激光作用下半透明介质光热信息模拟及反问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半透明材料被广泛应用于各个领域,对其光学和红外特性的研究受到了国内外学者们的共同关注。典型的半透明介质有:水、冰、空气、玻璃、树脂、陶瓷、生物组织、多孔介质、弥散粒子系等,在激光与半透明介质的光热作用中,需要考虑介质中的热辐射影响。
     本文从激光作用下半透明介质光热信号模拟的正、反问题两个方面出发,对稳态辐射传输问题、瞬态时域辐射传输问题、频域辐射传输问题、辐射导热耦合换热问题、辐射相变耦合换热问题以及辐射反问题等进行了研究,具体包括以下五个方面的工作:
     1.综述了目前群体智能优化算法的发展,总结了群体智能优化算法的共同特征,介绍了几种常见群体智能优化算法的各自特点,重点阐述了微粒群算法和蚁群算法的思想和实现,并分别对量子微粒群算法、基于网格划分策略蚁群算法和基于概率密度策略蚁群算法提出了改进,通过标准测试函数说明了改进算法在反演精度、计算效率和算法稳定性等方面性能的提升。
     2.在有限体积法的基础上结合了源项多流法的思想,求解了一维、二维、三维半透明介质在漫射界面下的任意方向辐射强度,利用源项多流法的思想对有限体积法进行了两个方面的改进,即提出了一种更高精度的关联格式和一种不需要进行角度插值来处理多层镜射界面的有限体积法。
     3.对于辐射导热耦合换热问题,分别基于有效导热系数和辐射源项进行解耦处理,提出了一种求解多孔介质有效导热系数的方法,将基于网格划分的蚁群算法引入到辐射导热耦合换热反问题当中,通过测量边界上的温度和辐射热流反演了辐射导热耦合换热问题的散射系数、吸收系数分布、不均匀介质的界面位置;对于辐射相变耦合换热问题利用有限体积法分别求解了基于焓法能量方程和辐射传递方程,对有限体积法模型进行了对比验证,对控制方程进行了无量纲化处理,反演了斯蒂芬数和导热辐射参数。
     4.对于瞬态辐射传输问题,分别利用了有限体积法求解了时域和频域的辐射传递方程,将计算结果与蒙特卡洛法和间断有限元法进行了对比,分别将基于网格划分策略的蚁群算法和基于概率密度策略的蚁群算法引入到瞬态辐射反问题当中,通过测量边界上的透、反射信号反演了半透明介质的衰减系数、散射反照率、散射不对称因子等物性参数。
     5.基于时间相关单光子计数技术,搭建了脉冲激光作用下半透明介质透、反射信号测量的实验平台,并对测量系统进行了标定,通过制作已知物性的固态仿体,分析了本测量系统的误差来源与可靠性,最后利用该实验台对生物组织分别进行了离体测量和在体测量,利用实测的透反射信号反演了半透明介质的吸收和约化散射系数。
Semi-transparent material has been widely used in various fields. Research on the optical and infrared properties of semi-transparent materials received a common concern by domestic and foreign scholars. Typical semi-transparent media are: water, ice, air, glass, resin, ceramic, biological tissue, porous media, dispersed particles, and so on. The effects of radiative heat transfer always need to be considered in the study of photothermal interaction between laser and semi-transparent media. From the direct and inverse problem of photothermal signal simulation for laser-irradiated semi-transparent media, the present dissertation focuses on steady radiative heat transfer, transient radiative transfer, frequency-domain radiative transfer, coupled radiative and conductive heat transfer, coupled radiative and phase-change heat transfer and inverse radiative heat transfer. The specific work of this thesis includes the following five aspects:
     1. The current development of Swarm Intelligence optimization algorithms was reviewed in this thesis, in which the common features of swarm intelligence optimization algorithm were also summarized. Moreover, the characteristics of several common algorithms were introduced, respectively. Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) were discussed on the theory and realization. Meanwhile, the improvement of Quantum-behaved Particle Swarm Optimization (QPSO), Grid-based Ant Colony Optimization (GACO) and PDF-based Ant Colony Optimization (PACO) were given here. Through several standard test functions, the performances in accuracy, efficiency and stability of the improved algorithms were proved to have obvious enhancement.
     2. On the basis of the Finite Volume Method (FVM), combining with the idea of the Multi-Flux Method (MFM), arbitrary directional radiative intensity of multi-dimensional semi-transparent media were solved under diffused boundary condition. Moreover, the FVM was modified from two aspects using the idea of MFM, namely proposing a more precision associated format and putting forward an improved FVM which does not require angle interpolation to handle multi-layer media containing Fresnel interface.
