球磨结合稀酸、真菌和超声处理法降解木质纤维素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的高速发展,工业上对化石燃料日益增加的依赖性与有限的化石资源的矛盾严重影响了国家的能源安全。利用生物质转化得到生物燃料可以降低国家对原油进口的依赖性,增强国家安全。在我国利用木质纤维素原料来生产生物乙醇具有重要的经济效益和社会意义。我国木质纤维素资源丰富,但是利用率非常低,大部分只是作为燃料或造纸工业等使用,不仅浪费资源并且严重污染环境。因此,在我国开发利用木质纤维素原料来生产燃料乙醇前景广阔,具有重要的现实意义。
     本论文选择小麦秸秆和桦木木屑作为草本类和木本类这两种植物类型的代表原料,在湿法球磨中采用稀柠檬酸、简青霉H5和超声波的处理方法,来降解小麦秸秆和桦木木屑。研究常温常压条件下,将球磨方法与稀酸处理法、真菌处理法和超声处理法联用,来降解木质纤维素的过程。
     论文首先采用湿法球磨联合柠檬酸对秸秆和木屑进行降解,研究不同pH值的柠檬酸对秸秆和木屑酸水解的作用,得到如下研究结果:(1)稀酸-球磨系统可以在常温常压下降解秸秆和木屑,还原性糖产率分别为186.9mg/g和120.5mg/g。(2)商品纤维素酶的加入不能与机械球磨-稀酸降解法形成良好的协同作用,糖产率低于单独的机械球磨-稀酸降解法,酶活力也快速丧失。(3)稀酸-球磨降解过程对葡萄糖和木糖起不同的作用,其中葡萄糖的含量随着球磨时间的延长而增加,木糖的含量随着球磨时间的延长而减少。球磨体系的pH值会影响木屑的降解情况,木屑在pH=5、6的柠檬酸体系中得到的糖产率高于pH=3、4的体系中的糖产率。(4)随着球磨时间的延长,反应液的pH值向碱性方向偏移,在球磨24h后达到平衡,秸秆和木屑的最佳降解体系的pH值分别为6.5和8.5。(5)XRD和ESEM测试结果表明,球磨破坏了纤维素的晶体结构,增大了无定形态纤维素的比率和反应活性面积,从而使得秸秆和木屑中的纤维素更容易被弱酸渗透,从而发生水解。(6)红外光谱和紫外扫描结果表明,球磨处理之后秸秆和木屑中的木质素成分基本被破坏,木质素的降解使得纤维素更容易被水解,从而提高其糖化率。与工业上常用的高温高压酸水解法相比,机械球磨协同稀酸的方法能够在常温常压下降解天然木质纤维素,反应简单温和,基本无污染,但是糖化率仍然较低。
     其次采用湿法球磨联合稀柠檬酸和简青霉H5对秸秆和木屑进行降解,研究简青霉H5对秸秆和木屑酸水解及生物降解的作用。得到如下实验结果:(1)简青霉的加入可以显著的促进秸秆和木屑的降解,还原性糖产率分别为216.9mg/g和245.3mg/g。(2)简青霉的加入可以与稀酸-球磨降解法形成良好的协同作用,简青霉H5的生长及其产酶活力可以在球磨条件下保持24h,糖产率也高于稀酸-球磨降解法,简青霉H5非常适合球磨降解天然木质纤维素产物。(3)稀酸-真菌-球磨过程也对葡萄糖和木糖起相反的作用。简青霉H5的加入会影响木屑的降解效果。其中木屑在pH=4、5的H5-柠檬酸体系中得到的糖产率高于pH=3、6的H5-柠檬酸体系中的糖产率。(4)加入简青霉H5以后,随着球磨时间的延长秸秆和木屑反应液的pH值向碱性方向偏移,在球磨12h后基本达到平衡,最佳降解体系的pH值分别为6.5和7.5,基本保持在中性范围。(5)XRD和ESEM图结果表明,稀酸-真菌-球磨系统破坏了秸秆和木屑的晶体结构。在球磨短时间内,简青霉H5加入后由于优先分解无定型纤维素部分,秸秆和木屑的结晶度会高于不加入简青霉H5的。长时间球磨之后秸秆和木屑的结晶度都会下降,无定形态纤维素的比率和反应活性面积增大,从而使得秸秆和木屑中的纤维素更容易被弱酸渗透,更容易被水解。(6)红外光谱和紫外扫描结果表明,球磨处理之后秸秆和木屑中的木质素成分基本被破坏,简青霉H5的加入促进了木质素部分的降解,从而提高糖化率。总之简青霉H5的加入可以显著促进秸秆和木屑中纤维素和木质素的降解,糖化率较高,反应条件温和,反应过程简单且基本无污染,易于工业化生产。
