Lactobacillus brevis NCL912的耐酸特性及其酸胁迫下差异表达蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌是一类非常重要的食品微生物,在食品中的应用可以追溯到数千年以前。它具有提高食品营养价值,改善食品风味,延长保存时间的功能,还具有多种有益于人类健康的活性。短乳杆菌是其中之一。近年来,短乳杆菌做为发酵剂、益生菌等被广泛应用在食品工业生产中。但是由于自身产酸,在保存、食用过程中也会遇到外界酸性环境的影响,使得短乳杆菌不可避免的面临酸胁迫。酸胁迫对短乳杆菌的存活、生长及生理活性有很大的影响。因此,为了生存、增殖并发挥其有益宿主健康的功能,短乳杆菌必须具有应对酸胁迫的能力,并对酸胁迫产生应激反应来保护其生存、增殖。如果能够找到提高乳酸菌耐酸能力的方法或途径,将会极大地推动乳酸菌在食品工业生产中的应用。从理论意义上,对酸胁迫下乳酸菌的蛋白质组学的深入研究,不仅可以了解乳酸菌在酸应激反应中蛋白质的表达变化,而且可以了解生物在逆境中的某些相关基因和蛋白质的功能,进而分析揭示其酸应激反应的机制。
     Lactobacillus brevis NCL912是本实验分离得到的一株乳酸菌,具有高效转化L-谷氨酸钠成为γ-氨基丁酸的能力。本论文主要研究了以下内容。
     1.观察了L. brevis NCL912在酸性环境下的生长及在pH 2.0极端酸性环境中的耐酸性能。结果表明,L. brevis NCL912在pH 3.5~6.4的酸性环境中可以生长,其最适生长pH是5.0。在pH 2.0的极端酸性培养基中,该菌能够存活4-6 h。
     2.比较了添加与未添加L-谷氨酸钠培养基培养的L. brevis NCL912的生长、存活、γ-氨基丁酸产量及谷氨酸脱羧酶活力,并对该菌的酸应激反应机制进行了分析。结果表明,添加L-谷氨酸钠培养基培养的L. brevis NCL912生长较好。在pH 3.5~5.0条件下,L. brevis NCL912可以完全利用培养基中添加的L-谷氨酸钠生成γ-氨基丁酸,γ-氨基丁酸的产量分别达10.77,11.44,10.94 g/L。在两种培养基中细菌的存活率和谷氨酸脱羧酶活力存在显著性差异(p<0.05),添加L-谷氨酸钠培养基培养的细菌耐酸性强,酶活力高。说明L-谷氨酸钠对该菌在酸性环境中的生长、存活有重要的影响,其原因可能与γ-氨基丁酸的生成有关,即谷氨酸脱羧酶-γ-氨基丁酸逆向运输系统可能是该菌的酸应激反应机制。
     3.乳酸菌的酸应激反应是一个涉及到多个基因和蛋白质的复杂的网络调控体系。它不仅与依赖外部氨基酸的酸应激系统有关,而且菌体内部其他蛋白质也可能发生改变以应对酸胁迫。目前对短乳杆菌酸应激反应中菌体蛋白的差异表达及功能分析报道较少。因此,从蛋白质组学水平,对L. brevis NCL912在酸胁迫下菌体蛋白质的变化进行了研究。
     本研究得到了均匀、背景清晰、分辨率高、重复性好的L. brevis NCL912的双向凝胶电泳图谱。对pH 5.0和pH 4.0条件下培养的该菌总蛋白质电泳图谱进行比较,发现有25个差异表达蛋白,其中8个蛋白点得到了质谱鉴定。其中7个蛋白点表达上调,1个蛋白点表达下调。表达上调的7个蛋白点包括:酸应激蛋白2个,分别是通用应激蛋白UspA蛋白和含CBS结构域蛋白;与蛋白质合成有关的蛋白3个,分别是50S核糖体蛋白L10,核糖体循环因子和SSU核糖体蛋白S30P;与代谢相关的蛋白是依赖NADP的3-磷酸甘油醛脱氢酶;与核苷酸合成有关的蛋白是次黄嘌呤核苷酸脱氢酶。表达下调的蛋白是一个假设蛋白LVIS_0520,其功能未知。
     在酸胁迫条件下,L.brevis NCL912 CBS结构域蛋白基因的mRNA表达水平呈显著上升(p<0.05),与蛋白质图谱上蛋白表达水平的变化一致,说明该菌蛋白质和mRNA表达水平之间有较好的相关性。
     4.应用蛋白质组学技术,对添加L-MSG培养基培养的L. brevis NCL912在酸胁迫条件下的差异蛋白表达也进行了探讨。结果表明,在酸胁迫条件下,添加L-MSG培养基培养的L.brevis NCL912有26个蛋白发生了差异表达,其中11个蛋白得到了鉴定。这11个蛋白包括:通用应激蛋白UspA蛋白、热应激蛋白GrpE、3-磷酸甘油醛脱氢酶、核苷-二磷酸-糖差向异构酶、3-磷酸甘油酰基转移酶PlsX.磷脂结合蛋白、S-核糖同型半胱氨酸酶、延伸因子Tu、RNA结合蛋白以及假设蛋白BRAFLDAFT_64486。转录学水平的验证表明该菌蛋白质和mRNA表达水平之间有较好的相关性。
     5.对添加与未添加L-谷氨酸钠培养基培养的L. brevis NCL912已鉴定蛋白质的功能进行了分析比较,发现在酸胁迫条件下,无论是否添加底物氨基酸,L.brevis NCL912都会启动一些共同的应激过程来保护自身,如蛋白质的合成、糖代谢及应激蛋白表达量的变化等。而外源氨基酸的添加可能会诱导某些与细胞膜及信号转导有关的蛋白表达发生改变,从而有利于细胞能够在酸性环境中生存和增殖。这表明酸胁迫应激过程是一个复杂的网络调控体系,不仅与外部氨基酸的添加有关,还涉及到菌体内部其他蛋白质的变化。为进一步了解乳酸菌酸应激反应机制提供了一定的参考和依据。
Lactic acid bacterial (LAB) are important food microorganisms that have been used in food production for thousands years. LAB can improve food nutritions, flavors, textures and preservation, and are also of value in maintaining and promoting human health. Lactobacilli are Gram-positive rods belonging to the group of lactic acid bacteria. In recent years, the industrial applications of Lactobacilli as starters, producers, and probiotics have greatly increased. However, the growth of Lactobacilli is characterized by the production of organic acids, which accumulate and lead to a reduction of pH in its growth environment. As the probiotics, these bacteria also encounter a transient acidic environment in the stomach after consumption. Acid stress greatly affects the growth and bioactivities of Lactobacilli. Therefore, they must possess the acid tolerance ability and be able to induce a series of acid stress responses to survive and grow in acidic environments prior to performing their health benefits. It would greatly drive the appilication of lactic acid bacterial in food industry when the acid tolerance ability of Lactobacilli could be enhanced. The proteomics studies on lactic acid bacterial under acid stress may not only provide a better understanding the changes of the protein expressed in acid stress response, but comprehending the correlative genes and proteins under stress which will obtain the further insight into acid stress response mechanism. The results are as follows:
     1. The growth and survival of Lactobacillus brevis NCL912, a high y-aminobutyric acid (GABA)-yielding bacterium isolated from fermented vegetables, were investigated at different acidic pH levels. The results show that L. brevis NCL912 grows at pH 3.0-6.4, and the optimal growth pH is 5.0. L. brevis NCL912 could be survive for 4-6 h at pH 2.0.