     3. For the coupled radiative and conductive heat transfer problem, the effective thermal conductivity and radiative source term were used to decouple process. A new method for solving the effective thermal conductivity of porous media was proposed. Then the GACO was introduced to solve the inverse problem of coupled radiative and conductive heat transfer by measuring the temperatures and radiative heat flux on the boundaries. The scattering coefficient, absorption coefficient distribution and interface position were retrieved accurately. For the coupled radiative and phase-change heat transfer, the radiative transfer equation and enthalpy energy equation were both solved by FVM which was verified by results in reference. The control equations were nondimensionalized, and then the Stephen number and conduction to radiation parameter were retrieved successfully at last.
     4. For transient radiative transfer problem, the time-and frequency-domain transient radiative transfer equation were respectively solved by FVM. The simulated results were compared with those of Monte Carlo Method and Discontinuous Finite Element Method, respectively. The GACO and PACO were introduced to solve inverse problems of time-and frequency-domain transient radiative transfer. Then the physical properties of semi-transparent media such as optical thickness, scattering albedo, absorption coefficient, scattering coefficient and scattering asymmetry factor were retrieved by measuring the transmittance and reflectance on the boundaries.
     5. Based on Time-Correlated Single Photon Counting (TCSPC) technique, an experimental platform was built to measure the transmittance and reflectance of the semi-transparent media under pulsed laser irradiation. The equipment was calibrated and the experimental system was verified by standard solid imitations whose physical properties were known. Then the error sources and reliability of the measurement system were analyzed. Finally, the reflectance and transmittance of some biological tissues were measured in vitro and vivo. Then the absorption and reduced scattering coefficients were retrieved by utilizing the measured signals.
引文
[1]白光.激光热核聚变的现状与展望.激光与光电子学进展.2003,40(9):1-2.
    [2] Cheng H.Y., Luo Q.M., Zeng S.Q., et al. Modified laser speckle imaging method withimproved spatial resolution. Journal of Biomedical Optics.2003,8(3):559-564.
    [3]郭笑天,陈文静.激光约束与磁约束核聚变方案对比.产业与科技论坛.2013,(22):81-83.
    [4] Zhang Z.Y.. Numerical simulation of short-pulsed laser processing of materials.Numerical Heat Transfer, Part A: Applications.2001,40(5):497-509.
    [5] Huang C.H., Chen K.Y.. An iterative regularization method for inverse phonon radiativetransport problem in nanoscale thin films. International Journal for NumericalMethods in Engineering.2007,69(7):1499-1520.
    [6]李凤雷,徐国跃,余慧娟,等.红外隐身涂层的制备及其与雷达吸波涂料的兼容性研究.红外技术.2009,(7):415-419.
    [7] Niu H., Guo P., Song X., Jiang T.. Improving depth resolution of diffuse opticaltomography with an exponential adjustment method based on maximum singular value oflayered sensitivity. Chinese Optics Letters.2008,6(12):886-888.
    [8]刘静,邓中山.肿瘤热疗物理学.科学出版社,2008.
    [9]张镇西.激光与生物组织的相互作用—原理及应用.西安:西安交通大学出版社,1999.
    [10]李正佳.激光生物医学工程基础.北京:国防工业出版社,2007.
    [11]陈兆东.多通道时间相关单光子计数技术的研究.哈尔滨工业大学工学硕士学位论文,2013.
    [12] Weinman J.A., Shipley S.T.. Effects of multiple scattering on laser pulses transmittedthrough clouds. Journal of Geophysical Research.1972,77(36):7123-7128.
    [13]崔翠.无损探伤缺陷的检测与识别.科技与企业.2012,(23):355-355.
    [14]池寅生.飞秒脉冲激光在微机械系统中脱附和加工的机理研究.东南大学工学硕士论文,2005.
    [15] Boulnois J.L.. Photophysical processes in recent medical laser developments: a review.Lasers in Medical Science.1986,1(1):47-66.
    [16]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [17]张琳.梯度折射率介质内辐射传递方程数值模拟的有限元法.哈尔滨工业大学工学博士学位论文,2009.
    [18]易红亮.非均匀半透明介质内的瞬态辐射传热研究.哈尔滨工业大学工学博士学位论文,2007.
    [19]谈和平,夏新林,刘林华,等.红外辐射特性与传输的数值计算——计算辐射学.哈尔滨:哈尔滨工业大学出版社,2006.
    [20] Sadooghi P.. Transient coupled radiative and conductive heat transfer in a semitransparentlayer of ceramic. Journal of Quantitative Spectroscopy and Radiative Transfer.2005,92(4):403-416.
