002.
    [111]林玉荣,邓正隆.基于MME准则估计卫星姿态的非线性滤波算法[J].哈尔滨工业大学学报,2002,34(1):14~18.
    [112] Mook D J, Junkins J L. Minimum Model Error Estimation for Poorly Modeled Dynamic Systems [J]. Journal of Guidance, Control, and Dynamics, 1988, 11(3): 256~261.
    [113] Lu P. Nonlinear Predictive Controllers for Continuous Systems [J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3): 553~560.
    [114]朱长征.基于星敏感器的星模式识别算法及空间飞行器姿态确定技术研究[D].长沙:国防科学技术大学研究生院博士学位论文,2004.
    [115]张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598~601.
    [116]王建琦.基于姿态敏感器的卫星自主导航与融合定姿方法研究[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文,2004.
    [117] Ding G C, Pan K Y, etal. Intelligent Fusion of Redundant Measurements of High Accuracy Attitude Sensors on Spacecraft [C]. Proceeding of the 3th World Congress on Intelligent Control and Automation, Hefei, China, 2000: 703~707.
    [118] Chang F R, Chiang Y T, Jan Y W, etal. Data Fusion of Three Attitude Sensors [C]. Proceedings of the 40th SICE Annual Conference, 2001: 234~239.
    [119]王志胜.信息融合估计理论及其在航天器控制中的应用研究[D].西安:西北工业大学研究生院博士学位论文,2002.
    [120]顾冬晴,王岩,周文君,秦永元.多敏感器卫星姿态确定的联邦滤波器设计[J].中国空间科学技术,2004,3:7~14.
    [121]王志胜,刘建业,周军.推广联合滤波算法在卫星组合定姿系统中的应用[J].宇航学报,2004,25(5):570~575.
    [122]张春青,李勇,刘良栋.卫星多敏感器组合姿态确定系统中的信息融合方法研究[J].宇航学报,2005,26(3):314~320.
    [123]赖际舟,刘建业,刘瑞华,华冰.基于联邦滤波的惯性导航姿态组合算法[J].天津大学学报,2006,39(3):349~353.
    [124]郁丰,刘建业,熊智,李丹.微小卫星姿态确定系统多信息融合滤波技术[J].上海交通大学学报.2008,42(5):831~835.
    [125] Daniel L, William B, Watson A, Weinberg A. NASA's Advanced Tracking and Data Relay Satellite System for the Years 2000 and Beyond [C]. Proceeding of the IEEE, July 1990, 78(7): 1141~1151.
    [126] Berretta G, Dickinson A. The European Data Relay System: Present Concept and Future Evolution [C]. Proceeding of the IEEE, July 1990, 78(7): 1152~1164.
    [127] Duhamel T, Bonoit A. New AOCS Concepts for Artemis and DRS [C]. First International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, The Netherlands, 1991: 33~39.
    [128] Hadaegh F Y, Chiang R Y, DiBattista J. Reconfigurable Robust Control Synthesis for Noncolocated Space Structure Experiment Control [C]. Advances in the Astronautical Sciences Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, 1994: 3~14.
    [129] Tham Q, Lee F, Ly J, Chiang R. Robust Pointing Control of Spacecraft with Large Appendages [C]. IEEE Trans. on AC, 1997: 369~375.
    [130] Tham Q, Ly J, Chiang R D, etal. Robust Antenna Pointing Control for TDRS Spacecraft [C]. The 36th Conference on Decision & Control, San Diego, California, USA, 1997: 4938~4942.
    [131] Chida Y, Soga H, Yamaguchi Y, etal. On-Orbit Attitude Control Experiments Using ETS-VI by H∞Control and Two-Degree of Freedom Control [J]. Control Engineering Practice, 1998, 6: 1109~1116.
    [132] Obenschain A, Williams D, Andary J. Landsat 7: Extending the Landsat Tradition into the Next Century [J]. Space Technology, 1998, 18(1): 3~10.
    [133] Koma Y, Vukovich G. Vibration Suppression of Flexible Beams with Bonded Piezotransducers Using Wave-absorbing Controller [J]. Journal of Guidance, Control, and Dynamics, 2000, 23(2): 347~354.
    [134]李勇,吴宏鑫.一类挠性航天器的变结构控制[J].宇航学报,1998,19(1):13~20.
    [135]齐春子,吕振译.卫星大型挠性天线弹性振动抑制的研究[J].宇航学报,1998.19(2):60~64.
    [136]刘春梅.挠性空间结构的变结构控制方法研究[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文,1999.
