中国区域气候的GCM与RCM模拟结果的对比分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪以来,在全球气候变暖的大背景下,极端气候事件频繁发生,中国区域的气候也发生了巨大的变化。从1951年至2001年,年平均地面气温升高1.1℃,增温速率达0.22℃/10a,与平均气温增加对应的是各种极端天气气候事件也发生了变化。在气候变化研究中,利用气候模式模拟是一种有效的方式,至今已经有许多的学者对全球气候模式(GCM)和区域气候模式(RCM)的模拟结果进行了分析,分析表明GCM和RCM对中国区域的气候具有一定的模拟能力,但存在一定的偏差。针对单个GCM在空间分辨率和系统偏差方面模拟效果的局限性,本文将IPCC AR4发布的20个GCM按分辨率分为高/中/低分辨率的模式集合,同时利用高分辨率的区域气候模式(PRECIS)的模拟结果,对比分析了GCM集合结果和RCM在中国区域的的模拟结果。文中分析的气候要素包括:年/夏季/冬季平均气温,年/夏季/冬季平均降水量,日最高/低气温,极端年较差,霜冻日数,高温热浪指数,连续干日数,极端降水贡献率,连续5日最大降水量。每个指标主要从空间分布,时间变化趋势特征进行分析,并初步得到以下结论:
     1.平均气温方面,高分辨率的气候模式能够更准确地模拟出中国区域的平均气温的空间变化特征,尤其是在西藏高原地区;而高分辨率的RCM明显改进了GCM的模拟效果。在平均气温的变化趋势上,低分辨率的GCM模拟的平均气温的变化趋势与观测最接近;
     2.与气温相联系的极端气温事件方面,高分辨率的GCM和RCM对极端气温事件的效果相对较好。在极端低温和极端高温事件中,气候模式对极端低温事件的模拟效果好于极端高温事件。在对极端气温事件的变化趋势上:极端低温事件,高分辨率的气候模式模拟的极端气温的变化趋势稍好于低分辨率的气候模式;极端高温事件,中等分辨率的GCM对高温事件的变化趋势模拟效果较好,而其他模式模拟的效果差;
     3.平均降水量方面,各气候模式集合对平均降水量的模拟效果较平均气温较差,各类GCM在西藏高原南部和西部的降水量偏多,在华南地区平均降水量偏少,高等分辨率的GCM相对于低分辨的GCM,模拟效果改进主要在西藏高原地区,而在华南地区,则未见改进;RCM相对于GCM,在西藏高原和华南地区,模式模拟的降水量分布特征有了明显的改进,这与RCM中加入了中尺度物理过程和更精确的地形因子有关。在平均降水量的变化趋势上,中等分辨率的GCM模拟的平均降水量的变化趋势最接近观测;
     4.极端降水事件方面,RCM相对于GCM模拟的极端降水事件与观测更接近。各GCM集合中,空间分辨率越高,模拟的极端降水事件的空间分布特征越好。极端降水事件的变化趋势:在无雨事件的变化趋势上,低分辨率的GCM集合模拟的变化趋势与观测最接近;在极端降水的变化趋势上,高分辨率的RCM模拟的极端降水事件的变化趋势更接近与观测;
     5.模式在模拟的平均气温和平均降水的变化趋势上,GCM模拟的气候要素的变化趋势的年际变率偏小,而RCM模拟的气候要素变化趋势的年际变率偏大。
Since the 20th century, in the context of global climate warming, extreme weather events occur frequently, the regional climate in China has undergone tremendous changes. From 1951 to 2001, annual mean surface temperature has increased 1.1℃, temperature growth rate is about 0.22℃/10a, corresponding to the average temperature increasing, a variety of extreme weather events have also changed. Using model simulating climate and forecast is an effective way, so far, there have been many results of the global climate models and regional climate model simulation were analyzed, analyses show that global climate models and regional climate models for the regional climate of China have certain simulation capability, but there are some deviations. For the limitions of the individual global climate model, including systematic bias, low spatial resolution, and mesoscale physical processes can not be described, the paper using the results of model collections of different resolution form 20 global climate models distributed by IPCC AR4, and result of high-resolution regional climate model simulated, then compared the results of global climate models and regional climate model in China. The climate factors analyzed including: annual/summer/winter mean temperature, annual/summer/winter precipitation, daily maximum/low temperature, extreme annual temperature range, frost days, heat wave during index, consecutive dry days and extreme precipitation contribution, 5 consecutive daily maximum precipitations. Mainly from the spatial distribution analysis and the time trend analysis of each characteristics, and the following are the preliminary conclusions:
     1. In terms of average temperature, high-resolution climate models can smulate more accurately spatial distribution of the average temperature in China, especially in the Tibetan Plateau; high-resolution regional climate model significantly improved the effect of the low-resolution global climate models; for the trend of average temperature, the result of low-resolution global climate model simulated and the mean temperature trends of observed is the nearest.
