稠油热催化裂化降粘技术室内实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上拥有超过6万亿桶的稠油储量,随着常规石油可采储量的日益减少,稠油将变成21世纪的主要能源。胜利油区拥有丰富的稠油储量,已探明储量为2.76亿吨,主体动用2.54亿吨,可采储量0.24亿吨,其中超稠油和特稠油油藏占整个稠油动用储量的60%以上,目前采出程度只有13.5%。经过多年的开发,稠油开发面临着一系列问题和巨大困难,主要有以下几个方面;1、主力油田水淹严重,乐安、单家寺油田含水都超过了90%;2、蒸汽吞吐后期,由于边水能量大,所以有效的阶梯开发方式难以实施;3、新的优质接替资源较少,超稠油、深层稠油、敏感性稠油油藏普遍。
     因此发展新的开发技术成为提高稠油油藏开采效果的重要前提。目前通常的稠油开采方式已经不能适应胜利稠油开发的需要,因此需要探索稠油开发的新思路。在炼厂稠油加工过程中,多采用热催化裂化工艺达到提高轻质油收率的目的,能否在地层条件下实现稠油的裂化反应,即将“炼厂搬到地下”,则是一个全新的思路。就是通过选择水热裂化催化剂注入地层,在地层条件下发生裂化反应,从而达到降低稠油粘度提高开发效果的目的。因而对此进行探索,就催化剂选择、催化裂化机理、有效期、催化剂与地层的配伍性等问题等开展研究,摸索稠油开发的新技术。
     本文主要通过分子化学的角度出发,根据矿场生产实际提出的问题,通过室内实验研究,对地层条件下稠油催化裂化反应机理进行解释,筛选出能够在中低温以及地层流体和环境条件下的催化剂体系,并研究出催化剂的有效应用方法;并期望通过深入的研究工作,掌握地层条件下制约稠油开采的主要因素,并寻求科学有效的解决办法。主要研究了1、建立油藏条件下稠油催化降粘评价流程以及实验方法。主要建立和完善在稠油热力开采过程实施地层中减粘技术的动态研究和评价方法。2、地层水热催化裂化降粘开采稠油新技术可行性实验研究。研究开发适合超稠油油藏开采的中低温水热裂化催化剂体系;研究适合地下催化减粘开采的稠油的主要特征,并优化所选催化剂的使用技术条件及有效应用方法。3、催化剂与地层的适应性和催化剂在地下的反应特征,如催化活性变化和有效期评价。4、对地层条件下稠油催化裂化反应机理进行解释。
     该项目主要是针对单6东区块的稠油所进行的催化裂解降粘的研究,已经筛选出合理的催化剂体系和使用条件,并设计了现场实施方案。由于该项目是具有前瞻性的基础实验研究项目,建立了油藏条件下稠油催化降粘评价流程以及催化剂体系筛选和评价方法,因此具有很大推广价值,可以在同类油藏中推广使用。
The quantity of thick oil reserves in the world exceeds 6 trillion gallons. The thick oil will become primary energies in the 21st century along with the decrease of recoverable conventional petroleum reserves. Shengli oil field has rich thick oil reserves. The known petroleum reserves are 27.6 billion tons, the producing reserves are 2.54 and the recoverable reserves are 0.24 hundred million tons. The superior thick oil reservoir and the special thick oil reservoir account for the entire thick oil producing reserves above 60%, at present the recovery percent of reserves is only 13.5%. After many year developments, the thick oil development is facing a series of questions and huge difficult, mainly has following several aspects: 1st, drowning in the main oil field is serious, the water bearing ratio of Le An and Shan Jiasi oil field all surpassed 90%; 2nd, in later period of steam stimulation, because of the huge energy of edge water, the effective step development way implements with difficulty; 3rd, new high quality replaceable resources are few, the superior thick oil, in-depth thick oil and the sensitive thick oil reservoir is common..