    [137]李英波.挠性充液卫星动力学分析与姿态控制研究[D].上海:上海交通大学研究生院博士学位论文,2001.
    [138]耿云海.大型挠性充液空间飞行器非线性控制技术研究[D].哈尔滨:哈尔滨工业大学研究生院博士学位论文,2003.
    [139]匡金炉.带挠性附件的航天器系统动力学特性研究[J].宇航学报,1998.19(2):51~54.
    [140]仝西岳.挠性多体航天器动力学建模与姿态控制技术研究[D].长沙:国防科学技术大学研究生院博士学位论文,2006.
    [141]陈金莉,李东海,孙先仿.航天器姿态的非线性鲁棒分散控制器设计[J].宇航学报,2007.27(1):6~11.
    [142]李杨柱.航天员舱内活动对载人飞船姿态的扰动影响研究[D].长沙:国防科学技术大学研究生院硕士学位论文,2005.
    [143] Glenn C, etal. Attitude Determination and Control of Clementine During Lunar Mapping [J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 505~511.
    [144] Das A. The On-Orbit Attitude Determination and Control System for the Landsat-D Spacecraft [C]. AIAA 82-3010, 1982.
    [145] Zhao Z Y, Tomizuka M, Isaka S. Fuzzy Gain Scheduling of PID Controllers [J]. IEEE Tran.On System, Man Cybern, 1993, 23(5): 1392~1398.
    [146]王立新.模糊系统与模糊控制[M].北京:清华大学出版社,2003.
    [147]程代展.非线性系统的几何理论[M].北京:科学出版社,1989.
    [148]孙志毅.非线性系统控制理论与方法[J].太原重型机械学院学报,2003,24(4):249~254.
    [149] Sahjendra N S, Woosoon Y. Feedback Linearization and Solar Pressure Satellite Attitude Control [J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(2): 732~741.
    [150] Sahjendra N S, Ashok I. Nonlinear Decoupling Sliding Mode Control and Attitude Control of Spacecraft [J]. IEEE Trans. on Aerospace and Electronic Systems, 1989, 25(5): 621~633.
    [151] Elmali H, Olgac N. Robust Output Tracking of MIMO Nonlinear Systems via Sliding Mode Technique [J]. Automatica, 1992, 28(1): 145~151.
    [152] Elmali H, Olgac N. Satellite Attitude Control via Sliding Mode with Perturbation Estimation [C]. IEEE Proceedings of Control Theory and Applications, 1996, 143(3): 276~282.
    [153]管萍,刘小河,刘向杰.挠性卫星的变结构姿态控制[J].控制理论与应用,2007,24(3):480~484.
    [154] Guan P,Liu X J,Liu J Z.Flexible Satellite Attitude Control Via Sliding Mode Technique [C]. The 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005: 1258~1263.
    [155]高为炳.变结构控制理论及其设计方法[M].北京:科学出版社,1996.
    [156] Iyer A, Singh S N. Variable Structure Attitude Control and Elastic Mode Stabilization of Flexible Spacecraft [C]. Proceeding of the 39th Conference on Decision and Control, Tampa, 1999: 809~814.
    [157] Wu Y Q, Yu X H. Variable Structure Control Design for Uncertain Dynamic Systems with Disturbances in Input and Output Channelsl [J]. Automatics, 1999, 35(2): 311~319.
    [158] Matthew A, Franco B Z, Riccardo S. Sliding Mode Control of a Large Flexible Space Structure [J]. Control Engineering Practice, 2000, 8(8): 861~871.
    [159] Tohro W, Kennichi K, Katsuhiro T. A Sliding Mode Intelligent Servo System to Improve the Path Accuracy and Power Consumption of Robot Manipulators [C]. Japan-USA Symposium on Flexible Automation, 1990: 195~206.
    [160] Sundareshan M K, Askew C. Neural Network-assisted Variable Structure Control Scheme for Control of a Flexible Manipulator Arm [J]. Automatic, 1997, 33(9): 1699~1710.
    [161] Wie B, Byun K W, Warren V W. New Approach to Attitude/Momentum Control for the Space Station [J]. Journal of Guidance, 1989, 12(5): 714~722.
    [162] Hebertt H, Panlo L A, Orestes L S. Dynamic Compensator Design in Nonlinear Aerospace Systems [J]. IEEE Trans. on Aerospace and Electronics Systems, 1993, 29(2): 364~377.
    [163] Woo Z W, Chung H Y, Lin J J. A PID Type Fuzzy Controller with Self-Tuning Scaling Factors [J]. Fuzzy Sets and Systems, 2000, 115(2): 321~326.