    [21] An W., Ruan L.M., Tan H.P., et al. Least-squares finite element analysis for transientradiative transfer in absorbing and scattering media. Journal of Heat Transfer.2006,128(5):499-503.
    [22]罗剑峰.镜漫反射下多层吸收散射性介质内的瞬态耦合换热.哈尔滨:哈尔滨工业大学工学博士学位论文,2002.
    [23] Liu D., Yan J.H., Wang F., et al. Inverse radiation analysis of simultaneous estimation oftemperature field and radiative properties in a two-dimensional participating medium.International Journal of Heat and Mass Transfer.2010,53(21):4474-4481.
    [24]王圣刚.时域辐射信号模拟及介质光学参数重建研究.哈尔滨:哈尔滨工业大学工学博士学位论文,2011.
    [25]齐宏.弥散颗粒辐射反问题的理论与实验研究.哈尔滨:哈尔滨工业大学工学博士学位论文,2008.
    [26] Modest M.F.. Radiative Heat Transfer. New York: McGraw-Hill,2003.
    [27]徐可欣,高峰,赵会娟.生物医学光子学(第二版).北京:科学出版社,2007.
    [28] Priebe L.A., Welch A.J.. A dimensionless model for the calculation of temperatureincrease in biologic tissues exposed to nonionizing radiation. IEEE Transactions onBiomedical Engineering.1979,(4):244-250.
    [29] Van Gemert M.C.J., Henning J.P.H.. A model approach to laser coagulation of dermalvascular lesions. Archives of Dermatological Research.1981,270(4):429-439.
    [30] Patterson M.S., Chance B., Wilson B.C.. Time resolved reflectance and transmittance forthe non-invasive measurement of tissue optical properties. Applied Optics.1989,28(12):2331-2336.
    [31] Arridge S.R., Schweiger M., Delpy D.T.. Iterative reconstruction of near-infraredabsorption images. San Diego '92,1992. International Society for Optics andPhotonics:372-383.
    [32] Jeans J.. The equations of radiative transfer of energy. Monthly Notices of the RoyalAstronomical Society.1917,78:28-36.
    [33] Chandrasekhar S.. Radiative Transfer. Oxford: Clarendon,1950.
    [34] Hottel H., Cohen E.. Radiant heat exchange in a gas-filled enclosure: Allowance fornonuniformity of gas temperature. AIChE Journal.1958,4(1):3-14.
    [35] Reddy J., Murty V.. Finite-element solution of integral equations arising in radiative heattransfer and laminar boundary-layer theory. Numerical Heat Transfer, Part B:Fundamentals.1978,1(3):389-401.
    [36] Lockwood F., Shah N.. A new radiation solution method for incorporation in generalcombustion prediction procedures. Symposium (International) on Combustion,1981.Elsevier:1405-1414.
    [37] Tan H.P., Lallemand M.. Transient radiative-conductive heat transfer in flat glassessubmitted to temperature, flux and mixed boundary conditions. International Journal ofHeat and Mass Transfer.1989,32(5):795-810.
    [38] Raithby G, Chui E.. A finite-volume method for predicting a radiant heat transfer inenclosures with participating media. Journal of Heat Transfer.1990,112(2):415-423.
    [39] Prahl, S.A.. The adding-doubling method. Optical-Thermal Response of Laser-Irradiated Tissue, Springer,1995.
    [40] Kim A.D., Ishimaru A.. A Chebyshev spectral method for radiative transfer equationsapplied to electromagnetic wave propagation and scattering in a discrete random medium.Journal of Computational Physics.1999,152(1):264-280.
    [41] Howell J.R., Perlmutter M.. Monte Carlo solution of thermal transfer through radiantmedia between gray walls. Journal of Heat Transfer.1964,86(1):116-122.
    [42] Zhou H.C., Cheng Q.. The DRESOR method for the solution of the radiative transferequation in gray plane-parallel media. Proceedings of the Fourth InternationalSymposium on Radiative Transfer, Istanbul, Turkey, June20-25,2004,181-190.
    [43] Ho C.H., zi ik M.N.. Combined conduction and radiation in a two-layer planar mediumwith flux boundary condition. Numerical Heat Transfer, Part A: Applications.1987,11(3):321-340.
    [44] Luo J.F., Xia X.L., Tan H.P., et al. Transient coupled heat transfer in three-layercomposite with opaque specular surfaces. Journal of Thermophysics and HeatTransfer.2002,16(3):297-305.
    [45] Muresan C., Vaillon R., Menezo C., et al. Discrete ordinates solution of coupledconductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject todiffuse and obliquely collimated irradiation. Journal of Quantitative Spectroscopy andRadiative Transfer.2004,84(4):551-562.