     最后采用超声波技术对桦木木屑进行预处理,之后再进行固液球磨降解,发现短时间的超声预处理可以促进木屑的水解。得到如下实验结果:(1)超声预处理10min能有效促进木屑水解,还原性糖产率为126.84mg/g木屑。(2)超声波预处理可以显著促进木屑在稀酸-真菌-球磨系统中的降解情况,提高了木屑的糖化率。木屑中的还原糖得率高峰的时间从48h缩短为36h,最大还原糖得率从245.3mg/g木屑增大为311.2mg/g木屑。(3)超声波预处理对葡萄糖和木糖的溶出都起到促进作用。(4)超声波预处理后,。随着球磨时间的延长木屑降解后反应液的pH值向碱性方向偏移,在球磨12h后基本达到平衡,球磨后反应液基本保持在中性。(5)XRD和ESEM图结果表明,超声波预处理使得木屑的结晶度略有下降,而稀酸-真菌-球磨系统破坏了木屑的晶体结构。短时间(12h)球磨处理纤维时,超声波预处理过的木屑纤维的结晶度比不经过超声波处理的要高。随着球磨时间的延长,木屑纤维素晶体被大量破坏,生成更多的不定形态纤维素,结晶度下降,反应活性面积增大,从而使得木屑中的纤维素更容易被弱酸渗透,更容易被水解。(6)红外光谱和紫外扫描结果表明,球磨处理之后秸秆和木屑中的木质素成分基本被破坏,而超声波预处理过程促进了木屑中木质素部分的降解,使得纤维素更容易被水解,从而提高其糖化率。因此超声波预处理的加入可以显著促进木屑中纤维素和木质素的降解,并且对木屑中葡萄糖和木糖的溶出都起到促进作用,糖化率较高,反应条件温和,反应过程简单且基本无污染,易于工业化生产。
     本论文采用的固液球磨联合稀酸、真菌、超声波作用的方法降解天然木质纤维素原料小麦秸秆和木屑。降解后的糖化率较高,反应过程简单,反应条件温和,对环境基本无污染,微生物成本低,易于工业化应用,为生物质转化乙醇提供了一条清洁、有效的新途径。
The conflicts between the increasing dependence on fossil fue ls in the industryand the limitio n of fossil resource impact serious ly on the country's energy security.Converting bio mass to biofue l can significantly reduce the country's dependence oncrude oil imports, enhance nationa l security. Therefore, the use of lignocellulosic toproduce fue l etha nol in China has important economic and socia l significance.
     The lignocellulose resources in China is very ric h, but the utilization is very low,mostly in d irect use as a fue l, not only wasting resources and pollut ing theenvironme nt serious ly. So the develop ment of using lignocellulose to product fue lethano l in China has broad prospects and important practica l significance. In thisthesis, in order to investigate the degradation process of natura l lignocellulose, wheatstraw and birch wood chips were chosen to be as representive raw materia ls ofherbaceous and woody plants.
