用户名: 密码: 验证码:
天然气水合物沉积物强度及变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物作为一种重要的新能源,因其在世界范围内分布广、储量大,引起世界各国包括我国政府在内的高度关注。天然气水合物勘探和开发可能会引起海底滑坡、井壁坍塌、工程结构物破坏以及甲烷气体泄漏等灾害。本文针对上述过程涉及的天然气水合物储层力学问题,开展了实验研究及应力应变本构关系研究,以期为天然气水合物安全开采提供理论依据与技术支持。
     根据天然气水合物稳定存在的低温、高压特点,研制了一套专用的TAW-60低温、高压水合物三轴仪,以及与之配套的压力晶析制样装置。采用混合制样法制备天然气水合物沉积物试样,实验研究了温度、围压、水合物含量等对冻土区天然气水合物沉积物强度及变形特性的影响。首次发现了高围压条件下冻土区天然气水合物沉积物和含冰粉天然气水合物强度降低的现象,获得了冻土区天然气水合物沉积物的剪切强度、黏聚力、内摩擦角等参数,提出了分段线性强度准则和高围压条件下的非线性强度准则,验证了高围压条件下修正Duncan-Chang模型对冻土区天然气水合物沉积物的适用性。
     利用日本山口大学温控、高压水合物三轴仪,采用原位生成法制备天然气水合物沉积物试样。系统分析了不同荷载条件下,注热开采与降压开采过程对海底天然气水合物储层稳定性的影响。研究表明,当天然气水合物沉积物承受的荷载大于分解后沉积物的强度时,注热开采会导致天然气水合物储层的破坏,降压开采不会导致天然气水合物储层的破坏,而水压回复过程则有可能造成储层的破坏。研究了气饱和天然气水合物沉积物及C02水合物沉积物的强度及变形特性,详细分析了温度、孔隙压力、有效围压、水合物饱和度等对其力学特性的影响,并与水饱和天然气水合物沉积物进行了对比。发现相同条件下气饱和天然气水合物沉积物的强度、刚度、体积变形均大于水饱和天然气水合物沉积物,且气饱和天然气水合物沉积物呈现出更明显的剪胀和应变软化现象。证实了在一定温度、压力条件下,采用C02置换法开采天然气水合物在力学稳定性上是可行的。
     基于大量实验研究获得的天然气水合物沉积物应力应变规律,在修正剑桥模型(Modified Cam-Clay Model)的基础上,通过引入次加载面(Subloading surface)理论,同时考虑天然气水合物对沉积物剪胀和黏聚力的影响,建立了适用于海底天然气水合物沉积物的新的弹塑性本构模型。
Methane hydrate has attracted global attention due to its widespread occurrences and large potential as an energy resource. During the production of methane from hydrates, hydrate dissociation may induce a variety of geological disasters, such as subsea landslides, borehole collapse, destruction of engineering structures and methane gas leakage. In this paper, according to the related mechanical problems during production, the constitutive relationship of methane hydrate-bearing sediments was studied, based on a series of experimental research, in order to provide a theoretical basis and technical support for safe extraction of methane hydrates.
     A series of triaxial compression tests were conducted to investigate the effects of temperature, confining pressure and hydrate content on the mechanical properties of permafrost-associated methane hydrate-bearing sediments (prepared by mixed volume sample preparation method), using a specifically designed low-temperature high-pressure triaxial testing device (TAW-60). This paper originally discovered that the failure strength of methane hydrate-bearing sediments and methane hydrate containing ice presented a slow descending trend with increase of confining pressure under high confining pressures, obtained the shear strength, cohesion and internal friction angle of methane hydrate-bearing sediments, proposed a piecewise linear strength criterion and a nonlinear strength criterion under high confining pressures, verified the applicability of modified Duncan-Chang model for permafrost-associated methane hydrate-bearing sediments under high confining pressures.
     The methane hydrate-bearing specimens were also prepared by in situ forming method, using a temperature-controlled high pressure triaxial apparatus of Yamaguchi University. The effects of thermal recovery method and depressurization method on the mechanical properties of methane hydrate-bearing sediments were studied. The results indicate that:the thermal recovery method will cause the failure of methane hydrate-bearing sediments when the axial load is higher than the strength of methane hydrate-bearing sediments after dissociation; the depressurization method will not cause collapse of methane hydrate-bearing sediments during depressurization. However, water pressure recovery may lead to failure under certain conditions. Also, the effects of temperature, pore pressure, effective confining pressure and hydrate saturation on the mechanical properties of gas-saturated methane hydrate and CO2hydrate-bearing sediments were studied, and a comparison was made with water-saturated methane hydrate-bearing sediments. The results indicate that:(1)failure strength, and stiffness of gas-saturated specimens are higher than those of water-saturated specimens, and the gas-saturated specimens present more markedly shear dilation and strain-softening behavior;(2)it is feasible to use CH4-CO2replacement technology for the production of methane from hydrate reservoirs in mechanical considerations.