    [46] Zhang L., Zhao J.M., Liu L.H.. Finite element approach for radiative transfer inmulti-layer graded index cylindrical medium with Fresnel surfaces. Journal ofQuantitative Spectroscopy and Radiative Transfer.2010,111(3):420-432.
    [47] Thynell S.T.. Discrete-ordinates method in radiative heat transfer. International Journalof Engineering Science.1998,36(12):1651-1675.
    [48] Sakami M., Charette A., Le Dez V.. Radiative heat transfer in three-dimensionalenclosures of complex geometry by using the discrete-ordinates method. Journal ofQuantitative Spectroscopy and Radiative Transfer.1998,59(1):117-136.
    [49] Chui E., Raithby G., Hughes P.. Prediction of radiative transfer in cylindrical enclosureswith the finite volume method. Journal of Thermophysics and Heat transfer.1992,6(4):605-611.
    [50] Liu J., Shang H.M., Chen Y.S., et al. Prediction of radiative transfer in general body-fittedcoordinates. Numerical Heat Transfer.1997,31(4):423-439.
    [51] Murthy J.Y., Mathur S.R.. Finite volume method for radiative heat transfer usingunstructured meshes. Journal of Thermophysics and Heat Transfer.1998,12(3):313-321.
    [52] Liu J., Shang H.M., Chen Y.S.. Parallel simulation of radiative heat transfer using anunstructured finite-volume method. Numerical Heat Transfer: Part B: Fundamentals.1999,36(2):115-137.
    [53] Kim M.Y., Baek S.W., Lee C.Y.. Prediction of radiative heat transfer between twoconcentric spherical enclosures with the finite volume method. International Journal ofHeat and Mass Transfer.2008,51(19):4820-4828.
    [54] Chai J.C., Lee H.S., Patankar S.V.. Ray effect and false scattering in the discrete ordinatesmethod. Numerical Heat Transfer, Part B: Fundamentals.1993,24(4):373-389.
    [55] Jessee J.P., Fiveland W.A.. Bounded, high-resolution differencing schemes applied to thediscrete ordinates method. Journal of Thermophysics and Heat Transfer.1997,11(4):540-548.
    [56] Baek S.W., Byun D.Y., Kang S.J.. The combined Monte-Carlo and Finite Volume Methodfor radiation in a two-dimensional irregular geometry. International Journal of Heatand Mass Transfer.2000,43(13):2337-2344.
    [57] Liu L.H., Tan J.Y.. Meshless local Petrov-Galerkin approach for coupled radiative andconductive heat transfer. International Journal of Thermal Sciences.2007,46(7):672-681.
    [58] Siegel R., Spuckler C.M.. Effect of index of refraction on radiation characteristics in aheated absorbing, emitting, and scattering layer. Journal of Heat Transfer.1992,114(3):781-784.
    [59] Abdallah P.B., Dez V.L.. Temperature field inside an absorbing-emitting semi-transparentslab at radiative equilibrium with variable spatial refractive index. Journal ofQuantitative Spectroscopy and Radiative Transfer.2000,65(4):595-608.
    [60] Lemonnier D., Le Dez V.. Discrete ordinates solution of radiative transfer across a slabwith variable refractive index. Journal of Quantitative Spectroscopy and RadiativeTransfer.2002,73(2):195-204.
    [61] Liu L.H.. Finite volume method for radiation heat transfer in graded index medium.Journal of Thermophysics and Heat Transfer.2006,20(1):59-66.
    [62] Liu L.H., Zhang L., Tan H.P.. Finite element method for radiation heat transfer inmulti-dimensional graded index medium. Journal of Quantitative Spectroscopy andRadiative Transfer.2006,97(3):436-445.
    [63] Liu L.H., Zhang L, Tan H.P.. Radiative transfer equation for graded index medium incylindrical and spherical coordinate systems. Journal of Quantitative Spectroscopy andRadiative Transfer.2006,97(3):446-456.
    [64] Mishra S.C., Kumar T.P., Mondal B.. Lattice Boltzmann method applied to the solution ofenergy equation of a radiation and non-Fourier heat conduction problem. NumericalHeat Transfer, Part A: Applications.2008,54(8):798-818.
    [65] Luo K., Yi H.L., Tan H.P.. Coupled radiation and mixed convection in eccentric annulususing the hybrid strategy of lattice Boltzmann and meshless method. Numerical HeatTransfer, Part B: Fundamentals.2014, Accepted for publication.