     Developing the new development technology becomes an. important premise of enhancing the thick oil reservoir production effect. At present the usual thick oil production way could not meet the thick oil development need in Shengli oil field, which need to explore the new way of the thick oil development. In the process of thick oil processing in refinery, the hot catalytic cracking craft is used to enhance the light oil recovery. Whether realizes cracking reaction of the thick oil under the formation condition, "the refinery moves to underground", then is a brand-new way which selects water thermal cracking catalyst to inject into the formation, and produce the cracking reaction under the formation condition, thus achieves the goal of reducing the thick oil viscosity and enhancing development effect.
     Through the molecular chemistry angle, according to the question actually asked in the mine and through the laboratory experiment research, this article mainly
     explains the catalytic cracking reaction mechanism of the thick oil under the formation condition under, screens the catalyst system in the low temperature as well as under the formation fluid and the environmental condition, and studies the effective application method of the catalyst. And expected through the deep research, under the grasping formation condition restricts thick oil mining the primary factor, and seeks the science effective solution. Mainly studied 1st, establishing the thick oil catalysis fallen sticks evaluated flow and the experimental technique under the oil reservoir condition. Mainly establishes and consummates the dynamic research and the assessment method of implementing the reduced viscosity technique in the thick oil thermal energy mining process. 2nd, a new technical feasibility experimental study of falling viscosity to produce the thick oil by the formation water hot catalytic cracking. To research and develop the low lukewarm water thermal cracking catalyst system suiting for ultra thick oil reservoir production; To research the thick oil main characteristic suiting for the underground catalysis to reduce viscosity producing, and to optimize the use engineering factor and the effective application method of the selected catalyst. 3rd, the compatibility of catalyst and formation compatibility and the response characteristic of catalyst underground, like catalytic activity change and term of validity appraisal.4th, to explain the thick oil catalytic cracking reaction mechanism under the formation condition.
     This project mainly aims at the thick oil of Shan6 east areas to study the catalyzing, cracking and falling viscosity, which already screened the reasonable catalyst system and the exploitation conditions, and has designed the field implementation plan. Because this project is the forward-looking foundation experimental study project which established the thick oil catalysis to fall viscosity evaluating flow and evaluating method of screening the catalyst system under the oil reservoir condition, which had the very big promoted value, and can promote the use in the similar oil reservoir.
引文