     Based on the modified Cam-Clay model, subloading surface theory and obtained experimental data, a new elastoplastic constitutive model for methane hydrate-bearing sediments was proposed, considering the effects of methane hydrate on the cohesion and shear dilation.
引文
[1]刘广志.天然气水合物——未来新能源及其勘探开发难度[J].自然杂志,2005,27(5):258-263.
    [2]Lee S Y, Holder G D. Methane hydrates potential as a future energy source [J]. Fuel Processing Technology,2001,71(1-3):181-186.
    [3]李栋梁,樊栓狮.天然气水合物资源开采方法研究[J].化工学报,2003,54(增刊):108-112.
    [4]Dawe R A, Thomas S. A large potential methane source-Natural gas hydrates [J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2007,29(3):217-229.
    [5]US DOE Fossil Energy. Report of the methane hydrate advisory committee on methane hydrate issues and opportunities, including assessment of uncertainty of the impact of methane hydrate on golbal climate change [R],2002,1-11.
    [6]Kvenvolden K A, Ginsburg G D, Soloviev V A. Worldwide distribution of subaquatic gas hydrates [J]. Geo-Marine Letters,1993,13(1):32-40.
    [7]许红,刘守全,王建桥,等.国际天然气水合物调查研究现状及其主要技术构成[J].海洋地质动态,2000,16(11):14.
    [8]Boswell R, Collett T S. Current perspectives on gas hydrate resources [J]. Energy & Environmental Science,2011,4(4):1206-1215.
    [9]祝有海,刘亚玲,张永勤.祁连山多年冻土区天然气水合物的形成条件[J].地质通报,2006,25(1-2):58-63.
    [10]吴时国,姚根顺,董冬冬,等.南海北部陆坡大型气田区天然气水合物的成藏地质构造特征[J].石油学报,2008,29(3):324-328.
    [11]张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质,2007,34(6):953-961.
    [12]徐华宁,杨胜雄,郑晓东,等.南中国海神狐海域天然气水合物地震识别及分布特征[J].地球物理学报,2010,53(7):1691-1698.
    [13]Sloan E D. Gas hydrates:Review of physical/chemical properties [J]. Energy & Fuels,1998,12(2): 191-196.
    [14]Charlou J L, Donval J P, Fouquet Y, et al. Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo-Angola Basin [J]. Chemical Geology,2004,205(3-4): 405-425.
    [15]Gabitto J F, Tsouris C. Physical properties of gas hydrates:A review [J]. Journal of Thermodynamics, 2010, Article ID 271291
    [16]Archer D. Methane hydrate stability and anthropogenic climate change [J]. Biogeosciences,2007, 4(2):521-544.
    [17]Glasby G P. Potential impact on climate of the exploitation of methane hydrate deposits offshore [J]. Marine and Petroleum Geology,2003,20(2):163-175.
    [18]Wood W T, Gettrust J F, Chapman N R, et al. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness [J]. Nature,2002,420(6916):656-660.
    [19]Nixon M F. Influence of gas hydrates on submarine slope stability [D].University of Calgary,2005
    [20]Miyazaki K, Masui A, Sakamoto Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment [J]. Journal of Geophysical Research-Solid Earth,2011, 116(B06102)
    [21]Milkov A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there? [J]. Earth-Science Reviews,2004,66(3-4):183-197.
    [22]Waite W F, Winters W J, Mason D H. Methane hydrate formation in partially water-saturated Ottawa sand [J]. American Mineralogist,2004,89(8-9):1202-1207.
    [23]Priest J A, Rees E V, Clayton C R. Influence of gas hydrate morphology on the seismic velocities of sands [J]. Journal of Geophysical Research:Solid Earth,2009,114(B11205)
    [24]Sloan E D. Fundamental principles and applications of natural gas hydrates [J]. Nature,2003, 426(6964):353-359.
    [25]李洋辉,宋永臣,刘卫国.天然气水合物三轴压缩试验研究进展[J].天然气勘探与开发,2010,33(2):51-55.
    [26]余义兵,宁伏龙,蒋国盛,等.纯水合物力学性质研究进展[J].力学进展,2012,42(3):347-358.
    [27]Rutqvist J, Moridis G J, Graver T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production [J]. Journal of Petroleum Science and Engineering, 2009,67(1-2):1-12.
    [28]Ning F, Yu Y, Kjelstrup S, et al. Mechanical properties of clathrate hydrates:status and perspectives [J]. Energy & Environmental Science,2012,5(5):6779-6795.
    [29]Hyodo M, Nakata Y, Yoshimoto N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture [J]. Soils and foundations,2005,45(1):75-85.