     In order to investigate the effect on the degradatio n of the natura l lignocellulos icsubstrates (wheat straw and birc h wood chips) with the phys ical degradation method(ball milling and ultrasonic treatme nt), chemica l acid hydro lys is method, bio logica ldegradatio n method, and the synergy between these three methods, the wheat strawand birch wood chips were hydrolyzed by wet ball milling, d ilute c itric ac id,Penicillium simplicissimum H5and ultrasonic treatme nt. Exp lore the feas ib ility o fdegradatio n of natura l lignocellulos ic substrates (wheat straw and birch wood chips)under norma l temperature and pressure. It is expected that there is a simp le, andenvironme nta lly friend ly approach for hydrolyzing wheat straw and birc h wood chipsto sugar. Firstly, the wheat straw and birch wood chips were hydrolyzed by thecomb ination o f wet ball milling and d ilute c itric acid, to research the e ffect of the pHvalue on the hydrolys is of wheat straw and birc h wood chips. Secondly, Penicilliumsimplicissimum H5was used to improve the hydro lys is, us ing its enzyme productioncharacteristics. The wheat straw and birch wood chips were hydrolyzed by thecomb ination of wet ball milling, dilute citric acid and Penicillium simplicissimum H5,to research the effect of the Penicillium simplicissimum H5on the hydro lys is of wheatstraw and birch wood chips. At last, the ultrasound was introduced into the reactionsystem. The birch wood chips was pretreated by ultrasonic treatment, the n werehydro lyzed by the comb inatio n of wet ball milling, dilute c itric acid and Penicillium simplicissimum H5, to research the effect o f ultrasonic treatment a nd the pH va lue onthe hydro lys is of wheat straw and birch wood chips.
     In the first p lace, the wheat straw and birch wood chips can be hydro lyzed by thecomb ination of wet ball milling and dilute c itric acid, under norma l te mperature andpressure.(1) The sugar production of wheat straw and brich wood were186.9mg/gand120.5mg/g.(2) The addition o f commerc ia l cellulase can not form a goodsynergy with the wet ball milling-dilute c itric acid treatme nt. The sugar productionwas even lower than s ingle the wet ball milling-dilute citric ac id treatment withoutce llulase.(3) Ball milling with dilute ac id treatme nt exerted significant differentinflue nce on the different hydro lysates. The yie ld of glucose increased with extend ingball milling time in the hydrolys is of wheat straw and wood chip s, otherwise the yie ldof xylose decreased with exte nd ing ball milling time. The hydrolys is of wood can alsobe influe nced by the pH va lue of d ilute acid. The sugar production in c itrate solve nt(pH=5,6) were higher tha n in c itrate solvent (pH=3,4).(4) With the extend ing ballmilling time, the pH va lue of wheat straw and wood chips’ hydrolyzate offset to thealkaline direction and reach equilibrium after24hours. Finally rema ined substantia llywithin the neutral ra nge.(5) As was shown in the XRD a nd ESEM pattern, ballmilling disrupted the long-range crystalline structure of cellulose. It made wheatstraw and wood chips more accessib le to citrate, which enab ling convers ion ofcarbohydrate polymers into sugar.(6) The FT-IR and UV spectroscopy ind icated thatthe ball milling treatme nt in citrate solvent present a dramatic increase in ligninhydro lys is. As the connection between the lignin and carbohydrates serious ly impededto the hydro lys is of lignocellulos ic, the degradation of lignin make cellulasehydro lyzed more easily and reach higher sugar production. Compared with trad itiona lindustria l high-temperature and high-pressure acid hydrolys is, the comb ination of wetball milling and dilute citric acid treatment can hydrolyze natura l lignocellulose undernorma l te mperature and pressure. Although the saccharification is not high, thereactio n is mild and basica lly non-polluting.