     2. For the extreme temperature events associated with the temperature, high-resolution global climate models and regional climate model on the effect of extreme temperature events are relatively good. Between the extreme cold and extreme heat events, the climate model simulations of extreme low temperature events better than the extreme high temperature events. In the trend of extreme temperature events, for the extreme low temperature events, the trend of extreme temperature of high-resolution climate model simulated are slightly better than low-resolution climate models; for the extreme high temperature events, the medium-resolution global climate model is better; the other models have bad effects on the trend of extreme high temperature events.
     3. In terms of average rainfall, the climate model ensemble simulation results on the average precipitation less than the average temperature observed, the result of various global climate model in south and west of the Tibetan plateau is more than normal rainfall, less than normal average rainfall in South China, higher resolution global climate models relative to the low-resolution climate models are batter, specially in the Tibetan Plateau, but in South China, there is no improvement, regional climate model relative to the global climate models, in the Tibetan Plateau and southern China, the simulated distribution of precipitation is more similar to observation, which joined mesoscale physical processes and more fine topography information. In the trend of the average precipitation, the result of medium-resolution global climate model simulated is closest to the average trend of precipitation observed.
     4. In extreme precipitation events, respecting to global climate models, regional climate model simulation is closer to observations of extreme precipitation events. Collection of global climate models, the higher spatial resolution, the better the spatial distribution of the simulation of extreme precipitation events. The trends of extreme precipitation events: in the trend of consecutive dry days, low-resolution simulations of global climate models is closest to the trend of observations, in the trends of extreme precipitation, high-resolution regional climate model simulations is closer to the observed.
     5. In the trend of temperature and precipitation change, the result of the global climate model simulate is smaller than observation, but the regional climate model is bigger.
引文
1.陈威霖.中国区域极端降水变化模拟评估及其未来情景预估[硕士学位论文].南京信息工程大学..2008.
    2.丁金宏.理论地理学概论.北京.科学出版社.1994.
    3.范丽军.等.统计将尺度法对未来区域气候变化情景预估中的研究进展.地球科学进展.2005.20(3):320-329.
    4.高学杰等.仅引入质量守恒律的T63模式对全球大气环流和中国气候的模拟.气候与环境研究,2003,8(3):339-347.
    5.高学杰等.实况海温强迫的CCM3模式对中国区域气候的模拟能力.大气科学,2004,28(1):78-90.
    6.高学杰等.温室效应引起的中国区域气候变化的数值模拟I:模式对中国气候模拟能力的检验.气象学报,2003,61(1):2lq7.
    7.国家气候中心[DB/OL].http://ncc.cma.gov.cn/cn
    8.姜大膀等.全球变暖背景下东亚气候变化的最近情景预测.地球物理学报,2004,47(4):590-596.
    9.气候变化国家评估报告编写委员会.气候变化国家评估报告.北京:2007.
    10.秦鹏.广东省近40多年极端温度和降水的变化规律分析.南京信息工程大学.2006.
    11.任福民等.1951-1990年中国极端气温变化分析.大气科学.1998.22(2):217-227.
    12.任国玉等.近50年中国地面气候变化基本特征,气象学报. 2004,63(6):942-956.
    13.世界气象组织.世界气候研究计划2005-2015年战略框架-地球系统的协调观测和预报(COPES).
    14.王世玉等.不同区域气候模式对中国东部区域气候模拟的比较.高原气象,1999,18(1):28-38.
    15.王淑瑜等. 5个全球气候模拟东亚区域气候能力的初步分析.气候与环境研究. 2004. 9(2):240-250
    16.王在志等.全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能.热带气象学报,2005,21(3):221-237.
    17.魏凤英.现代气候统计诊断与预测技术.北京.气象出版社.1999.
    18.徐崇海等,沈新勇,徐影. IPCC AR4模式对东亚地区气候模拟能力的分析.气候变化研究进展. 2008, 3(5):287-293
    19.徐敏.不同温室气体稳定浓度水平下中国地区未来气候变化分析[博士学位论文].南京信息工程大学. 2009.
    20.徐影等.近30年人类活动对东亚地区气候变化影响的检测与评估.应用气象学报,2002,13(5):513-525.
    21.许吟隆等.利用PRECIS分析SRES B2情景下中国区域的气候变化相应.科学通报. 2006.17:208-2074.
    22.许吟隆等.中国21世纪气候变化情景的统计分析.气候变化研究进展.2005.1(2):80-83
    23.严中伟等.近几十年中国极端气候变化格局.大气科学,2000,5(3):267-272.
    24.杨红龙.利用PRECIS进行中国极端求偶事件变化的情景分析[博士学位论文].兰州大学.2010.
    25.翟盘茂.等.中国北方近50年温度和降水极端事件变化,地理学报,2003,z1:1-10.
    26.翟盘茂.等.中国降水极端值变化趋势检测.气象学报,1997,57(2):208-216.
    27.张勇等.SRES B2情景下中国区域最高、最低气温及日较差变化分布特征初步分析.地球物理学报.2007.50(03):714-723.
    28.赵宗慈等,海气耦合模式在东亚地区的可靠性评估.应用气象学报,1995,6(增刊):9-18.