     2. The growth, survival, GAB A yield and glutamate decarboxylase activity of L. brevis NCL912 in the media with or without the addition of sodium L-glutamate were compared. The strain attained higher cell concentrations in the media with L-MSG than that without L-MSG in the same growth period. The addition of sodium L-glutamate significantly enhances acid resistance and glutamate decarboxylase activity (p<0.05). Sodium L-glutamate is an important factor for the growth and survival of L. brevis NCL912 at different acidic pHs. It was implied that the acid stress response of L. brevis NCL912 was related to glutamate decarboxylase-GABA antiporter system.
     3. Acid stress responses involve a very comprehensive network system of genes and proteins. Therefore, the differentially expressed proteins of L. brevis NCL912 under acid stress were investigated at the global proteomic level by using the two-dimensional gel electrophoresis and mass spectrum. The results showed that 25 proteins were differentially expressed under acid stress. Among them, eight protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, of which 7 were up-regulated and 1 was down-regulated. The function of down-regulated protein was unknown and the putative functions of up-regulated proteins were categorized as stress response proteins, DNA repair, protein synthesis and glycolysis. Real-time flurescent quantitative PCR was used to further validate these differentially expressed proteins at the mRNA level and a positive correlation between the content of the proteins and their mRNA levels was found.
     4. The differential protein expression of L. brevis NCL912 in the media with sodiun L-glutamate under acid condition were investegated by 2-dimensional gel electrophoresis and mass spectrometry. Real-time flurescent quantitative PCR was used to estimate the expression of selected proteins at the mRNA level. The results showed that 26 proteins were differentially expressed under acid stress. Among them, eleven protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, of which 10 were up-regulated and 1 was under-shifted. According to the putative functions, the up-regulated proteins were categorized as stress response proteins and the other related to protein synthesis and glycolysis which were related to acid stress induction. Another cluster of cell membrane formation-related proteins and cell communication-related proteins might be induced by sodium L-glutamate. Real-time flurescent quantitative PCR data revealed a positive correlation between the content of the proteins and their mRNA levels.
     5. The proteins and their functions of L. brevis NCL912 in the media with or without sodium L-glutamate were compared and analyzed. The analysis of bioinformatics showed that L. brevis NCL912 might launch the common acid resistance systems such as the protein synthesis, glycometabolism and stress proteins to protect the cell against acid stress which is irrelevant to the sodium L-glutamate. However, the exogenous amino acid (sodium L-glutamate) might also induce the proteins which were involved in the cell membrane formation and signal transporter. It was implied that the acid resistance-responsive system is a very complex network system which is not only related to the exogenous amino acid, but also the expression of the cell proteins.
引文
[1]Gilliland S E. Health and nutritional benefits from lactic acid bacteria[J]. FEMS Microbiol Rev, 1990,7(1-2):175-188.
    [2]张和春,潘玉辉、杨国等.弱酸(盐)对植物乳杆菌耐酸性的影响[J].中国微生态学杂志,2008,20(1):15-19.
    [3]孔令爽.乳酸菌及其在食品工业中的应用[J].黑龙江纺织,2008,(3):37-38.
    [4]Alonso-Hernando A, Alonso-Calleja C, Capita R. Comparative analysis of acid resistance in Listeria monocytogenes and Salmonella enterica strains before and after exposure to poultry decontaminants. Role of the glutamate decarboxylase (GAD) system[J]. Food Microbiol, 2009,26(8):905-909.
    [5]刘振民,王荫榆.乳酸菌产酸特性研究[J].乳业科学与技术,2010,4:169-172.
    [6]赵龙飞.乳酸菌的保健功能及其在食品中的应用研究[J].中国调味品,2009,6(34):30-32.
    [7]许珂,魏萍.益生菌作用机制的研究进展[J].中国微生态学杂质,2009,21(1):90-92.
    [8]Pieterse, B. (2006) Transcriptome analysis of the lactic acid and NaCl-stress response of Lactobacillus plantarum (Thesis),1-154, Wageningen University, Nederland.
    [9]郭兴华,曹郁生,东秀珠.益生乳酸细菌[M].科学出版社,2008.
    [10]Presser K A, Ratkowsky D A, Ross T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration[J]. Appl Environ Microbiol,1997,63(6): 2355-2360.
    [11]倪学勤,曾东,彭媛.麦类提取物对4株乳酸杆菌耐酸能力的影响[J].浙江大学学报(农业与生命科学版),2009,35(3):255-260.
    [12]Holzapfel W H, Haberer P, Snel J, Schillinger U, Huis in't Veld J H. Overview of gut flora and probiotics[J]. Int J Food Microbiol,1998,41(2):85-101.
    [13]Lin J, Smith M P, Chapin K C, Baik H S, Bennett G N, Foster J W. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli[J]. Appl Environ Microbiol,1996,62(9): 3094-3100.
    [14]曹江华,杨智勇.乳酸菌苹果醋饮生产工艺的初步研究[J].三门峡职业技术学院学报,2009,8(3):119-124.