     Secondly, the hydrolyzation of wheat straw and birc h wood chips can besignifica ntly promoted by the comb inatio n of wet ball milling,dilute citric acid andPenicillium simplicissimum H5, under norma l te mperature and pressure and reachhigher sugar yie ld.(1) The sugar production o f wheat straw and brich wood were216.9mg/g and245.3mg/g. The addition of Penicillium simplicissimum H5couldsignifica ntly pro mote the hydrolys is o f wheat straw and wood chips.(2) The add itionof Penicillium simplicissimum H5can form a good synergy with the wet ball milling and dilute citric acid treatment. The enzyme activity and surviva l of fungi ma inta in24hours under ball milling treatment.(3) Ball milling-dilute acid-fungi treatme ntexerted significant different influe nce on the differe nt hydro lysates. The yie ld ofglucose increased with extend ing ball milling time in the hydrolys is of wheat strawand wood chips, otherwise the yie ld of xylose decreased with e xtend ing ball millingtime. The hydro lys is of wood can also be influenced by the addition of Penicilliumsimplicissimum H5. The sugar production in citrate solve nt (pH=4,5) were higher tha nin citrate solvent (pH=3,6).(4) With the extend ing ball milling time, the pH va lue ofwheat straw and wood chips’ hydrolyzate offset to the alka line d irection a nd reachequilibrium a fter24hours. The pH va lue o f t he best degradatio n syste m o f straw andwood chips were6.5and7.5after ba ll milling48hours.(5) As was shown in the XRDand ESEM pattern, ball milling-dilute acid-fungi treatment disrupted the lo ng-rangecrystalline structure of cellulose. At milling short time, the degree of crysta llinity ofthe straw and wood chips improved, as the addition of Penicillium simplicissimum H5decomposed amorphous cellulose for priority. With the extending ball milling time,the crystallinity decreased. It made wheat straw and wood chips more accessib le tocitrate, whic h enabling convers ion of carbohydrate polymers into sugar.(6) The FT-IRand UV spectroscopy ind icated that the ba ll milling treatme nt in c itrate solve ntpresent a dramatic increase in lignin hydrolysis. The addition o f Penicilliumsimplicissimum H5Promoted the degradatio n of lignin in the wheat straw and woodchips.As the connection between the lignin and carbohydrates serious ly impeded tothe hydrolys is of lignocellulosic, the degradatio n of lignin make cellulase hydrolyzedmore easily a nd reach higher sugar production. Overall the additio n of Penicilliumsimplicissimum H5Significant promoted the degradatio n of ce llulose and lignin o fwheat straw and wood chips, reach higher saccharification. The reactio n is mild andbasica lly non-po lluting, low cost with microbia l and ease for ind ustrialization.
     Fina lly, birch wood chips was pretreated by ultrasonic treatment, then werehydro lyzed by the comb ination of wet ball milling, dilute c itric acid and Penicilliumsimplicissimum H5, and the hydrolyzation can be significa ntly promoted by thepretreatment of ultrasonic wave, and reach higher sugar yie ld.(1)The sugarproductio n of wood chips was126.84mg/g with the ultrasonic pretreatme nt.(2) Theadditio n of ultrasonic pretreatment could s ignificantly promote the hydrolys is ofwood chips, and reach higher saccharification rate. The sugar production of woodchips was311.16mg/g wood at ball milling for36hours, compared with245.3mg/gwood at ball milling for48hours obtained without the ultrasonic pretreatme nt.(3) Ultrasonic pretreatment could promote the d issolution o f both glucose and xylose.(4)After pretreated by the ultrasonic wave, with the extend ing ball milling time, the pHvalue of wood chips’ hydro lyzate offset to the alka line direction and reachequilibrium after12hours. The pH va lue of the best degradatio n system of woodchips were7.0after ball milling48hours.(5) As was shown in the XRD and ESEMpattern, ball milling-dilute acid-fungi treatment disrupted the long-range crystallinestructure of cellulose. The ultrasonic pretreatment s lightly decreased the degree ofcrystallinity of wood chips. At milling short time, the degree of crystallinity of thewood chips improved, with the addition of ultrasonic pretreatme nt. With theextend ing ball milling time, the crysta llinity decreased. It made wood chips moreaccessib le to citrate, which enabling convers ion of carbohydrate polymers into sugar.(6) The FT-IR and UV spectroscopy indicated that the ball milling treatment in citratesolve nt with H5present a dramatic increase in lignin hydrolys is. The additio n ofultrasonic pretreatment promoted the degradation of lignin in the wood chips. As theconnectio n between the lignin and carbohydrates serious ly impeded to the hydrolys isof lignocellulosic, the degradatio n of lignin make cellulase hydrolyzed more easilyand reach higher sugar production. Overall the additio n of ultrasonic pretreatme ntsignifica nt promoted the degradation of ce llulose and lignin of wood chips, reachhigher saccharification. The reactio n is mild and basically no n-polluting, low costwith microbia l and ease for industria lization.