    [66] Yi H.L., Wang C.H., Tan H.P., et al. Radiative heat transfer in semitransparent solidifyingslab considering space-time dependent refractive index. International Journal of Heatand Mass Transfer.2012,55(5):1724-1731.
    [67] Lee K., Forslund D.W., Kindel J.M., et al. Theoretical derivation of laser induced plasmaprofiles. Physics of Fluids (1958-1988).2008,20(1):51-54.
    [68] Guo Z.X., Kumar S.. Three-dimensional discrete ordinates method in transient radiativetransfer. Journal of Thermophysics and Heat Transfer.2002,16(3):289-296.
    [69] Strickler S.J., Berg R.A.. Relationship between absorption intensity and fluorescencelifetime of molecules. Journal of Chemical Physics.2004,37(4):814-822.
    [70] Lu X.D., Hsu P.F.. Reverse Monte Carlo simulations of light pulse propagation innonhomogeneous media. Journal of Quantitative Spectroscopy and RadiativeTransfer.2005,93(1):349-367.
    [71] Cheng Q., Zhou H.C.. The DRESOR method for a collimated irradiation on anisotropically scattering layer. Journal of Heat Transfer.2007,129(5):634-645.
    [72] Liu L.H., Hsu P.F.. Analysis of transient radiative transfer in semitransparent gradedindex medium. Journal of Quantitative Spectroscopy and Radiative Transfe.2007,105(3):357-376.
    [73] Siewert C.E.. A discrete-ordinates solution for radiative-transfer models that includepolarization effects. Journal of Quantitative Spectroscopy and Radiative Transfer.2000,64(3):227-254.
    [74] Zhao J.M., Tan J.Y., Liu L.H.. On the derivation of vector radiative transfer equation forpolarized radiative transport in graded index media. Journal of QuantitativeSpectroscopy and Radiative Transfer.2012,113(3):239-250.
    [75]李娇.时域扩散荧光层析技术基本原理与系统研究.天津大学工学硕士学位论文.2010.
    [76]沈世杰,李清.人乳腺癌组织的特征红外光谱研究.光谱学与光谱分析.2000,20(1):28-30.
    [77]王希影.气溶胶粒子光学常数的实验研究及辐射传输的数值模拟.哈尔滨工业大学工学博士学位论文.2012.
    [78] Zhao J.M., Liu L.H.. Second-order radiative transfer equation and its properties ofnumerical solution using the finite-element method. Numerical Heat Transfer, Part B:Fundamentals.2007,51(4):391-409.
    [79] Makhanlall D., Liu L.H., Zhang H.C.. SLA (Second-law analysis) of transient radiativetransfer processes. Energy.2010,35(12):5151-5160.
    [80] Ma Y., Dong S.K., Tan H.P.. Lattice Boltzmann method for one-dimensional radiationtransfer. Physical Review E.2011,84(1):016704.
    [81]谈和平,刘林华,易红亮,等.计算热辐射学的进展.科学通报.2009,18:005.
    [82] Qi H., Ruan L.M., Zhang H.C., et al. Inverse radiation analysis of a one-dimensionalparticipating slab by stochastic particle swarm optimizer algorithm. InternationalJournal of Thermal Sciences.2007,46(7):649-661.
    [83]王辉,钱锋.群体智能优化算法.化工自动化及仪表.2007,34(5):7-13.
    [84] Colorni A., Dorigo M., Maniezzo V.. Distributed optimization by ant colonies.Proceedings of the First European Conference on Artificial Life,1991. Paris, France:134-142.
    [85] Kennedy J., Eberhart R.. Particle swarm optimization. Proceedings of IEEEInternational Conference on Neural Networks,1995. IEEE:1942-1948.
    [86] Li H.Y., Ozisik M.N.. Inverse radiation problem for simultaneous estimation oftemperatureprofile and surface reflectivity. Journal of Thermophysics and HeatTransfer.1993,7(1):88-93.
    [87] An W., Ruan L.M., Qi H.. Inverse radiation problem in one-dimensional slab bytime-resolved reflected and transmitted signals. Journal of Quantitative Spectroscopyand Radiative Transfer.2007,107(1):47-60.
    [88] Knupp D.C., Silva Neto A.J.. An inverse analysis of the radiative transfer in a two-layerheterogeneous medium. Inverse Problems in Science and Engineering.2012,20(7):917-939.
    [89] Saquib S.S., Hanson K.M., Cunningham G.S.. Model-based image reconstruction fromtime-resolved diffusion data. Medical Imaging.1997,369-380.
    [90] Zhou H.C., Han S.D.. Simultaneous reconstruction of temperature distribution,absorptivity of wall surface and absorption coefficient of medium in a2-D furnace system.International Journal of Heat and Mass Transfer.2003,46(14):2645-2653.