    [30]Aoki K, Ogata Y, Jiang Y. Compression Strength and Deformation Behaviour of Methane Hydrate Specimen [J]. Journal of the Mining and Materials Processing Institute of Japan,2004,120(12): 645-652.
    [31]Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties [J]. Journal of Petroleum Science and Engineering,2007,56(1-3):127-135.
    [32]Masui A, Haneda H, Ogata Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments [C]. Proceedings of The Fifteenth International Offshore and Polar Engineering Conference, Seoul, Korea,2005.
    [33]Masui A, Haneda H, Ogata Y, et al. The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments [C]. Proceedings of the Fifth International Conference on Gas Hydrates (ICGH 2005), Trondheim, Norway,2005.
    [34]Hyodo M, Yoneda J, Yoshimoto N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed [J]. Soils and Foundations,2013,53(2):299-314.
    [35]Yoneda J, Hyodo M, Nakata Y, et al. Localized deformation of methane hydrate-bearing sand by plane strain shear tests [C]. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011.
    [36]Clayton C, Priest J A, Best A I. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand [J]. Geotechnique,2005,55(6):423-434.
    [37]张旭辉,鲁晓兵,王淑云,等.四氢呋喃水合物沉积物静动力学性质试验研究[J].岩土力学,2011,32(S1):303-308.
    [38]Zhang W D, Ma Q T, Wang R H, et al. An experimental study of shear strength of gas-hydrate-bearing core samples [J]. Petroleum Science,2011,8(2):177-182.
    [39]李洋辉,宋永臣,于锋,等.围压对含水合物沉积物力学特性的影响[J].石油勘探与开发,2011,38(5):637-640.
    [40]李清平,宋永臣,刘卫国,等.一种用于天然气水合物原位生成与分解的三轴试验装置[P].发明,ZL201110002804.1.2013-05-29.
    [41]宋永臣,李洋辉,刘卫国,等.水合物沉积物原位生成与分解及其渗透率测量一体化装置[P].发明,ZL 201110353136.7.2013-06-19.
    [42]Waite W F, Helgerud M B, Nur A, et al. Laboratory measurements of compressional and shear wave speeds through methane hydrate [J]. Annals of the New York Academy of Sciences,2000,912(1): 1003-1010.
    [43]Helgerud M B, Waite W F, Kirby S H, et al. Measured temperature and pressure dependence of Vp and Vs in compacted, polycrystalline sⅠ methane and sⅡ methane-ethane hydrate [J]. Canadian Journal of Physics,2003,81(1-2):47-53.
    [44]Priest J A, Best A I, Clayton C. Attenuation of seismic waves in methane gas hydrate-bearing sand [J]. Geophysical Journal International,2006,164(1):149-159.
    [45]Kingston E, Clayton C R I, Priest J, et al. Effect of grain characteristics on the behaviour of disseminated methane hydrate bearing sediments [C]. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA,2008.
    [46]张剑.多孔介质中水合物饱和度与声波速度关系的实验研究[D].中国海洋大学,2008.
    [47]Miyazaki K, Tenma N, Aoki K, et al. Effects of Confining Pressure on Mechanical Properties of Artificial Methane-Hydrate-Bearing Sediment in Triaxial Compression Test [J]. International Journal of Offshore and Polar Engineering,2011,21(2):148-154.
    [48]Parameswaran V R, Paradis M, Handa Y P. Strength of Frozen Sand Containing Tetrahydrofuran Hydrate [J]. Canadian Geotechnical Journal,1989,26(3):479-483.
    [49]Lee J Y, Yun T S, Santamarina J C, et al. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments [J]. Geochemistry Geophysics Geosystems,2007,8(6):Q6003.
    [50]Yun T S, Santamarina J C, Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate [J]. Journal of Geophysical Research-Solid Earth,2007,112(B04106)
    [51]Lu X B, Wang L, Wang S Y, et al. Study on the Mechanical Properties of the Tetrahydrofuran Hydrate Deposit [J]. Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference,2008,1:57-60.
    [52]Cameron I, Handa Y P, Baker T H W. Compressive strength and creep behavior of hydrateo-consolidated sand [J]. Canadian Geotechnical Journal,1990,27(2):255-258.
    [53]Durham W B, Kirby S H, Stern L A, et al. The strength and rheology of methane clathrate hydrate [J]. Journal of Geophysical Research,2003,108(B4):V1-V2.
    [54]张旭辉,王淑云,李清平,等.天然气水合物沉积物力学性质的试验研究[J].岩土力学,2010,31(10):3069-3074.
    [55]Hyodo M, Nakata Y, Yoshimoto N, et al. Bonding strength by methane hydrate formed among sand particles [J]. Powders and Grains 2009:Proceedings of the 6th International Conference on Micromechanics of Granular Media,2009,1145:79-82.