     In summary, in this thes is the natura l lignocellulose wheat straw and birchwood chips were hydrolyzed by the comb ination o f wet ball milling, dilute c itric acid,Penicillium simplicissimum H5and ultrasonic treatment, reach high saccharificationrate. The reactio n is mild and basically non-polluting, low cost with microbia l andease for industria lization, and provides a clean, effic ient and new way for conversio nof bio mass into ethano l.
引文
[1] Campbell C J, Laherrere J H. The End of Cheap Oil. Scientific American,1998,278(3):78-83
    [2] lvanhoe L F. Analyze World Oil Supply. World Oil,1996,217(11):91-94
    [3] Bayraktar H. Experime nta l and theoretical investigation of us ing gasoline-ethano lblends in spark-ignition engines. Renewable Energe,2005,30:1733-1747
    [4] Birgit K.生物炼制——工业过程与产品.马延和.北京.化学工业出版社,2007
    [5] Olsson L.生物燃料.曲音波.第一版.北京.化学工业出版社,2009
    [6] Hame linck C N, van Hooijdonk G, Faaij A P C. Ethano l from lignocellulosicbiomass: techno-economic performance in short-, midd le-and long-term. BiomassBioenergy,2005,28:384-410
    [7] Field C B, Behrenfe ld M J, Randerson J T, et al. Primary production of thebiosphere: inte grating terrestria l and oceanic compone nts. Scie nce,1998,281(5374):237-40
    [8] Sánche z O J, Cardona C A. Trends in biotechnolo gical productio n of fuelethano lfro m different feedstocks. Bioresource Techno logy,2008,99:5270-5295
    [9] Energy Information Age ncy. United States Dept. of Energy. www. eia. doe. gov/pub/internationa l/iealf/table18. xls,2002
    [10] Lugar R G, Woolsey R J. Foreign Affairs,1999,78(1):88-102
    [11] Sun Y, Cheng J. Hydrolys is of lignocellulosic materia ls for ethano l production: areview. Bioresource Techno logy,2002,83:1-11
    [12] Teramoto Y, Lee S H, Endo T. Pretreatment of woody and herbaceous biomass forenzymatic saccharification us ing s ulfuric ac id-free ethano l cook ing. BioresourceTechno logy,2008,99:8856-8863
    [13] Hideno A, Inoue H, Ts ukahara K, et al. Wet disk milling pretreatme nt withoutsulfuric ac id for e nzymatic hydrolys is o f rice straw. Bioresource Technolo gy,2009,100:2706-2711
    [14] Zhang W, Lia ng M, Lu C H.Morphologica l and structura l develop ment ofhardwood cellulose during mechanoche mica l pretreatment in solid state throughpan-milling. Cellulose,2007,14:447-456
    [15] Sjostrom E. Wood chemistry: fundame ntals and applications2nd edn. Academic,Washingto n DC, USA,1981
    [16] Robinson J, Keating J D, Boussaid A, et al. The Influence of bark on thefermentation o f Do uglas-fir whitewood prehydro lysates. Applied Microbio logyand Biotechnolo gy,2002,59:443-448
    [17] Bura R, Bothast R J, Mansfie ld S D, et al. Optimization of SO2-Catalysed SteamPretreatment of Corn Fibre for Ethano l Production Applied Bioche mistry andBiotechno logy,2003,105(108):319-335
    [18] Panagiotou G, O lsson L. Effect of co mpounds released during pretreatme nt ofwheat straw on microbia l growth and enzymatic hydrolys is rates. Biotechno logyand Bioengineering,2007,96:250-258
    [19] Alle n R, Forest products Chenistry. Fapet Oy. Hels ink i. Finla nd,2000,66
    [20] Mosier N, Wyman C, Dale B, et al.Features of Pro mis ing Techno logies forPretreatment o f Lignoce llulos ic Bio mass. Bioresource Technolo gy,2005,96:673-686
    [21] Mansfie ld S D, Mooney C, Saddler J N. Substrate and enzyme characteristics thatlimit ce llulose hydrolys is. Biotechnolo gy Progress,1999,15,804-816