[1].Hydroconversion of coal in a hydrogen donor solvent with an oil-soluble catalyst;US 4077867-A[专,英]Aldridge;Clyde L.July 2,1976
    [2].Enhanced oil recovery;US 4141417-A[专,英]Schora;Frank C.September 9,1977
    [3].Additive for inclusion in a heavy oil reservoir undergoing steam injection;US 4141417-A[专,英]Hyne;James B.August 19,1983
    [4].In-situ reduction of oil viscosity during steam injection process in EOR;US 5314615-A[专,英]Campos;Rafael E.January 25,1993
    [5].Recovery and transportation of heavy crude oils;US 6402934-A[专,英]Chheda;Bharati Dinkar February 28,2000
    [6].Catalyst and method for producing hydrogen gas from carbon monoxide and water;US 5314615-A[专,英];Venalainen;Tapani;May 29,1985
    [7].Heavy Oil-A Major Energy Source for the 21st Century;Douglas Lanier,Chevron Petroleum Technology Company;UNITAR Centre for Heavy Crude and Tar Sands 1998
    [8].Extra-Heavy Crude Oil Downhole Upgrading Process using Hydrogen Donors under Steam Injection Conditions;Cesar Ovalles,(SPE),Carlos Vallejos,Tito Vasquez,Jorge Martinis,Alfredo Perez-Perez,Edgar Cotte,Luis Castellanos,Hector Rodriguez(SPE),PDVSA-INTEVEP,P.O.Box 76343,Caracas 1070A.Venezuela;SPE 69692,2001
    [9].崔波 石文平 戴树高 李旭云 高粘度稠油开采方法的现状与研究进展;油田化学,2001
    [10].Structural Characterization of Asphaltenes of Different Origins;V.Calemma,P.Iwanski,M.Nali,R.Scotti,and L.Montanari;Energy &Fuels,9,225-230(1995)
    [11].郭爱军 王宗贤 阙国和;利用供氢剂探讨石油渣油的热转化机理;燃料化学学 报,第29卷第4期,2001年8月
    [12].赵凤兰,鄢捷年。沥青质沉积引起的储层损害与对策。油田化学,2002,19(4);367-373。
    [13].李红,王培荣,邓胜华等。非烃化合物引起的润湿性变化。石油勘探与开发,2000,19(4);69-71。
    [14].毕只初,廖文胜。CTAB在硅胶表面吸附引起的润湿性变化和模拟驱油。物理化学学报,2002,18(11);962-969。
    [15].李闽,孙雷,李士伦,何伟平。沥青沉积机理与模拟方法。西南石油学院学报,2000,22(1);8-15。
    [16].108.李晓波,李之平。克拉玛依原油中活性组分的分离与分析。油田化学,1999,16(4);333-340。
    [17].徐志成,安静仪,马金石,闫芳等。孤岛原油乳化活性组分剖析。油田化学,1999,16(2);163-166。
    [18].汪伟英。多孔介质中沥青堵塞机理。大庆石油地质与开发,2002,21(6);36-47。
    [19].唐宏明,向问陶,赵敬松等。储层矿物上表面活性剂损耗规律的研究。油田化学,2000,17(3);276-280。
    [20].段秋者,董兆雄,罗平亚,叶仲斌等。沥青在石英砂上吸附特征和润湿性的微观研究。电子显微学报。2001,20(4);283-286。
    [21].何行范,李士伦。沥青质沉积的测定和模型化。天然气工业,2003,23(2);78-81。
    [22].黄春,汤志强,蒋官澄。润湿性对恳东29块稠油油藏注水采收率的影响。石油钻采工艺,1999,21(3);92-94。
    [23].鄢捷年。原油沥青质在油藏岩石表面的吸附特性。石油勘探与开发,1998,25(2);78-82。
    [24].汪伟英。原油组分、孔隙结构对自吸的影响。大庆石油地质与开发,2000,15(6);18-20。
    [25].段秋者、董兆雄、罗平亚、叶仲斌等。沥青在石英砂上吸附特征和润湿性的微观研究,电子显微学报,2001,20(4);283-286。
    [26].汪伟英,周克厚,王尤富等。原油中有机质沉积的实验研究。油田化学,2002,19(4);306-308。
    [27].范洪富;梁涛;催化剂对稠油水热裂解反应研究。工业催化,2006年02期
    [28].李献民.单家寺油田蒸汽驱先导试验驱油机理研究.特种油气藏,1996
    [29].[美]洪.L.C.岳清山等译.蒸汽驱油藏管理.北京.石油工业出版社,1996
    [30].Kuo C H,Shain S A,and Phocas D M,Gravity drainage model for the steam-soak process,SPE,June,1970,119-126
    [31].岳清山,王艳辉.火驱采油方法的应用.北京.石油工业出版社,2000年9月
    [32].张锐.稠油开采技术现状及展望.北京.石油勘探开发研究院,1997
    [33].万仁溥.中国不同类型油藏水平井开采技术.北京.石油工业出版社,1997
    [34].金建译.SAGD法的原理、发展、动态与未来.北京.石油勘探开发情报,1994
    [35].胡常忠,刘新福.提高浅薄层特、超稠油资源利用程度的技术途径.河南石油.1996.10(4)
    [36].韩显卿.提高采收率原理.北京.石油工业出版社,1993
    [37].范洪富,刘永建,赵晓非.国内首例井下水热裂解催化降粘开采稠油现场实验.石油钻采工艺.2001,23(3);42-44
    [38].刘永建,范洪富,钟立国等.水热裂解开采稠油新技术初探.大庆石油学院学报.2001,25(3);56-69
    [39].范洪富,刘永建,赵晓非.井下水热催化降粘开采稠油新技术研究.油田化学.2001.18(1);13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700