    [56]Masui A, Haneda H, Ogata Y, et al. Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan [C]. Proceedings of the Seventh (2007) ISOPE Ocean Mining (& Gas Hydrates) Symposium, Lisbon, Portugal,2007.
    [57]Aoki K, Masui A, Haneda H,'et al. Compaction behavior of Toyoura sand during methane hydrate dissociation [C]. Proceedings of the Seventh (2007) ISOPE Ocean Mining (& Gas Hydrates) Symposium, Lisbon, Portugal,2007.
    [58]Grozic J L H. Undrained shear strength of methane hydrate-bearing sand; preliminarylaboratory results [C]. GEO2010:In the New West, Calgary, Alberta, Canada,2010.
    [59]Miyazaki K, Masui A, Aoki K, et al. Strain-rate dependence of triaxial compressive strength of artificial methane-hydrate-bearing sediment [J]. International Journal of Offshore and Polar Engineering,2010,20(4):256-264.
    [60]Miyazaki K, Masui A, Tenma N, et al. Study on mechanical behavior for methane hydrate sediment based on constant strain-rate test and unloading-reloading test under triaxial compression [J]. International Journal of Offshore and Polar Engineering,2010,20(1):61-67.
    [61]Ebinuma T, Kamata Y, Minagawa H, et al. Mechanical properties of sandy sediment containing methane hydrate [C]. Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway,2005.
    [62]Rees E V L, Kneafsey T J, Nakagawa S. Geomechanical properties of synthetic hydrate bearing sediments [C]. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011.
    [63]Song Y, Yu F, Li Y, et al. Mechanical property of artificial methane hydrate under triaxial conpression [J]. Journal of Natural Gas Chemistry,2010,9(3):246-250.
    [64]Yu F, Song Y, Liu W, et al. Analyses of stress strain behavior and constitutive model of artificial methane hydrate [J]. Journal of Petroleum Science and Engineering,2011,77(2):183-188.
    [65]Miyazaki K, Masui A, Haneda H, et al. Variable-compliance-type constitutive model for Toyoura sand containing methane hydrate [J]. Proceedings of the Seventh (2007) ISOPE Ocean Mining (& Gas Hydrates) Symposium,2007:57-62.
    [66]Miyazaki K, Aoki K, Tenma N, et al. A nonlinear elastic constitutive model for artificial methane-hydrate-bearing sediment [C]. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011.
    [67]Sultan N, Garziglia S. Geomechanical constitutive modelling of gas-hydrate-bearing sediments [C]. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011.
    [68]Uchida S, Soga K, Yamamoto K. Critical state soil constitutive model for methane hydrate soil [J]. Journal of Geophysical Research-Solid Earth,2012,117(B03209)
    [69]俞祁浩,徐学祖,程国栋.青藏高原多年冻土区天然气水合物的研究前景和建议[J].地球科学进展,1999,14(2):100-103.
    [70]祝有海,张永勤,文怀军,等.青海祁连山冻土区发现天然气水合物[J].地质学报,2009,83(11):1762-1771.
    [71]坚润堂,李峰,王造成.青藏高原多年冻土区活动带天然气水合物异常特征[J].西南石油大学学报(自然科学版),31(2):13-17.
    [72]祝有海,刘亚玲,张永勤.祁连山多年冻土区天然气水合物的形成条件[J].地质通报,2006,25(1-2):58-63.
    [73]Li Y, Song Y, Yu F, et al. Experimental study on mechanical properties of gas hydrate-bearing sediments using kaolin clay [J]. China Ocean Engineering,2011,25(1):113-122.
    [74]Li Y, Song Y, Liu W, et al. Experimental research on the mechanical properties of methane hydrate-ice mixtures [J]. Energies,2012,5(2):181-192.
    [75]Li Y, Song Y, Liu W, et al. Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments [J]. International Journal of Offshore and Polar Engineering,2012,22(4): 290-296.
    [76]Li Y, Zhao H, Yu F, et al. Investigation of the stress-strain and strength behavior of ice containing methane hydrate [J]. Journal of Cold Regions Engineering,2012,26(4):149-159.
    [77]大连理工大学.《DDW-600微机控制低温动态三轴试验机控制软件V1.0》计算机软件著作权登记证书,登记号:2012SR074874
    [78]Tsypkin G G. Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs [J]. Fluid dynamics,1993,28(2):223-229.
    [79]Worthington P F. Petrophysical evaluation of gas-hydrate formations [J]. Petroleum Geoscience,2010, 16(1):53-66.
    [80]Guggenheim S, van Groos A F K. New gas-hydrate phase:Synthesis and stability of clay--methane hydrate intercalate [J]. Geology,2003,31(7):653-656.