    [22] Taherzadeh M J, Karimi K. Pretreatme nt of lignocellulos ic wastes to improveethano l and b iogas productio n: a review. Internatio nal Journa l of MolecularScie nces,2008,9:1621-1651
    [23] Huang Z Q, Xie X L, Chen Y, et al. Ball-milling treatment effect onphys icochemica l properties and features for cassava and ma ize starches. ComptesRendus Chimie,2008,11(1-2):73-79
    [24] Weeber A W, Bakker H. Amorphizatio n by ba ll milling. A review. Phys ica B,1988,153:93-135
    [25] Bai C, Spontak R J, Koch C C, et al. Structura l changesin poly(ethyleneterephthalate) ind uced by mecha nica l milling. Polymer,2000,41:7147-7157
    [26] Willart J F, Descamps M. Solid state amorphization of pharmaceuticals.Molecular Pharmaceutics,2008,5(6):905-920
    [27] Kumaga i S, Yamada N, Sakaki T, et al. Characterizatio n of hydrotherma ldecompositio n and saccharificatio n of vario us lignocellulos ic bio mass andenzymatic saccharification of the obtained hydrothermal-residue. Journa l o f theJapan Institute of Energy,2007,86:712-717
    [28] Endo T, Tanaka N, Sakai M, et al. Enhance ment mecha nis m of e nzymaticsaccharificatio n of wood by mechanoche mica l treatme nt. The Third Bio mass-AsiaWorkshop, Tokyo and Tsuk uba,2006,105
    [29] Hideno A, Aoyagi H, Ogbonna J C, et al. Optimization of the thermal drytreatment to enhance the e nzymatic hydrolys is of a spent-sawdust matrix used forGrifo la fro ndosa cultivatio n. Energy Fue ls,2008,22:120-122
    [30] Liu C, Wyman C E. Partia l flow of compressed-hot water through corn stover toenhance he mice llulose sugar recovery and enzymatic digestib ility of cellulose.Bioresource Techno logy,2005,96:1978-1985
    [31] Zhu S, Wu Y, Yu Z, et a l. Comparison of three microwave/che mical pretreatme ntprocesses for enzymatic hydrolys is of rice straw. Biosystems Engineering,2006,93:279-283
    [32] Mais U, Esteghla lia n A R, Saddler J N, et al.Enha nc ing the enzymatic hydrolys isof cellulosic materia ls us ing s imultaneous ball milling. Applied Biochemistry andBiotechno logy,2002,98:815-832
    [33] Millett M A, Effla nd M J, Caulfie ld D P. Influe nce of fine grinding on thehydro lys is o f cellulosic materia ls-acid vs. enzymatic. Adva nces in ChemistrySeries,1979,181:71-89
    [34] Tassinari T, Macy C, Spano L. Energy require ments and process designcons ideratio ns in co mpression-milling pretreatment o f ce llulose wastes forenzymatic hydro lys is. Biotechno logy and Bioengineering,1980,22:1689-1705
    [35] Tassinari T, Macy C, Spano L. Techno logy advances for continuous compress ionmilling pretreatment of lignoce llulos ics for enzymatic hydro lys is. Biotechno logyand Bioengineering,1982,24:1495-1505
    [36]]Maier G, Zipper P, Stubicar M, et al. Amorphization of differentce llulosesamp les by ball milling. Cellulose Che mistry and Techno logy,2005,39:167-177
    [37] Ago M, Endo T, Hirotsu T. Crystalline trans formatio n of native cellulose fro mce llulose I to cellulose II polymorph by a ball-milling method with aspecifica mount of water. Cellulose,2004,11:163-167
    [38] Ago M, Endo T, Okajima K. Effect of solvent on morpho logica l andstructura lchange of ce llulose under ball-milling. Polymer Journa l,2007,5:435-441
    [39] Avo lioa R, Bonad iesa I, Capitanib D, et al. A multitechnique approach to assessthe effect of ball milling on cellulose. Carbohydrate Polymers,2012,87:265-273