    [15]林伟锋,刘宏锋,赵谋明,赵强忠.酸奶发酵过程中物理性质和乳酸菌生长规律研究[J].中国乳品工业,2005,33(1):16-18.
    [16]刘向蕾.酸奶贮藏期间乳酸菌含量及pH值变化的测定分析[J].科技信息,2009,26:184-186.
    [17]Hyronimus B, Le Marrec C, Sassi A H, Deschamps A. Acid and bile tolerance of spore-forming lactic acid bacteria[J]. Int J Food Microbiol,2000,61(2-3):193-197.
    [18]Weese J S, Anderson M E, Lowe A, Penno R, da Costa T M, Button L, Goth K C. Screening of the equine intestinal microflora for potential probiotic organisms[J]. Equine Vet J,2004, 36(4):351-355.
    [19]Guo X H, Kim J M, Nam H M, Park S Y, Kim J M. Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties[J]. Anaerobe,2010, 16(4):321-326.
    [20]苟兴华,王燕文,李翔,刘达玉,王卫.耐酸乳酸菌的筛选及初步鉴定[J].成都大学学报(自然科学版),2010,29(2):95-97.
    [21]徐寅,陈霞,顾瑞霞.臭豆腐乳酸菌多样性及耐酸乳酸菌的筛选分离[J].中国酿造,2010,(2):22-24.
    [22]罗红霞,黄彦芳,王芳,孙玉清,王建.抗酸奶后酸化乳酸菌菌株选育研究进展[J].食品工业科技,2009,30(12):451-454.
    [23]罗红霞,陈志刚,孙玉清,马长路,句荣辉,赵磊.硫酸二乙酯诱变选育乳酸菌菌株的研究[J].中国乳品工业,2009,37(10):20-23.
    [24]谭周进,杨海君,林曙,吴铁.利用原生质体融合技术选育微生物菌种[J]. 核农学报,2005,19(1):75-79.
    [25]罗红霞,陈志刚,黄彦芳,王芳,李春平,赵钢.原生质体融合技术选育弱后酸化乳酸菌菌株的研究[J].中国乳品工业,2010,38(1):8-11.
    [26]Alvarez-Ordonez A, Fernandez A, Bernardo A, Lopez M. Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium[J]. Int J Food Microbiol,2010, 136(3):278-282.
    [27]Krastel K, Senadheera D B, Mair R, Downey J S, Goodman S D, Cvitkovitch D G. Characterization of a glutamate transporter operon, glnQHMP, in Streptococcus mutans and its role in acid tolerance[J]. J Bacteriol,2010,192(4):984-993.
    [28]Mols M, van Kranenburg R, Tempelaars M H, van Schaik W, Moezelaar R, Abee T. Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks[J]. Int J Food Microbiol,2010,137(1):13-21.
    [29]Fernandez M, Zuniga M. Amino acid catabolic pathways of lactic acid bacteria[J]. Crit Rev Microbiol,2006,32(3):155-183.
    [30]Kimoto-Nira H, Suzuki C, Sasaki K, Kobayashi M, Mizumachi K. Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract[J]. Int J Food Microbiol,2010,143(3):226-229.
    [31]Vrancken G, Rimaux T, De Vuyst L, Leroy F. Kinetic analysis of growth and sugar consumption by Lactobacillus fermentum IMDO 130101 reveals adaptation to the acidic sourdough ecosystem[J]. Int J Food Microbiol,2008,128(1):58-66.
    [32]刘怀龙,孟祥晨,庄翘楚.益生菌酸性应激的研究进展[J].食品工业科技,2008,29(6):300-303.
    [33]Corcoran B M, Stanton C, Fitzgerald G F, Ross R P. Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice[J]. Microbiology,2007, 153(Pt 1):291-299.
    [34]Greenacre E J, Brocklehurst T F. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium[J]. Int J Food Microbiol,2006, 112(1):62-65.
    [35]Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt[J]. Food Microbiol,2009,26(7):720-727.
    [36]Garren D M, Harrison M A, Russell S M. Acid tolerance and acid shock response of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride[J]. J Food Prot,1998,61(2):158-161.
    [37]van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich S D, Maguin E. Stress responses in lactic acid bacteria[J]. Antonie Van Leeuwenhoek,2002,82(1-4):187-216.
    [38]张艳国,田雷.乳酸菌的耐酸性机制[J].饲料工业,2007,28(4):62-64.
    [39]乌日娜,武俊瑞,孟和,张和平.乳酸菌酸胁迫反应机制研究进展[J].微生物学杂质,2007,27(2):62-66
    [40]Konings W N. The cell membrane and the struggle for life of lactic acid bacteria[J]. Antonie Van Leeuwenhoek,2002,82(1-4):3-27.
    [41]Iwami Y, Kawarada K, Kojima I, Miyasawa H, Kakuta H, Mayanagi H, Takahashi N. Intracellular and extracellular pHs of Streptococcus mutans after addition of acids:loading and efflux of a fluorescent pH indicator in streptococcal cells[J]. Oral Microbiol Immunol, 2002,17(4):239-244.
    [42]Alemayehu D, O'Sullivan E, Condon S. Changes in acid tolerance of Lactococcus lactis during growth at constant pH[J]. Int J Food Microbiol 2000,55(1-3):215-221.
    [43]Kim H W, Kashima Y, Ishikawa K, Yamano N. Purification and characterization of the first archaeal glutamate decarboxylase from pyrococcus horikoshii[J]. Biosci. Biotechnol. Biochem,2009,73(1):224-227.
    [44]Inoue Y, Ishii K, Miyazaki M, Ueno H. Purification of L-glutamate decarboxylase from monkey brain[J]. Biosci. Biotechnol. Biochem,2008,72(9):2269-2276.
    [45]Yokoyama S, Hiramatsu J, Hayakawa K. Production of y-Aminobutyric Acid from Alcohol Distillery Lees by Lactobacihs brevis IFO-12005[J]. J Biosci Bioeng,2002,93(1):95-97.
    [46]Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats[J]. Br J Nutr,2004,92(3):411-417.
    [47]Siragusa S, De Angelis M, Di Cagno R, Rizzello C G, Coda R, Gobbetti M. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses[J]. Appl Environ Microbiol,2007,73(22):7283-7290.
    [48]Komatsuzaki N, Nakamura T, Kimura T, Shima J. Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei[J]. Biosci Biotechnol Biochem,2008,72(2):278-285.