    [81]Gang L, Xiaosen L, Qi C, et al. Numerical Simulation of Gas Production from Gas Hydrate Zone in Shenhu Area, South China Sea [J]. Acta Chimica Sinica,2010,68(11):1083-1092.
    [82]Konno Y, Oyama H, Nagao J, et al. Numerical Analysis of the Dissociation Experiment of Naturally Occurring Gas Hydrate in Sediment Cores Obtained at the Eastern Nankai Trough, Japan [J]. Energy & Fuels,2010,24(12):6353-6358.
    [83]Francisca F, Yun T S, Ruppel C, et al. Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province [J]. Earth and Planetary Science Letters,2005,237(3-4):924-939.
    [84]张俊霞,任建业.天然气水合物研究中的几个重要问题[J].地质科技情报,2001,20(1):44-48.
    [85]Alkire B D, Andersland O B. The effect of confining pressure on the mechanical properties of sand-ice materials [J]. Journal of Glaciology,1973,12(66):469-481.
    [86]Bouyocous G J, Mccool M M. The Freezing Point Method as a New Means of Measuring the Concent ration of the Soil Solution Directly in the Soil [J]. Michigan Agricultural Experiment Station Technical Bulletin,1915,24:592-631.
    [87]Chamberlain E, Groves C, Perham R. The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions [J]. Geotechnique,1972,22(3):469-483.
    [88]吴紫,汪盛,煜马巍.围压对冻土强度特性的影响[J].岩土工程学报,1995,17(5):7-11.
    [89]Ma W, Wu Z, Zhang L, et al. Analyses of process on the strength decrease in frozen soils under high confining pressures [J]. Cold Regions Science and Technology,1999,29(1):1-7.
    [90]Qi J, Ma W. A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure [J]. Acta Geotechnica,2007,2(3):221-226.
    [91]王家澄,马巍,吴紫汪,等.围压作用下冻结砂土微结构变化的电镜分析[J].冰川冻土,1995,17(2):152-158.
    [92]Chamberlain E, Groves C, Perham R. The mechanical behaviour of frozen earth materials under high-pressure triaxial test conditions [J]. Geotechnique,1972,22(3):469-483.
    [93]李洋辉,宋永臣,刘卫国,等.温度和应变速率对水合物沉积物强度影响试验研究[J].天然气勘探与开发,2012,35(1):50-53.
    [94]马小杰.高温—高含冰量冻土强度及蠕变特性研究[D].中国科学院寒区旱区环境与工程研究所,2006.
    [95]覃英宏,张建明,郑波,等.基于连续介质热力学的冻土中未冻水含量与温度的关系[J].青岛大学学报(工程技术版),2008,23(1):77-82.
    [96]沈忠言,吴紫汪.冻土三轴强度破坏准则的基本形式及其与未冻水含量的相关性[J].冰川冻土,1999,21(1):22-26.
    [97]徐敩祖,奥利奋特J.L.,泰斯A.R.土水势、未冻水含量和温度[J].冰川冻土,1985,7(1):1-14.
    [98]俞茂宏.强度理论百年总结[J].力学进展,2004,34(4):529-560.
    [99]俞茂宏,Yoshimine M.,强洪夫,等.强度理论的发展和展望[J].工程力学,2004,21(4):1-20.
    [100]Drucker D C, Prager W. Soil mechanics and plastic analysis for limit design [J]. Quarterly of Applied Mathematics,1952,10(2):157-165.
    [101]Mises R V. Mechanik der festen Korper im plastisch deformablen Zustand [J]. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse,1913,1913: 582-592.
    [102]Ma W, Chang X. Analyses of strength and deformation of an artificially frozen soil wall in underground engineering [J]. Cold Regions Science and Technology,2002,34(1):11-17.
    [103]Lai Y, Jin L, Chang X. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil [J]. International Journal of Plasticity,2009,25(6):1177-1205.
    [104]Lai Y M, Gao Z H, Zhang S J, et al. Stress-strain relationships and nonlinear mohr strength criteria of frozen sandy clay [J]. Soils and Foundations,2010,50(1):45-53.
    [105]Yang Y, Lai Y, Dong Y, et al. The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures [J]. Cold Regions Science and Technology,2010,60(2):154-160.
    [106]于锋.甲烷水合物及其沉积物的力学特性研究[D].大连理工大学,2011.
    [107]Xu X, Oliphant J L, Tice A R. S.oil-water potential and unfrozen water content and temperature [J]. Journal of Glaciology and Geocryology,1985,7(1):1-11.
    [108]Czurda K A, Hohmann M. Freezing effect on shear strength of clayey soils [J]. Applied Clay Science, 1997,12(1-2):165-187.
    [109]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-41.
    [110]Jin L, Wang S, Zhang J, et al. Yield criterion and elasto-palstic constitutive model for frozen sandy soil [C]. Recent Development of Research on Permafrost Engineering and Cold Region Environment--Proceedings of the Eighth International Symposium on Permafrost Engineering, Xi'an, China,2009.