    [40] Alvira P, Tomás-Pejó E, Ba llesteros M, et a l. Pretreatme nt techno logies for aneffic ient b ioethano l productio n process based on enzymatic hydrolys is: A review.Bioresource Techno logy,2010,101:4851-4861
    [41] Hendriks A T, Zeeman G. Pretreatme nts to enha nce the digestib ility oflignoce llulos ic bio mass. Bioresource Techno logy,2009,100:10-18
    [42] Ghosh P, Ghose T K. Bioetha nol in India: recent past and emerging future.Advances in Biochemica l Engineering/Biotechno logy,2003,85:1-27
    [43] Litze n D, Dixon D, Gilcrease P, et al. Pretreatment of bio mass for ethano lproductio n. US Patent,2006
    [44] Inoue H, Yano S, Endo T, et a l. Comb ining hotco mpressed water and ball millingpretreatments to improve the effic ie ncy of the enzymatic hydro lys is of eucalyptus.Biotechno logy for Biofue ls,2008,1:2
    [45] Endo T, Tanaka N, Yamasaki R, et al. Wet mechanoche mica l treatment forenzymatic saccharificatio n of wood. In:15th Annua l Meeting of the CelluloseSociety o f Japan. Kyoto.2008,117-118
    [46] Kardos N, Luc he J L. Sonoche mistry of carbohydrate compounds, CarbohydrateResearch,2001,332:115-131
    [47] Khanal S K, Grewe ll D, Sung S. Ultrasound applications in wastewater sludgepretreatment: a review, Critical Reviews in Enviro nmenta l Science andTechno logy,2007,37:277-313
    [48] Mason T J. Sonochemistry. Oxford University Press Inc., New York,1999
    [49] Flint E B, Sus lick K S. The te mperature of cavitation. Scie nce,1991,25:1397-1399
    [50] Mason T J, Zhao Y Y.The use of ultrasound in chemistry. Ultrasonic,1994,32(5):375-377
    [51] Huang Q, Li L, Fu X, Ultrasound effects on the structure and chemica l reactivityof cornstarch granules. Starch,2007,59:371-378
    [52] Seguchi M, Higasa T, Mori T. Study of wheat starch structures by sonicationtreatment. Cereal Che mistry,1994,71:639-641
    [53] Isono Y, Kumaga i T, Watanabe T, Ultrasonic degradation of wa xy rice starch,Biosc i. Biotechno l. Bioche m.,1994,58(10):1799-1802
    [54] Zhang Z, Niu Y, Eckhoff S. Sonication enhanced cornstarch separation. Starch,2005,57:240-245
    [55] Sun R C, Tomkinson R C. Characterization of he mice lluloses obtained byclassica l and ultrasonically assisted extractions fro m wheat straw. CarbohydratePolymer,2002,50(3):263-271
    [56] Yachme nev V, Condon B, Klasson T, et al. Acceleratio n of the enzymatichydro lys is of corn stover and sugar cane bagasse celluloses by low intens ityuniform ultrasound. Journa l of Biobased Materia ls and Bioenergy,2009,3:25-31
    [57] Wood B E, Aldrich H C, Ingra m L O. Ultrasound stimulates ethano l productionduring the s imultaneous saccharification a nd fermentatio n of mixed waste officepaper. Biotechno logy Progress,1997,13(13):323-327
    [58] Khanal S K, Montalbo M. van Leeuwen J. Ultrasound enhanced glucose releasefro m corn in ethano l p lants, Biotechno lo gy a nd Bioengineering,2007,98:978-985
    [59] Nitayavardha na S, Rakshit S K, van Leeuwe n J. Ultrasound pretreatment ofcassava chip slurry to enha nce sugar release for subsequent ethano l production,Biotechno logy and Bioengineering,2008,101(3):487-496
    [60] Sivers M V, Zacchi G. A techno-economica l comparison of three processes for theproductio n of ethano l fro m pine. Bioresource Technolo gy,1995,51:43-52