    [91] Schweiger M., Arridge S.R., Nissil I.. Gauss-Newton method for image reconstruction indiffuse optical tomography. Physics in Medicine and Biology.2005,50(10):2365.
    [92] Balima O., Boulanger J., Charette A., et al. New developments in frequency domainoptical tomography. Part I: Forward model and gradient computation. Journal ofQuantitative Spectroscopy and Radiative Transfer.2011,112(7):1229-1234.
    [93] Howell J.R., Ezekoye O.A., Morales J.C.. Inverse design model for radiative heat transfer.Journal of Heat Transfer.2000,122(3):492-502.
    [94] Daun K., Fran a F., Larsen M., et al. Comparison of methods for inverse design of radiantenclosures. Journal of Heat Transfer.2006,128(3):269-282.
    [95] Tan J.Y., Liu L.Y.. Inverse geometry design of radiating enclosure filled withparticipating media using meshless method. Numerical Heat Transfer, Part A:Applications.2009,56(2):132-152.
    [96]董健.一维微结构光栅辐射特性的反设计方法.哈尔滨工业大学工学硕士学位论文.2013.
    [97] Moghadassian B., Kowsary F.. Inverse boundary design problem of naturalconvection-radiation in a square enclosure. International Journal of Thermal Sciences.2014,75:116-126.
    [98]陈荣,陈韶华,刘江海.强散射生物组织光学特参数的重构.湖北大学学报:自然科学版.2006,28(1):45-47.
    [99] Tang H., Sun X.G., Yuan G.B.. Calculation method for particle mean diameter and particlesize distribution function under dependent model algorithm. Chinese Optics Letters.2007,5(1):31-33.
    [100] Das R., Mishra S.C., Uppaluri R.. Inverse analysis applied to retrieval of parameters andreconstruction of temperature field in a transient conduction-radiation heat transferproblem involving mixed boundary conditions. International Communications in Heatand Mass Transfer.2010,37(1):52-57.
    [101] Czél B., Woodbury K.A., Gróf G.. Simultaneous estimation of temperature-dependentvolumetric heat capacity and thermal conductivity functions via neural networks.International Journal of Heat and Mass Transfer.2014,68:1-13.
    [102] Yuan Y., Yi H.L., Shuai Y., et al. Inverse problem for particle size distributions ofatmospheric aerosols using stochastic particle swarm optimization. Journal ofQuantitative Spectroscopy and Radiative Transfer.2010,111(14):2106-2114.
    [103] Sun Y.P., Lou C., Zhou H.C.. Estimating soot volume fraction and temperature in flamesusing stochastic particle swarm optimization algorithm. International Journal of Heatand Mass Transfer.2011,54(1):217-224.
    [104]王大林.激光辐照下半透明体光热信号模拟及内部参数重构.哈尔滨工业大学工学博士学位论文.2013.
    [105] Bang S.Y., Roy S., Modest M.F.. CW laser machining of hard ceramics II: effects ofmultiple reflections. International Journal of Heat and Mass Transfer.1993,36(14):3529-3540.
    [106]焦焱.周期性微结构表面辐射特性及其调控方法.哈尔滨工业大学工学博士学位论文.2013.
    [107] Sova R.M., Linevsky M.J., Thomas M.E., et al. High-temperature infrared properties ofsapphire, AlON, fused silica, yttria, and spinel. Infrared Physics and Technology.1998,39(4):251-261.
    [108] Rozenbaum O., Meneses D.D.S., Auger Y., et al. A spectroscopic method to measure thespectral emissivity of semi-transparent materials up to high temperature. Review ofScientific Instruments.1999,70(10):4020-4025.
    [109] Guo Z.X., Aber J., Garetz B.A., et al. Monte Carlo simulation and experiments of pulsedradiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer.2002,73(2-5):159-168.
    [110]张顺德,夏新林,戴贵龙,等.石英光学窗口的高温热辐射物性实验研究.工程热物理学报.2012,33(006):1032-1034.
    [111] Yoshiyama H., Ohi A., Ohta K.. Derivation of the aerosol size distribution from a bistaticsystem of a multiwavelength laser with the singular value decomposition method.Applied Optics.1996,35(15):2642-2648.
    [112] Jagodnicka A.K., Stacewicz T., Karasiński G., et al. Particle size distribution retrievalfrom multiwavelength lidar signals for droplet aerosol. Applied Optics.2009,48(4):B8-B16.
    [113] Marakis J.G., Brenner G., Durst F.. Monte Carlo simulation of a nephelometric experiment.International Journal of Heat and Mass Transfer.2001,44(5):989-998.