    [164] Westenskow D R. Fundamentals of Feedback Control: PID, Fuzzy Logic, and Neural Networks [J]. Journal of Clinical Anesthesia, 1997, 9(1): 33~35.
    [165] Janshidi M. Large-Scale Systems Modeling and Control [M]. North-Holland Publishing Comoany, 1983.
    [166]王青.分散鲁棒自适应控制理论及其应用[D].西安:西北工业大学研究生院博士学位论文,1996.
    [167]周军.航天器控制原理[M].西安:西北工业大学出版社,2001.
    [168]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,1997.
    [169]杨嘉墀.航天器轨道动力学与控制(下)[M].北京:宇航出版社,1995.
    [170] James W, Murrell. Precision Atitude Determination for Multimission Spacecraft [C]. AIAA-78-248, 1978.
    [171] Chait Y. A Natural Modal Expansion for the Flexible Robot Arm Problem via a self adjoint Formulation [J]. IEEE Transactions on Robotics and Automation, 1990, (6): 601~603.
    [172]魏延明,潘海林.空间机动服务平台在轨补给技术研究[J].空间控制技术与应用,2008,34(2):18~22.
    [173]林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空,2005,2:25~27.
    [174]耿长福.航天器动力学[M].北京:中国科学技术出版社,2006:234~236..
    [175]张龙,段广仁,张永安.在轨加注航天器的姿态动力学分析[C].空间操作自主控制专题研讨会,长沙,2009:307~317.
    [176] Fang B T. Kinetic Energy and Angular Momentum about the VariableCenter of Mass of a Satellite [J]. AIAA Journal, 1965, 3(8): 1540~1542.
    [177]李心宏等.理论力学[M].大连:大连理工大学出版社,2004:247~261.
    [178]熊洪允,曾绍标,毛云英.应用数学基础[M].天津:天津大学出版社,2004.
    [179]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [180] Golub G H, Van Loan C F. An analysis of the total least squares problem [J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883~893.
    [181] Van Huffel S, Vandewalle J. Analysis and Properties of the Generalized Total Least Squares Problem AX≈B When Some or All Columns in A Are Subject to Error [J]. SIAM Journal on Matrix Analysis and Applications, 1989, 10(3): 294~315.
    [182] Golub G H, Van Loan C F. Matrix Computations [M]. The Johns Hopkins University Press, Baltimore, MD, 1996.
    [183]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [184]赵瑞安,吴方.非线性最优化理论和方法[M].杭州:浙江科学技术出版社,1992.
    [185]谢政,李建平,陈挚等.非线性最优化理论与方法[M].北京:高等教育出版社,2010.
    [186] Bierman G J. Factorzation Methods for Discrete Sequential Estimation [M]. Academic Press, New York, 1977.
    [187] Gill P E, Murray W, Wright M H. Practical Optimization[M]. Academic Press, New York, 1981.
    [188]蔡洪,张士峰,张金槐.Bayes试验分析与评估[M].长沙:国防科技大学出版社,2004.
    [189] Psiaki M L. The Super-Iterated Extended Kalman Filter [J]. AIAA Guidance, Navigation, and Control Conference, Providence, RI, AIAA-04-5418, 2004.
    [190] Psiaki M L. Backward-Smoothing Extended Kalman Filter [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 885~894.
    [191] Markley F L, Crassidis J L, Yang C. Nonlinear Attitude Filtering Methods [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, AIAA 2005-5927, 2005.
    [192] Carlson N A. Federated Filter for Fault-Tolerant Integrated Navigation systems [C]. IEEE Proceedings of Position Location and Navigation Symposium, 1988: 110~119.
    [193] Carlson N A. Information-Sharing Approach to Federated Kalman Filtering [C]. IEEE Proceedings of Aerospace and Electronics Conference, 1988: 1581.
    [194] Carlson N A. Federated Square Root Filter for Decentralized Parallel Processes [J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 517~525.
    [195] Carlson N A. Comments With Reply on "Federated Square Root Filter for Decentralized Parallel Processes" [J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(6): 946~951.
    [196]刘准,陈哲.INS/GPS/TERCOM组合制导系统中的信息融合方法研究[J].宇航学报,2001,22(3):26~32.
    [197]屠善澄.卫星姿态动力学与控制(III)[M].北京:宇航出版社,1998.
    [198]田春华,马广富,李传江,姜雪原.三轴稳定卫星姿控系统的一般性问题[J].自动化技术与应用,2001,9(12):9~12.
    [199]田春华.卫星姿态控制系统的分析、设计和仿真研究[D].哈尔滨:哈尔滨工业大学研究生院硕士学位论文,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700