    [49]Richard H, Foster J W. Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential [J]. J Bacteriol, 2004,186(18):6032-6041.
    [50]Small P L, Waterman S R. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli[J]. Trends Microbiol,1998,6(6):214-216.
    [51]Vrancken G, Rimaux T, Weckx S, De Vuyst L, Leroy F. Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101[J]. Int J Food Microbiol,2009,135(3):216-222.
    [52]Zuniga M, Perez G, Gonzalez-Candelas F. Evolution of arginine deiminase (ADI) pathway genes[J]. Mol Phylogenet Evol,2002,25(3):429-444.
    [53]Lamberti C, Purrotti M, Mazzoli R, Fattori P, Barello C, Coisson JD, Giunta C, Pessione E. ADI pathway and histidine decarboxylation are reciprocally regulated in Lactobacillus hilgardii ISE 5211:proteomic evidence[J]. Amino Acids,2010.
    [54]Behr J, Ganzle M G, Vogel R F. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport[J]. Appl Environ Microbiol,2006,72(10):6483-6492.
    (55] Sachs G, Kraut J A, Wen Y, Feng J, Scott D R. Urea transport in bacteria:acid acclimation by gastric Helicobacter spp[J]. J Membr Biol,2006,212(2):71-82.
    [56]Pernoud S, Fremaux C, Sepulchre A, Corrieu G, Monnet C. Effect of the metabolism of urea on the acidifying activity of Streptococcus thermophilus[J].J Dairy Sci,2004,87(3): 550-555.
    [57]Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini P L. Urease biogenesis in Streptococcus thermophilus[J]. Res Microbiol, 2005,156(9):897-903.
    [58]Zotta T, Ricciardi A, Rossano R, Parente E. Urease production by Streptococcus thermophilus[J]. Food Microbiol,2008,25(1):113-119.
    [59]Fukuda D, Watanabe M, Aso Y, Sonomoto K, Ishizaki A. The groESL operon of the halophilic lactic acid bacterium Tetragenococcus halophila[J]. Biosci Biotechnol Biochem, 2002,66(5):1176-1180.
    [60]Lim E M, Ehrlich S D, Maguin E. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus[J]. Electrophoresis,2000,21(12):2557-2561.
    [61]Fozo E M, Kajfasz J K, Quivey R G Jr. Low pH-induced membrane fatty acid alterations in oral bacteria[J]. FEMS Microbiol Lett,2004,238(2):291-295.
    [62]Fozo E M, Quivey R G Jr. The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH[J]. J Bacteriol,2004,186(13):4152-4158.
    [63]Ji X J, Huang H, Zhu JG, Hu N, Li S. Efficient 1,3-propanediol production by fed-batch culture of Klebsiella Pneumoniae:the role of pH fluctuation[J]. Appl Biochem Biotechnol, 2009,159(3):605-613.
    [64]张树军,狄建军,张国文,魏永春.蛋白质组学的研究方法[J].内蒙古民族大学学报(自然科学版),2008,23(6):647-649.
    [65]夏其昌,曾嵘等.蛋白质化学与蛋白质组学[M].科学出版社,2004.
    [66]王英超,党源,李晓艳,王兴龙.蛋白质组学及其技术发展[J].生物技术通讯,2010,21(1):139-144.
    [67]Wilkins M R, Sanchez JC, Gooley A A, Appel R D, Humphery-Smith I, Hochstrasser DF, Williams K.L. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnol Genet Eng Rev,1996,13:19-50.
    [68]李超,董明盛.乳酸菌蛋白质组学研究进展[J].食品科学,2005,26(1):255-259.
    [69]杨国堂,李艳艳,张伟,孟令羽.蛋白质组学及其技术体系[J].食品与药品,2010,12(5):206-208.
    [70]Neverova I, Van Eyk J E. Role of chromatographic techniques in proteomic analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,815(1-2):51-63.
    [71]张养军,张万军,马岩,彭博,钱小红.分离分析技术在蛋白质组学研究中应用的新进 展[J].色谱,2009,27(5):537-550.
    [72]Makarov A, Scigelova M. Coupling liquid chromatography to Orbitrap mass spectrometry[J]. J Chromatogr A,2010,1217 (25):3938-3945.
    [73]许春梅,夏宇.蛋白质组学技术的研究与应用[J].湖南农业科学,2009,(3):4-6.
    [74]高明霞,关霞,洪广峰,张祥民.多维高效液相色谱技术在蛋白质分离研究中的进展[J].2009,27(5):551-555.
    [75]吴剑威,赵润怀,陈波,杨美华.多维液相色谱及其在中药研究中的应用[J].中草药,2010,41(6):1020-1023.
    [76]高明霞,张祥民.多维液相色谱技术的进展[J].中国科学B辑.化学,2009,39(8)::670-677.
    [77]Sandra K, Moshir M, D'hondt F, Tuytten R, Verleysen K, Kas K, Francis I, Sandra P. Highly efficient peptide separations in proteomics. Part 2:bi-and multidimensional liquid-based separation techniques [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(11-12): 1019-1039.
    [78]Walther T C, Mann M. Mass spectrometry-based proteomics in cell biology[J]. J Cell Biol, 2010,190(4):491-500.
    [79]崔丽娟,黄瑾.生物质谱技术在蛋白质结构鉴定中的研究进展[J].农垦医学,2009,31(4):349-352.
    [80]Boonen K, Landuyt B, Baggerman G, Husson S J, Huybrechts J, Schoofs L. Peptidomics:the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis[J]. J Sep Sci,31(3):427-445.
    [81]Salzano A M, Arena S, Renzone G, D'Ambrosio C, Rullo R, Bruschi M, Ledda L, Maglione G, Candiano G, Ferrara L, Scaloni A.A widespread picture of the Streptococcus thermophilus proteome by cell lysate fractionation and gel-based/gel-free approaches[J]. Proteomics,2007, 7(9):1420-1433.
    [82]Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E. Physiology of Streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism[J]. Proteomics,2008,8(20): 4273-4286.
    [83]Fadda S, Lopez C, Vignolo G. Role of lactic acid bacteria during meat conditioning and fermentation:peptides generated as sensorial and hygienic biomarkers[J]. Meat Sci,2010, 86(1):66-79.