    [111]Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils [J]. Geotechnique, 1990,40(3):405-430.
    [112]Lai Y, Jin L, Chang X. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil [J]. International Journal of Plasticity,2009,25(6):1177-1205.
    [113]马巍.围压作用下冻土的强度与变形分析[D].北京理工大学,2000.
    [114]李栋伟.高应力下冻土本构关系研究及工程应用[D].安徽理工大学,2005.
    [115]田江永.强度理论在冻土本构模型中的应用[D].西北农林科技大学,2006.
    [116]马小杰,张建明,常小晓,等.高温-高含冰量冻土蠕变试验研究[J].岩土工程学报,2007,29(6):848-852.
    [117]王大雁,马巍,常小晓,等.深部人工冻土抗变形特性研究[J].岩土工程学报,2005,27(4):418-421.
    [118]朱志武,宁建国,马巍.冻土屈服面与屈服准则的研究[J].固体力学学报,2006,27(3):307-310.
    [119]马骉,王秉纲,梁光模,等.多年冻土地区温度对水稳砂砾强度形成影响[J].公路,2005,2005(8):129-133.
    [120]霍明,汪双杰,章金钊,等.含水率和温度对高含冰量冻土力学性质的影响[J].水利学报,2010,41(10):1165-1172.
    [121]朱元林,张家懿,彭万巍,等.冻土的单轴压缩本构关系[J].冰川冻土,1992,14(3):210-217.
    [122]蔡中民,朱元林,张长庆.冻土的粘弹塑性本构模型以及材料参数的确定[J].冰川冻土,1990,12(1):31-40.
    [123]李栋伟,汪仁和,胡璞.冻粘土蠕变损伤耦合本构关系研究[J].冰川冻土,2007,29(3):446-449.
    [124]罗汀,罗小映.适用于冻土的广义非线性强度准则[J].冰川冻土,2011,33(4):772-777.
    [125]Kondner R L. Hyperbolic stress-strain responses:Cohesive Soils [J]. Journal of soil Mechanics and Foundation Division,1963,89(SM1):115-143.
    [126]Kondner R L, Homer J M. Triaxial compression of a cohesive soil with effective octahedral stress control [J]. Canadian Geotechnical Journal,1965,2(1):40-52.
    [127]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils [J]. Journal of the Soil Mechanics and Foundations Division,1970,96(5):1629-1653.
    [128]Haeckel M, Suess E, Wallmann K, et al. Rising methane gas bubbles form massive hydrate layers at the seafloor [J]. Geochimica et Cosmochimica Acta,2004,68(21):4335-4345.
    [129]Yuan T, Nahar K S, Chand R, et al. Marine gas hydrates:seismic observations of bottom-simulating reflectors off the west coast of Canada and the east coast of India [J]. Geohorizons,1998,3(1): 235-239.
    [130]Kleinberg R L, Flaum C, Straley C, et al. Seafloor nuclear magnetic resonance assay of methane hydrate in sediment and rock [J]. Journal of Geophysical Research-Solid Earth,2003,108(B3):2137.
    [131]Bohrmann G, Kuhs W F, Klapp S A, et al. Appearance and preservation of natural gas hydrate from Hydrate Ridge sampled during ODP Leg 204 drilling [J]. Marine Geology,2007,244(1):1-14.
    [132]Kvenvolden K A, Claypool G E, Threlkeld C N, et al. Geochemistry of a naturally occurring massive marine gas hydrate [J]. Organic geochemistry,1984,6:703-713.
    [133]马巍,吴紫旺,张长庆.冻土的强度与屈服准则[J].冰川冻土,1993,15(1):129-133.
    [134]Vasarhelyi B. Investigation of Crack Propagation with Different Confining Pressure on anysotropic Gneiss. In:Rock Mechanics A Challenge For Society Proceedings Of The Isrm Regional Symposium Eurock E F J.2001:187-190
    [135]Singh S K, Jordaan I J. Triaxial tests on crushed ice [J]. Cold Regions Science and Technology,1996, 24(2):153-165.
    [136]Jones S J, Chew H A M. Creep of ice as a function of hydrostatic pressure [J]. The Journal of Physical Chemistry,1983,87(21):4064-4066.
    [137]Kamath V A, Mutalik P N, Sira J H, et al. Experimental Study of Brine Injection Depressurization of Gas Hydrates Dissociation of Gas Hydrates [J]. SPE Formation Evaluation,1991,6(4):477-484.
    [138]Sung W, Lee H, Lee H, et al. Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection [J]. Energy sources,2002,24(6):499-512.
    [139]Tang L G, Xiao R, Huang C, et al. Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment [J]. Energy & fuels,2005,19(6):2402-2407.