    [114] Agarwal B.M., Menguc M.P.. Forward and inverse analysis of single andmultiple-scattering of collimated radiation in an axisymmetrical system. InternationalJournal of Heat and Mass Transfer.1991,34(3):633-647.
    [115] Berberoglu H., Pilon L.. Experimental measurements of the radiation characteristics ofAnabaena variabilis ATCC29413-U and Rhodobacter sphaeroides ATCC49419.International Journal of Hydrogen Energy.2007,32(18):4772-4785.
    [116] Pal G., Basu S., Mitra K., et al. Time-resolved optical tomography using short-pulse laserfor tumor detection. Applied Optics.2006,45(24):6270-6282.
    [117] Orlova A.G., Turchin I.V., Plehanov V.I., et al. Frequency-domain diffuse opticaltomography with single source-detector pair for breast cancer detection. Laser PhysicsLetters.2008,5(4):321.
    [118] Di Rocco H.O., Iriarte D.I., Lester M., et al. CW laser transilluminance in turbid mediawith cylindrical inclusions. Optik.2011,122(7):577-581.
    [119]张伟,高峰,武林会,等.面向乳腺肿瘤诊断的时域扩散荧光——光学层析成像系统.红外与毫米波学报.2013,32(2):181.
    [120]李晓磊,钱积新.人工鱼群算法自下而上的寻优模式.过程系统工程年会论文集.2001,76-82.
    [121] Eusuff M.M., Lansey K.E.. Optimization of water distribution network design using theshuffled frog leaping algorithm. Journal of Water Resources Planning andManagement.2003,129(3):210-225.
    [122] Dervis K. An idea based on honey bee swarm for numerical optimization. TechnicalReport-TR06, Erciyes University, Engineering Faculty, Computer EngineeringDepartment.
    [123] Krishnanand K.N., Ghose D.. Detection of multiple source locations using a glowwormmetaphor with applications to collective robotics. SIS2005. Proceedings of IEEE onSwarm Intelligence Symposium,2005,84-91.
    [124] Zhao R.Q., Tang W.S.. Monkey algorithm for global numerical optimization. Journal ofUncertain Systems.2008,2(3):165-176.
    [125] Yang X.S.. A new metaheuristic bat-inspired algorithm. Nature Inspired CooperativeStrategies for Optimization (NICSO2010), Springer:65-74.
    [126] Pan W.C.. A new evolutionary computation approach: Fruit Fly Optimization Algorithm.2011Conference of Digital Technology and Innovation Management, Taipei,2011.
    [127]王晓笛.基于改进蛙跳算法的多目标优化问题研究.湖南师范大学工学硕士学位论文.2011.
    [128]亢少将.萤火虫优化算法的研究与改进.广东工业大学工学硕士学位论文.2013.
    [129]栾垚琛.基于混洗蛙跳算法的研究.青岛理工大学工学硕士学位论文.2009.
    [130]崔志华.社会情感优化算法.北京:电子工业出版社,2011.
    [131] Sun J., Feng B., Xu W.B.. Particle swarm optimization with particles having quantumbehavior. CEC2004. Congress on Evolutionary Computation,2004. IEEE:325-331.
    [132] Omkar S.N., Khandelwal R, Ananth T.V.S., et al. Quantum behaved Particle SwarmOptimization (QPSO) for multi-objective design optimization of composite structures.Expert Systems with Applications.2009,36(8):11312-11322.
    [133] Liu J., Xu W.B., Sun J.. Quantum-behaved particle swarm optimization with mutationoperator. ICTAI05.17th IEEE International Conference on Tools with ArtificialIntelligence,2005.234-240.
    [134] Dorigo M., Caro G.D., Gambardella L.M.. Ant algorithms for discrete optimization.Artificial Life.1999,5(2):137-172.
    [135] Dorigo M., Stützle T.. Ant Colony Optimization. Cambridge: Massachusetts Institute ofTechnology Press,2004.
    [136]段海滨.蚁群算法理论及应用.北京:科学出版社,2005.
    [137]高尚,钟娟,莫述军.连续优化问题的蚁群算法研究.微机发展.2003,13(1):21-22.
    [138] Socha K. ACO for continuous and mixed-variable optimization.4th InternationalWorkshop on Ant Colony Optimization and Swarm Intelligence, Brussels, BELGIUM,2004.25-36.
    [139]齐宏,王大林,黄细珍,等.求解任意方向辐射强度的广义多流法.工程热物理学报.2009,(7):1204-1206.
    [140]孙杰.亚波长金属光栅光谱辐射特性数值分析.哈尔滨工业大学工学硕士学位论文.2010.