    [84]Lee J, Kim Y, Yun HS, Kim J G, Oh S, Kim S H. Genetic and proteomic analysis of factors affecting serum cholesterol reduction by Lactobacillus acidophilus A4[J]. Appl Environ Microbiol,2010,76(14):4829-4835.
    [85]陈乃用.乳酸菌应激反应及其在生产中的应用[J].工业微生物,2006,36(3):55-60.
    [86]Fernandez A, Ogawa J, Penaud S, Boudebbouze S, Ehrlich D, van de Guchte M, Maguin E. Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus[J]. Proteomics,2008,8(15):3154-3163.
    [87]Streit F, Delettre J, Corrieu G, Beal C. Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance[J]. J Appl Microbiol,2008,105(4):1071-1080.
    [88]Chen W, Honma K, Sharma A, Kuramitsu H K. A universal stress protein of Porphyromonas gingivalis is involved in stress responses and biofilm formation[J]. FEMS Microbiol Lett, 2006,264(1):15-21.
    [89]Wu R, Wang W, Yu D, Zhang W, Li Y, Sun Z, Wu J, Meng H, Zhang H. Proteomics analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditional home-made koumiss in Inner Mongolia of China[J]. Mol Cell Proteomics,2009,8(10):2321-2338.
    [90]Pessione A, Lamberti C, Pessione E. Proteomics as a tool for studying energy metabolism in lactic acid bacteria[J]. Mol Biosyst,2010,6(8):1419-1430.
    [91]何庆华,吴永宁,印遇龙.乳酸菌差异蛋白质组学研究进展[J].食品与发酵工业,2007,33(8):113-117.
    [92]Wan-Ling H, Chang C H, Chou C C. Heat shock effects on the viability of Cronobacter sakazakii during the dehydration, fermentation, and storage of lactic cultured milk products[J]. Food Microbiol,2010,27(2):280-285.
    [93]Schoug A, Fischer J, Heipieper H J, Schnurer J, Hakansson S. Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3[J]. J Ind Microbiol Biotechnol,2008,35(3):175-181.
    [94]Wouters J A, Rombouts F M, de Vos W M, Kuipers O P, Abee T. Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302[J]. Appl Environ Microbiol,1999,65(10):4436-4442.
    [95]Wouters J A, Frenkiel H, de Vos WM, Kuipers O P, Abee T. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins[J]. Appl Environ Microbiol,2001,67(11):5171-5178.
    [96]Derzelle S, Hallet B, Ferain T, Delcour J, Hols P. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins[J]. Appl Environ Microbiol,2003,69(7):4285-4290.
    [1]Li H, Qiu T, Cao Y, Yang J, Huang Z. Pre-staining paper chromatography method for quantification of gamma-aminobutyric acid[J]. J Chromatogr A,2009,1216 (25):5057-5060.
    [2]Nomura M, Nakajima 1, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. Lactococcus lactis contains only one glutamate decarboxylase gene[J]. Microbiology,1999,145: 1375-1380.
    [3]马春丽,张兰威.高产酸性能乳酸菌的筛选及产酸机理研究[J].食品工业科技,2010,31(1):189-193.
    [4]董改香,李磊,郎淑妮,段智变.乳酸菌益生特性及降胆固醇机理的研究[J].山西农业大学学报(自然科学版),2009,29(1):50-54.
    [5]林伟锋,刘宏锋,赵谋明,赵强忠.酸奶发酵过程中物理性质和乳酸菌生长规律研究[J].中国乳品工业,2005,33(1):16-18.
    [6]刘向蕾.酸奶贮藏期间乳酸菌含量及pH值变化的测定分析[J].科技信息,2009,26:184-186.
    [7]Tsai C C, Lin P P, Hsieh Y M. Three Lactobacillus strains from healthy infant stool inhibit enterotoxigenic Escherichia coli grown in vitro[J]. Anaerobe,2008,14(2):61-67.
    [8]Chiu H H, Tsai C C, Hsih H Y, Tsen H Y. Screening from pickled vegetables the potential probiotic strains of lactic acid bacteria able to inhibit the Salmonella invasion in mice[J]. J Appl Microbiol,2008,104(2):605-612.
    [9]Kimoto-Nira H, Suzuki C, Sasaki K, Kobayashi M, Mizumachi K. Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract[J]. Int J Food Microbiol,2010,143(3):226-229.
    [10]Lim S M, Im D S. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods[J]. J Microbiol Biotechnol,2009,19(2):178-186.
    [11]刘虹,姚文,于卓腾,朱伟云.一组鸡源乳酸菌产乳酸及其耐受特性研究[J].微生物通报,2006,33(5):1-5.
    [12]王春光,张雪,李达,牛春华,杨贞耐.酸菜来源植物乳杆菌的分离鉴定与耐受性研究[J].食品科技,2010,35(10):35-38.
    [13]汪川,张朝武,孙晓帆,余倩,潘素华.人胃和肠道来源乳杆菌耐酸耐胆盐能力的初步研究[J].现代预防医学,2006,33(10):1792-1794.
    [1]Siragusa S, De Angelis M, Di Cagno R, Rizzello C G, Coda R, Gobbetti M. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses[J]. Appl Environ Microbiol,2007,73(22):7283-7290.
    [2]Kim E K, Cha C J, Cho YJ, Cho Y B, Roe J H. Synthesis of gamma-glutamylcysteine as a major low-molecular-weight thiol in lactic acid bacteria Leuconostoc spp[J]. Biochem Biophys Res Commun,2008,369(4):1047-1051.
    [3]Richard H, Foster JW. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential[J]. J Bacteriol.2004, 186(18):6032-6041.
    [4]Lin J, Smith M P, Chapin KC, Baik H S, Bennett G N, Foster J W. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli[J]. Appl Environ Microbiol,1996,62(9): 3094-3100.
    [5]Alonso-Hernando A, Alonso-Calleja C, Capita R. Comparative analysis of acid resistance in Listeria monocytogenes and Salmonella enterica strains before and after exposure to poultry decontaminants. Role of the glutamate decarboxylase (GAD) system. Food Microbiol,2009, 26(8):905-909.
    [6]Cotter P D, O'Reilly K, Hill C. Role of the glutamate decarboxylase acid resistance system in the survival of Listeria monocytogenes LO28 in low pH foods[J]. J Food Prot,2001,64(9): 1362-1368.