    [140]Ohgaki K, Takano K, Moritoki M. Exploitation of CH4 Hydrates under the Nankai Trough in Combination with CO2 Storage [J]. Kagaku Kogaku Ronbunshu,1994,20(1):121-123.
    [141]Ohgaki K, Takano K, Sangawa H, et al. Methane Exploitation by Carbon Dioxide from Gas Hydrates-Phase Equilibria for CO2-CH4 Mixed Hydrate System [J]. Journal Of Chemical Engineering Of Japan,1996,29(3):478-483.
    [142]Kimoto S, Oka F, Fushita T, et al. A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation [J]. Computers and Geotechnics,2007,34(4):216-228.
    [143]Rutqvist J, Moridis G J, Grover T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production [J]. Journal of Petroleum Science and Engineering,2009,67(1-2):1-12.
    [144]Lee J Y, Santamarina J C, Ruppel C. Volume change associated with formation and dissociation of hydrate in sediment [J]. Geochemistry Geophysics Geosystems,2010,11(3):Q3007.
    [145]Masui A, Miyazaki K, Haneda H, et al. Mechanical Characteristics of Natural and Artificial Gas Hydrate Bearing Sediments [C]. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA,2008.
    [146]Suzuki K, T E, Narita H. Features of methane hydrate-bearing sandy-sediments of the forearc basin along the Nankai trough:Effect on methane hydrate-accumulating mechanism in turbidite [J]. Journal of Geography,2009,118(5):899-912.
    [147]Bayles G A, Sawyer W K, Anada H R, et al. A steam cycling model for gas production from a hydrate reservoir [J]. Chemical Engineering Communications,1986,47(4-6):225-245.
    [148]Islam M R. A new recovery technique for gas production from Alaskan gas hydrates [J]. Journal of Petroleum Science and Engineering,1994,11(4):267-281.
    [149]Kamath V A, Holder G D. Dissociation heat transfer characteristics of methane hydrates [J]. AIChE Journal,2004,33(2):347-350.
    [150]Phirani J, Mohanty K K, Hirasaki G J. Warm water flooding of unconfined gas hydrate reservoirs [J]. Energy & Fuels,2009,23(9):4507-4514.
    [151]Ullerich J W, Selim M S, Sloan E D. Theory and measurement of hydrate dissociation [J]. AIChE Journal,2004,33(5):747-752.
    [152]Daigle H, Dugan B. Extending NMR data for permeability estimation in fine-grained sediments [J]. Marine and Petroleum Geology,2009,26(8):1419-1427.
    [153]Sakamoto Y, Komai T, Miyazaki K, et al. Laboratory-scale experiments of the methane hydrate dissociation process in a porous media and numerical study for the estimation of permeability in methane hydrate reservoir [J]. Journal of Thermodynamics,2010, Article ID 452326
    [154]Alramahi B, Alshibli K A, Fratta D. Effect of fine particle migration on the small-strain stiffness of unsaturated soils [J]. Journal of geotechnical and geoenvironmental engineering,2009,136(4): 620-628.
    [155]Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization [J]. Chemical Engineering Science,2001,56(20):5801-5814.
    [156]Kono H O, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing [J]. Powder Technology,2002,122(2):239-246.
    [157]Tsypkin G G. Effect of decomposition of a gas hydrate on the gas recovery from a reservoir containing hydrate and gas in the free state [J]. Fluid Dynamics,2005,40(1):117-125.
    [158]Ruan X, Song Y, Zhao J, et al. Numerical simulation of methane production from hydrates induced by different depressurizing approaches [J]. Energies,2012,5(2):438-458.
    [159]Vanoudheusden E, Sultan N, Cochonat P. Mechanical behaviour of unsaturated marine sediments: experimental and theoretical approaches [J]. Marine Geology,2004,213(1-4):323-342.
    [160]Waite W F, Kneafsey T J, Winters W J, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization [J]. Journal of Geophysical Research-Solid Earth,2008,113(B07102)
    [161]Yuan T, Spence G D, Hyndman R D, et al. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin:Amplitude modeling and full waveform inversion [J]. Journal of geophysical Research,1999,104(B1):1179-1191.
    [162]Guerin G, Goldberg D, Meltser A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge [J]. Journal of Geophysical Research-Solid Earth,1999,104(B8): 17781-17795.
    [163]Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope [J]. Marine and Petroleum Geology,2011,28(2):279-294.
    [164]Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of gas hydrate-bearing sediments [J]. Reviews of Geophysics,2009,47(RG4003)
    [165]Hyodo M, Yoneda J, Nakata Y, et al. Strength and dissociation property of methane hydrate bearing sand [C]. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011.
    [166]Masui A, Miyazaki K, Haneda H, et al. Mechanical characteristics of natural and artificial gas hydrate bearing sediments [C]. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA,2008.