    29.赵宗慈等.人类活动对20世纪中国西北地区气候变化影响检测和21世纪预测.气候与环境研究,2003,8(1):26-34.
    30.赵宗慈等.未来20年中国气温变化预估.气象与环境学报.2008,24(5),1-5.
    31. Adger N. et al New indicators of vulnerability and adaptive capacity. TyndMME-all Centre for Climate Change Reseaech.2004.
    32. Alexander L.V et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys Res. 2005.111.
    33. Bonsal B R. et al. Characteristics of Daily AND Extreme Temperature over Canada. American Metrological Society. 2001.5(14):1959-1976.
    34. Cox P M. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Cli DYn. 1999. 15:183-203.
    35. EMORI. S et al. Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. J. Meteorol.1999,77(6):1299-1307.
    36. Eun-Soon B. et al. Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system.part2: future climate projection (2010-2050). Clim. 2008.30(2-3):239-254.
    37. Frei C et al. Future change of precipitation extremes in European: Intercomparision of scenarios form regional climate models. Journal of Geophysical Research. 2007.112(2):D6105.
    38. Frich P et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002.19():193-212.
    39. Gao X et al. Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate Model. Advances in Atmospheric Science. 2001.18(6):1224-1230.
    40. Gao X J et al .Climate change duo to greenhouse effects in China as simulated by a regional climate model. Advances in Atmospheric Science. 2001.18(6):927-942.
    41. Gao XJ, et a1.Climate change due to greenhouse effects in Chinaassimulated by a regional climate model.Adv.Atmos.Sci,2001,l 8(6):1224-1230.
    42. Gao Xuejie . Et al. Changes of Extreme Events in Regional Climate Simulations over East Asia.. Advances in Atmospheric Science 2002.19(5):927-942.
    43. Giorgi .et al. validation of regional atmospheric model over Europe: Sensitivity of wintertime and summertime simulation to selected physics parameterization and MME-lower boundary conditions. Quart. J Roy. Meteor. Soc. 1991.117(502):1171-1206.
    44. Giorgi. F et al. A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surfer processes. J.Geophys.Res.1999.104:6403-6424.
    45. Houghton J T et a1.Climate Change 2001:The Scientific Basis。United Kingdom and New York:Cambridge University Press,2001:473-476,536-543.
    46. IPCC. Climate Change 2001: The Scientific Basic. Houghton J T. etal. Eds. Cambridge: Cambridge University Press, 2001.881pp.
    47. IPCC. Climate Change 2007: The Scientific Basic-Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2007. 18pp.
    48. Knutson T R et a1. Model assessment of regional surface temperature trends (1949-1997). J Geo Res. 1999. 104: 30981-3099.
    49. Manne. A S. et al. The Kyoto protocol: A cost-effective strategy for meeting environmental objectives? The Energy Journal. 1999. Special Issue:1-24.
    50. Manton. M.J. et al. Trends in extreme daily rainfMME-all and temperature in Southeast Asia and the South Pacific:1961-1998.Intl.J.Clim.2001.269-284.
    51. Martin.B et al. Future extreme events in European climate: an exploration of regional climate model projections. Climate Change. 2007.81(Z1):71-95.
    52. Met Office. The Hadley Center regional climate modeling system: PRECIS-Updata 2002. Providing Regional Climate for Impacts Studies. 2002:P16.
    53. Nordhaus W S. Managing the Global Commons: The Economics of Climate Change. Cambridge: The M I T Press.1994.
    54. Pal J. et al. Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys .Res. Lett. 2004.31:L3202.
    55. Peck S C,Teisberg T J. Intemational C02 emissions targets and timetables:An analysis of the AOSIS proposal.Environmental Modeling and Assessment.1996,1(4):219-227.
    56. Program for Climate Model Diagnosis and Intercomparsion. [DB/OL]. http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php
    57. Schar. C. The role of increasing temperature variability in European summer heat waves. Nature. 2004.427(6972):332-336.
    58. Schmidli J. et al. Statistical and dynamical downscaling of precipitation: An evalution and comparison of scenarios for the European Alps. Journal of Geophysical Research. 2007.112(2):D4105.
    59. Sun L et al. Application of the NCAR regional climate model to eastern Africa.2. Simulation of inter-annual variability of short rains. J.Geophys. Res.1999. 104(D6):6549-6562.
    60. Tank. A.M. et al. Trends in indices of daily temperature and precipitation extremes in Europe.1946-1999. J.Clim.2003.16:3665-3680.
    61. Walsh K et al. January and July climate simulation and Validation of a regional climate model for Pan-Arctic hydrologic simulation. J.Clim.1995.8:2387-2402.
    62. Wang Y,et al. Observed trends in extreme precipitation events in China during 1961-2001 and associated changes in large-scale circulation. Geophys.2005, 32(10): L9707.
    63. Z.Yan et al. Trends of extreme temperature in Europe and China based on daily observation. Climate Change.2002.355-392.
    64. Zhai P M et al. Trends in temperature extremes during 1951-1999 in China. Geophys. Res. Lett. 2003.30. NO.1913.
    65. Zhang Y et al. A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett 33(24).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700