    [7]Cotter P D, Gahan C G, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid[J]. Mol Microbiol,2001,40(2):465-475.
    [8]Small P L, Waterman SR. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli[J].Trends Microbiol,1998,6(6):214-216.
    [9]Li H, Qiu T, Cao Y, Yang J, Huang Z. Pre-staining paper chromatography method for quantification of gamma-aminobutyric acid[J]. J Chromatogr A,2009,1216(25):5057-5060.
    [10]Carroll A D, Fox G G, Laurie S, Phillips R, Ratcliffe R G, Stewart G R Ammonium assimilation and the role of [gamma]-aminobutyric acid in pH homeostasis in carrot cell suspensions[J]. Plant Physiol,1994,106:513-520.
    [11]Crawford LA, Bown A W, Breitkreuz K E, Guinel F C. The synthesis of [gamma]-aminobutyric acid in response to treatments reducing cytosolic pH[J]. Plant Physiol, 1994,104:865-871.
    [12]Bown A W, Macgregor K B, Shelp B J. Gamma-aminobutyrate:defense against invertebrate pests[J]. Trends Plant Sci,2006,11:424-427.
    [13]Tramonti A, De Canio M, Delany I, Scarlato V, De Biase D. Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli[J]. J Bacteriol,2006,188(23): 8118-8127.
    [14]Gong S, Ma Z, Foster J W. The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli[J]. Mol Microbiol,2004,54(4): 948-961.
    [15]Castanie-Cornet M P, Penfound T A, Smith D, Elliott J F, Foster J W. Control of acid resistance in Escherichia coli[J]. J Bacteriol,1999,181(11):3525-3535.
    [16]Karatzas K A, Brennan O, Heavin S, Morrissey J, O'Byrne C P. Intracellular accumulation of high levels of gamma-aminobutyrate by Listeria monocytogenes 10403S in response to low pH:uncoupling of gamma-aminobutyrate synthesis from efflux in a chemically defined medium[J]. Appl Environ Microbiol,2010,76(11):3529-3537.
    [17]Francis G A, Scollard J, Meally A, Bolton D J, Gahan C G, Cotter P D, Hill C, O'Beirne D. The glutamate decarboxylase acid resistance mechanism affects survival of Listeria monocytogenes LO28 in modified atmosphere-packaged foods[J]. J Appl Microbiol,2007, 103(6):2316-2324.
    [18]Inoue Y, Ishii K, Miyazaki M, Ueno H. Purification of L-glutamate decarboxylase from monkey brain[J]. Biosci. Biotechnol. Biochem,2008,72(9):2269-2276.
    [19]Shelp B J, Bown A W, Mclean M D. Metabolism and functions of gamma-aminobutyric acid[J]. Trends Plant Sci,1999,4(11):446-452.
    [1]Presser K A, Ratkowsky D A, Ross T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration[J]. Appled and Environmental Microbiology, 1997,63(6):2355-2360.
    [2]Krin E, Danchin A, Soutourina O. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli[J].BMC Microbiol,2010,29;10:273.
    [3]Alvarez-Ordonez A, Prieto M. Changes in ultrastructure and fourier transform infrared spectrum of Salmonella enterica serovar typhimurium cells after exposure to stress conditions[J]. Appl Environ Microbiol,2010,76(22):7598-7607.
    [4]King T, Lucchini S, Hinton J C, Gobius K. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses[J]. Appl Environ Microbiol, 2010,76(19):6514-6528.
    [5]Soutourina O, Dubrac S, Poupel O, Msadek T, Martin-Verstraete I. The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response[J]. PLoS Pathog,2010,13;6(5):e1000894.
    [6]Lee K, Lee H G, Pi K, Choi Y J. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri[J]. Proteomics,2008,8(8):1624-1630.
    [7]van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich S D, Maguin E. Stress responses in lactic acid bacteria[J]. Antonie Van Leeuwenhoek,2002,82(1-4):187-216.
    [8]Hamon E, Horvatovich P, Izquierdo E, Bringel F, Marchioni E, Aoude-Werner D, Ennahar S. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance[J]. BMC Microbiol,2011,11:63.
    [9]Martinez A R, Abranches J, Kajfasz J K, Lemos J A. Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics[J]. Mol Oral Microbiol,2010,25(5):331-42.
    [10]Fadda S, Anglade P, Baraige F, Zagorec M, Talon R, Vignolo G, Champomier-Verges MC. Adaptive response of Lactobacillus sakei 23 K during growth in the presence of meat extracts: a proteomic approach[J]. Int J Food Microbiol,2010,15;142(1-2):36-43.
    [11]Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W.The current state of two-dimensional electrophoresis with immobilized pH gradients[J]. Electrophoresis, 2000,21(6):1037-1053.
    [12]郭卫芸,杜冰,袁根良,杨公明.反复冻融法破壁啤酒废酵母的研究[J].酿酒科技,2009,(3):103-105.
    [13]周湘池,刘必谦,曾庆国,将霞敏.雨生红球藻(Haematococcus pluvialis)破壁方法对虾青素提取率的影响[J].海洋与湖沼,2006,37(5):424-428.
    [14]苏惠春,程波,傅冷西,施秀明.3种破壁方法提取念珠菌总RNA效果的比较[J].中国真菌学杂志,2007,2(5):286-288.
    [15]陈兴才,欧阳琴,黄亚治.雨生红球藻物理破壁法提取虾青素研究[J].中国食品学报,2007,2:48-52.
    [16]郑雪松,李道棠,杨虹.不同破壁方法对活性污泥总DNA提取效果的影响[J].上海交通大学学报,2004,38(5):815-818.
    [17]贾艳萍,魏群,赵军.对酵母细胞酶法破壁的研究[J].中国酿造,2005,9:11-13.
    [18]韩璞,田洪涛,苑社强,郭红敏,郭兴华,罗云波.罗伊氏乳杆菌原生质体的制备与再生条件的研究[J].中国食品学报,2010,10(1):10-18.
    [19]轩辕铮铮,苏俊杰,李瑞青,姜德洲,徐海津,张秀明,白艳玲,乔明强.利用双向电 泳技术分离乳酸乳球菌NS菌体蛋白[J].南开大学学报(自然科学版),2009,42(5):99-102.