    [167]Graham J, Alfaro M, Ferris G. Compression and strength of dense sand at high pressures and elevated temperatures [J]. Canadian geotechnical journal,2004,41(6):1206-1212.
    [168]Helgerud M B, Waite W F, Kirby S H, et al. Elastic wave speeds and moduli in polycrystalline ice Ih, sⅠ methane hydrate, and sⅡ methane-ethane hydrate [J]. Journal of Geophysical Research,2009, 114(B2):B2212.
    [169]Nakazono M, Jiang Y, Tanabashi Y. Study on the use possibility of carbon dioxide hydrate in methane hydrate dissolution [C]. The fifth China-Japan Joint Seminar for the Graduate Students in Civil Engineering, Shanghai, China,2008.
    [170]Espinoza D N, Santamarina J C. P-wave monitoring of hydrate-bearing sand during CH4-CO2 replacement [J]. International Journal of Greenhouse Gas Control,2011,5(4):1031-1038.
    [171]Hirohama S, Shimoyama Y, Wakabayashi A, et al. Conversion of CH4-Hydrate to CO2-Hydrate in Liquid CO2 [J]. Journal Of Chemical Engineering Of Japan,1996,29(6):1014-1220.
    [172]Kvamme B, Graue A, Buanes T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers [J]. International Journal of Greenhouse Gas Control, 2007:236-246.
    [173]Lee H, Seo Y, Seo Y, et al. Recovering methane from solid methane hydrate with carbon dioxide [J]. Angewandte Chemie International Edition,2003,42(41):5048-5051.
    [174]Pacific Northwest National Laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy, Oak Ridge, TN. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs:Final Summary Report [R],2007
    [175]Uchida T, Kawabata J. Measurements of mechanical properties of the liquid CO2-water-CO2-hydrate system [J]. Energy,1997,22(2-3):357-361.
    [176]Wu L, Grozic J L H. Laboratory analysis of carbon dioxide hydrate-bearing sands [J]. Journal of Geotechnical & Geoenvironmental Engineering,2008,134(4):547-550.
    [177]Ordonez C, Grozic J L H. Strength and compressional wave velocity variation in carbon dioxide hydrate bearing ottawa sand [C].2011 Pan-Am CGS Geotechnical Conference, Toronto, Canada, 2011.
    [178]Winters W J, Pecher I A, Waite W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate [J]. American Mineralogist,2004, 89(8-9):1221-1227.
    [179]Masui A, Haneda H, Ogata Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments [C]. Proceedings of the fifteenth international offshore and polar engineering conference, Seoul,2005.
    [180]Yang Y, Lai Y, Dong Y, et al. The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures [J]. Cold Regions Science and Technology,2010,60(2):154-160.
    [181]Gei D, Carcione J M. Acoustic properties of sediments saturated with gas hydrate, free gas and water [J]. Geophysical Prospecting,2003,51(2):141-157.
    [182]Yun T S, Francisca F M, Santamarina J C, et al. Compressional and shear wave velocities in uncemented sediment containing gas hydrate [J]. Geophysical Research Letters,2005,32(L10609)
    [183]Ren S R, Liu Y, Liu Y, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments [J]. Journal of Petroleum Science and Engineering,2010,70(1-2):52-56.
    [184]孔亮,郑颖人,姚仰平.基于广义塑性力学的土体次加载面循环塑性模型(Ⅱ):理论与模型[J].岩土力学,2003,24(3):349-354.
    [185]孔亮,郑颖人,姚仰平.基于广义塑性力学的土体次加载面循环塑性模型(Ⅰ):理论与模型[J].岩土力学,2003,24(2):141-145.
    [186]Hashiguchi K. Subloading surface model in unconventional plasticity [J]. International Journal of Solids and Structures,1989,25(8):917-945.
    [187]Roscoe K H, Schofield A N, Wroth C P. On yielding of soils [J]. Geotechnique,1958,8(1):22-53.
    [188]姚甫昌,谢红建,何世秀.对修正剑桥模型的认识及试验模拟[J].湖北工学院学报,2004,19(1):13-16.
    [189]Roscoe K H, Burland J B. On the generalized stress-Strain behavior of 'wet' clay. In:Engineering Plastility. Cambridge University Press,1968:535-609
    [190]袁克阔,陈卫忠,赵武胜,等.考虑黏聚力的上下加载面修正剑桥模型及数值实现[J].岩石力学与工程学报,2013,32(4):842-848.
    [191]Yoneda J, Hyodo M, Nakata Y, et al. Time-dependent elasto-plastic constitutive equation for sedimentary sands supported by methane hydrate [C]. Proceedings of the 12th Japan Symposium on Rock Mechanics, Ube, Japan,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700