    [141] Li H.S., Zhou H.C., Lu J.D., et al. Computation of2-D pinhole image-formation processof large-scale furnaces using the discrete ordinates method. Journal of QuantitativeSpectroscopy and Radiative.2003,78(3):437-453.
    [142] Chai J.C., Patankar S.V., Lee H.S.. Evaluation of spatial differencing practices for thediscrete-ordinates method. Journal of Thermophysics and Heat Transfer.1994,8(1):140-144.
    [143] Tan H.P., Yi H.L., Wang P.Y., et al. Ray tracing method for transient coupled heat transferin an anisotropic scattering layer. International Journal of Heat and Mass Transfer.2004,47(19):4045-4059.
    [144] Narcowich F.J.. Recent developments in error estimates for scattered-data interpretationvia radial basis functions. Numerical Algorithm.2007,39(1-3):307-315.
    [145] Flyer N., Wright G.B.. Transport schemes on a sphere using radial basis functions.Journal of Computational Physics.2007,226(1):1059-1084.
    [146]马菁,孙亚松,李本文.谱方法求解三维辐射与导热耦合换热问题.化工学报.2011,62(7):1838-1845.
    [147]杨世铭,陶文铨.传热学(第四版).北京:高等教育出版社,2006.
    [148] Francl J., Kingery W.D.. Thermal conductivity: IX, experimental investigation of effect ofporosity on thermal conductivity. Journal of the American Ceramic Society.1954,37(2):99-107.
    [149]吕兆华.泡沫型多孔介质等效导热系数的计算.南京理工大学学报(自然科学版).2004,25(3):257-261.
    [150]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [151] Yi H.L., Tan H.P., Zhou Y.. Coupled radiation and solidification heat transfer inside agraded index medium by finite element method. International Journal of Heat andMass Transfer.2011,54(13):3090-3095.
    [152] Raj R., Prasad A., Parida P.R., et al. Analysis of solidification of a semitransparent planarlayer using the lattice Boltzmann method and the discrete transfer method. NumericalHeat Transfer, Part A: Applications.2006,49(3):279-299.
    [153] Mishra S.C., Behera N.C., Garg A.K., et al. Solidification of a2-D semitransparentmedium using the lattice Boltzmann method and the finite volume method. InternationalJournal of Heat and Mass Transfer.2008,51(17-18):4447-4460.
    [154] Zhang Y., Yi H.L., Tan H.P.. Natural element method for radiative heat transfer intwo-dimensional semitransparent medium. International Journal of Heat and MassTransfer.2013,56(1):411-423.
    [155] Jiaung W.S., Ho J.R., Kuo C.P.. Lattice Boltzmann method for the heat conductionproblem with phase change. Numerical Heat Transfer, Part B: Fundamentals.2001,39(2):167-187.
    [156] Smith K.D., Katika K.M., Pilon L.. Maximum time-resolved hemispherical reflectance ofabsorbing and isotropically scattering media. Journal of Quantitative Spectroscopy andRadiative.2007,104(3):384-399.
    [157] Carrier G.F., Krook M., Pearson C.E.. Functions of a Complex Variable: Theory andTechnique. Siam,2005.
    [158]覃东利.时间分辨组织体光学参数测量及扩散光学成像实验研究.天津大学工学硕士学位论文.2007.
    [159]和慧园.反射模式时域荧光分子层析原理的模拟和实验研究.天津大学工学硕士学位论文.2008.
    [160] Becker W.. Advanced Time-Correlated Single Photon Counting Techniques. Springer,2005.
    [161]王瀚基.基于时间相关单光子计数技术的激光测距实验研究.哈尔滨工业大学工学硕士学位论文.2011.
    [162]高峰,杨芳,范颖,等.光学乳腺成像用固态仿体制作方法.中国发明专利,公布号:CN102093668A,申请公布日:2011年06月15日.
    [163] Patterson M.S., Madsen S.J., Moulton J.D., et al. Diffusion equation representation ofphoton migration in tissue. IEEE MTT-S International Conference on MicrowaveSymposium Digest,1991. IEEE:905-908.
    [164] Delfino I., Lepore M., Indovina P.L.. Experimental tests of different solutions to thediffusion equation for optical characterization of scattering media by time-resolvedtransmittance. Applied Optics.1999,38(19):4228-4236.
    [165]费业泰.误差理论与数据处理(第6版).北京:机械工业出版社,2010.
    [166] Matcher S., Cope M., Delpy D.. In vivo measurements of the wavelength dependence oftissue-scattering coefficients between760and900nm measured with time-resolvedspectroscopy. Applied Optics.1997,36(1):386-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700