    [20]Salzano A M, Arena S, Renzone G, D'Ambrosio C, Rullo R, Bruschi M, Ledda L, Maglione G, Candiano G, Ferrara L, Scaloni A. A widespread picture of the Streptococcus thermophilus proteome by cell lysate fractionation and gel-based/gel-free approaches[J]. Proteomics,2007, 7(9):1420-1433.
    [21]Perrin C, Gonzalez-Marquez H, Gaillard J L, Bracquart P, Guimont C. Reference map of soluble proteins from Streptococcus thermophilus by two-dimensional electrophoresis[J]. Electrophoresis,2000,21(5):949-955.
    [22]Gamier M, Matamoros S, Chevret D, Pilet M F, Leroi F, Tresse O. Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM 1-4031[J]. Appl Environ Microbiol,2010,76(24):8011-8018.
    [23]Zotta T, Asterinou K, Rossano R, Ricciardi A, Varcamonti M, Parente E. Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39[J]. Int J Food Microbiol,2009,129(3):211-220.
    [24]Hamon E, Horvatovich P, Izquierdo E, Bringel F, Marchioni E, Aoude-Werner D, Ennahar S. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol,2011,29; 11:63.
    [25]Gamier M, Matamoros S, Chevret D, Pilet M F, Leroi F, Tresse O. Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM 1-4031. Appl Environ Microbiol,2010,76(24):8011-8018.
    [1]夏其昌,曾嵘等.蛋白质化学与蛋白质组学[M].科学出版社,2004.
    [2]Yanagisawa K, Xu BJ, Carbone D P, Caprioli R M. Molecular fingerprinting in human lung cancer[J]. Clin Lung Cancer,2003,5(2):113-118.
    [3]Cottrell J S. Protein identification by peptide mass fingerprinting[J]. Pept Res,1994,7(3): 115-124.
    [4]Wolski W E, Lalowski M, Jungblut P, Reinert K. Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants[J]. BMC Bioinformatics, 2005,6:203.
    [5]Sousa M C, McKay D B. Structure of the universal stress protein of Haemophilus influenzae[J]. Structure,2001,9(12):1135-1141.
    [6]Persson O, Valadi A, Nystrom T, Farewell A. Metabolic control of the Escherichia coli universal stress protein response through fructose-6-phosphate[J]. Molecular Microbiology, 2007,65(4):968-978.
    [7]Shih C J, Lai M C. Differentially expressed genes after hyper- and hypo-salt stress in the halophilic archaeon Methanohalophilus portucalensis[J]. Canadian Journal of Microbiology, 2010,56(4):295-307.
    [8]Bouchal P, Struharova I, Budinska E, Sedo O, Vyhlidalova T, Zdrahal Z, van Spanning R, Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach[J]. Biochimcal et Biophysica Acta,2010,1804(6):1350-1358.
    [9]Spaniol V, Troller R, Aebi C. Physiologic cold shock increases adherence of Moraxella catarrhalis to and secretion of interleukin 8 in human upper respiratory tract epithelial cells[J]. The Journal of Infectious Diseases,2009,200(10):1593-1601.
    [10]Zhang Y, Griffiths M W. Induced expression of the heat shock protein genes uspA and grpE during starvation at low temperatures and their influence on thermal resistance of Escherichia coli O157:H7[J]. Journal of Food Protection,2003,66(11):2045-2050.
    [11]Gawande PV, Griffiths M W. Growth history influences starvation-induced expression of uspA, grpE, and rpoS and subsequent cryotolerance in Escherichia coli O157:H7[J]. Journal of Food Protection,2005,68(6):1154-1158.
    [12]Chen W, Honma K, Sharma A, Kuramitsu H K. A universal stress protein of Porphyromonas gingivalis is involved in stress responses and biofilm formation[J]. FEMS Microbiology Letters,2006,264(1):15-21.
    [13]Kushwaha H R, Singh A K, Sopory S K, Singla-Pareek S L, Pareek A. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation[J]. BMC Genomics, 2009,10:200.
    [14]King N P, Lee T M, Sawaya M R, Cascio D, Yeates T O. Structures and functional implications of an AMP-binding cystathionine beta-synthase domain protein from a hyperthermophilic archaeon[J]. Journal of Molecular Biology,2008,380(1):181-192.
    [15]窦岳坦,燕永亮,平淑珍,陆伟,陈明,张维,王忆平,金奇,林敏.斯氏假单胞菌Pseudomonas stutzeri A1501氧胁迫下基因表达谱研究.科学通报,2008,53(6)664-671.
    [16]王玉瑶,张志云,梁爱华.核糖体蛋白L11及其功能.生命的化学,2008,28(1):104-106.
    [17]Janosi L, Shimizu I, Kaji A. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proceeding of the National Academy of Sciences,1994,91(10): 4249-4253.
    [18]Kitatani T, Nakamura Y, Wada K, Kinoshita T, Tamoi M, Shigeoka S, Tada T. Structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC7942 complexed with NADP. Acta Crystallograpica Section F:Structural Biology and Crystallization Communications,2006,62(Pt 4):315-319.
    [1]Giasuddin AS, Jhuma KA, Haq AM. Applications of free circulating nucleic acids in clinical medicine:recent advances. Bangladesh Med Res Counc Bull,2008,34(1):26-32.
    [2]VanGuilder HD, Vrana K.E, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques,2008,44(5):619-626.
    [3]Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N. The real-time polymerase chain reaction. Mol Aspects Med,2006,27(2-3):95-125.
    [4]Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR--a perspective. J Mol Endocrinol,2005,34(3):597-601.
    [5]Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol,2009,67(1):6-20.
    [6]Wong LJ, Bai RK. Real-time quantitative polymerase chain reaction analysis of mitochondrial DNA point mutation. Methods Mol Biol,2006,335:187-200.
    [7]Traeger-Synodinos J. Real-time PCR for prenatal and preimplantation genetic diagnosis of monogenic diseases. Mol Aspects Med,2006,27(2-3):176-191.
    [8]林国洪,李一荣,陈凤花,沈长新,周志明,王琳,胡丽华.人POT1基因实时荧光PCR相对定量法的建立[J]。临床血液学杂志,2008,21(6):301-304.
    [9]Mortarino M, Franceschi A, Mancianti F, Bazzocchi C, Genchi C, Bandi C. Quantitative PCR in the diagnosis of Leishmania[J]. Parassitologia,2004,46(1-2):163-167.
    [10]Keys DN, Au-Young JK, Fekete RA. TaqMan Array Cards in pharmaceutical research[J]. Methods Mol Biol,2010,632:87-97.
    [11]陈旭,齐凤坤,康立功,李景富.实时荧光定量PCR技术研究进展及其应用[J].东北农 业大学学报,2010,41(8):148-155.
    [12]Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available[J]. Methods,2010,50(4):244-249.
    [13]Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis:current concepts and the novel "gene expression's CT difference" formula[J]. J Mol Med,2006,84(11):901-910.
    [14]Tian H, Wu J, Shang Y, Cheng Y, Liu X. The development of a rapid SYBR one step real-time RT-PCR for detection of Porcine Reproductive and Respiratory Syndrome Virus[J]. Virol J,2010,10,7:90.
    [15]余舜武,刘鸿艳,罗利军.利用不同实时定量PCR方法分析相对基因表达差异[J].作物学报,2007,33(7):1214-1218.
    [16]Jianke L, Feng M, Begna D, Yu F, Aijuan Z. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (Apis mellifera L.) [J]. J Proteome Res,2010,9:6578-6594.
    [1]Shin C J, Lai M C. Differentially expressed genes after hyper- and hypo-salt stress in the halophilic archaeon Methanohalophilus portucalensis[J]. Can J Microbiol,2010,56(4): 295-307.
    [2]Bouchal P, Struharowa I, Budinska E, et al. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach[J]. Biochim Biophys Acta,2010, 1804(6):1350-1358.
    [3]Spaniol V, Troller R, Aebi C. Physiologic cold shock increases adherence of Moraxella catarrhalis to and secretion of interleukin 8 in human upper respiratory tract epithelial cells[J]. J Infect Dis,2009,200(10):1593-1601.
    [4]Zhang Y, Griffiths M W. Induced expression of the heat shock protein genes uspA and grpE during starvation at low temperatures and their influence on thermal resistance of Escherichia coli O157:H7[J]. J Food Prot,2003,66(11):2045-2050.
    [5]Gaeande P V, Griffiths M W. Growth history influences starvation-induced expression of uspA, grpE, and rpoS and subsequent cryotolerance in Escherichia coli O157:H7[J]. J Food Prot, 2005,68(6):1154-1158.
    [6]Licandro H, Gury J, Tran N P, et al. Kinetics and intensity of the expression of genes involved in the stress response tightly induced by phenolic acids in Lactobacillus plantarum[J]. J Mol Microbiol Biotechnol,2008,14(1/3):41-47.
    [7]Chen W, Honma K, Sharma A, et al. A universal stress protein of Porphyromonas gingivalis is involved in stress responses and biofilm formation[J]. FEMS Microbiol Lett,2006,264(1): 15-21.
    [8]Sousa M C, Mckay D B. Structure of the universal stress protein of Haemophilus influenzae[J]. Structure,2001,9(12):1135-1141.
    [9]Persson O, Valadi A, Nystromy T, Farewell A. Metabolic control of the Escherichia coli universal stress protein response through fructose-6-phosphate[J]. Mol Microbiol,2007, 65(4):968-978.
    [10]Fukauda D, Watanabe M, Aso Y, et al. The groESL operon of the halophilic lactic acid bacterium Tetragenococcus halophila[J]. Biosci Biotechnol Biochem,2002,66(5): 1176-1180.
    [11]de Leeuw F, Zhang T, Wauquier C, et al. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor[J]. Exp Cell Res,2007,313(20):4130-4144.
    [12]WEBER H, ENGELMANN S, BECHER D, et al. Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus[J]. Mol Microbiol, 2004,52(1):133-140.
    [13]Agoston R, Soni K, Jesudhasan P R, et al. Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions[J]. Foodborne Pathog Dis,2009,6(9):1133-1140.
    [14]Wouters J A, Kamphuis H H, Hugenholtz J, et al. Changes in glycolytic activity of Lactococcus lactis induced by low temperature [J]. Appl Environ Microbiol,2000,66(9): 3686-3691.
    [15]Kistrup M, Jacobsen S, Hammer K, et al. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis[J]. Appl Environ Microbiol,1997,63(5): 1826-1837.
    [16]Vrancken G, Rimaux T, De Vuyst L, Leroy F. Kinetic analysis of growth and sugar consumption by Lactobacillus fermentum IMDO 130101 reveals adaptation to the acidic sourdough ecosystem[J]. Int J Food Microbiol,2008,128(1):58-66.
    [17]Danese P N, Pratt L A, Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture[J]. J Bacteriol,2000,182(12):3593-3596.
    [18]Welman A D, Maddox I S, Archer R H. Metabolism associated with raised metabolic flux to sugar nucleotide precursors of exopolysaccharides in Lactobacillus delbrueckii subsp. bulgaricus[J]. J Ind Microbiol Biotechnol,2006,33(5):391-400.
    [19]Lu Y J, Zhang Y M, Grimes K. D, et al. Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens[J]. Mol Cell,2006,23(5):765-772.
    [20]Bratschi M W, Burrowes D P, Kulaga A, et al. Glycerol-3-phosphate acyltransferases Gatlp and Gat2p are microsomal phosphoproteins with differential contributions to polarized cell growth[J]. Eukaryot Cell,2009,8(8):1184-1196.
    [21]Sui N, Li M, Zhao S J, et al. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato[J]. Planta,2007,226(5):1097-1108.
    [22]Hara M R, Cascio M B, Sawa A. GAPDH as a sensor of NO stress[J]. Biochim Biophys Acta, 2006,1762(5):502-509.
    [23]Campanacci V, Nurizzo D, Spinelli S, et al. The crystal structure of the Escherichia coli lipocalin Blc suggests a possible role in phospholipid binding[J]. FEBS Lett,2004,562(1/3): 183-188.
    [24]Van Houdt R, Moons P, Jansen A, et al. Isolation and functional analysis of luxS in Serratia plymuthica RVH1[J]. FEMS Microbiol Lett.,2006,262(2):201-209.
    [25]Rajan R, Zhu J, Hu Xubo, et al. Crystal structure of S-ribosylhomocysteinase (LuxS) in complex with a catalytic 2-ketone intermediate[J]. Biochemistry,2005,44(10):3745-3753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700