    [61] Wyma n C E. Handbook on Bioethano l: Productio n and Utilization. Washington:TaylorFrancis,1996,417
    [62] Esteghla lia n A, Hashimoto A G, Fenske J J, et al. Modeling a nd optimizatio n ofthe dilute-sulfuric-acid pretreatme nt of corn stover, poplar and switc hhgrass.Bioresource Techno logy,1997,59:129-136
    [63] Brenna n A H, Hoagland W, Schell D J. High temperature acid hydro lys is ofbiomass us ing an engineering-scale p lug flow reactor: result o f low solids testing.Biotechno logy and bioengineering symposium,1986,17:53-70
    [64] Converse A O, Kwarteng I K, Grethle in H E, et al. Kinetics of thermoche mica lpretreatment of lignocellulosic materials. App lied Bioche mistry andBiotechno logy,1989,20:63-78
    [65] Cara C, Ruiz E, Oliva J M, et al. Conversio n of olive tree bio mass intofermentab le sugars by dilute acid pretreatment and e nzymatic saccharification.Bioresource Techno logy,2008,99:1869-1876
    [66] Saha B C, Iten L B, Cotta M A, et al. Dilute acid pretreatme nt, enzymaticsaccharificatio n and ferme ntation of wheat straw to ethano l. Process Bioche mistry,2005,40:3693-3700
    [67] Rocha M V, Rodrigues T H, de Macedo G R, et a l. Enzymatic hydrolys is andfermentation of pretreated cashew apple bagasse with a lka li and d iluted sulfuricac id for bioetha no l productio n. Applied Bioche mistry and Biotechno logy,2009,155:407-417
    [68] Cahe la D R, Lee Y Y, Cha mbers R P. Modeling of percolation process inhemice llulose hydrolys is. Biotechno logy and Bioe ngineering,1983,25:3-17
    [69] Iranma hboob J, Nadim F, Monemi S. Optimizing acid-hydrolys is: a critical stepfor productio n of etha nol from mixed wood chips. Biomass&Bioenergy,2002,22(5):401-404
    [70] Kootstra A M J, Beeftink H H, Scott E L, et al. Comparison of d ilute minera l andorganic acid pretreatment for enzymatic hydro lys is o f wheat straw. Bioche mica lEngineering Journal,2009,46:126-131
    [71] McM illan J D. Pretreatme nt of lignocellulosic b iomass. In: Himme l, M.E., Baker,J.O., Overend, R.P.(Eds.), Enzymatic Convers ion of Biomass for FuelsProductio n. Washingto n DC: American Chemica l Society,1994,292-324
    [72] Mosier N, Hendrickson R, Ho N, et al. Optimizatio n of pH controlled liquid hotwater pretreatme nt of corn stover. Bioresource Techno logy,2005,96:1986-1993
    [73] Egge man T, Elander R T. Process and economic ana lys is of pretreatme nttechno logies. Bioresour Technol.,2005,96(18):2019-25
    [74] Fan L T, Gharpura y M M, Lee Y H. In: Ce llulose Hydrolys is Biotechno logyMonographs. Berlin: Springer,1987,57
    [75] Carvalhe iro F, Duarte L C, Gírio F M. Hemice llulose biorefineries: a review onbiomass pretreatme nts. Journa l of Scientific&Industria l Research,2008,67:849-864
    [76] Tarkow H, Feist W C. In: A Mechanis m for Improving the Digestibility ofLignocellulosic Materials with Dilute Alka li and Liq uid NH3Advance ChemistrySeries95. Washington DC: American Chemica l Society,1969,197-218
    [77] Bjerre A B, Olesen A B, Fernqvist T. Pretreatme nt of wheat straw us ing comb inedwet oxidation a nd alkaline hydro lys is resulting in convertib le cellulose andhemice llulose. Biotechno logy and Bioengineering,1996,49:568-577
    [78] Kumar R, Wyma n C E. Effects of ce llulase and xyla nase enzymes on thedeconstruction of solids from pretreatment of poplar by leading technolo gies.Biotechno logy Progress,2009,25:302-314
    [79] Millet M A, Baker A J, Scatter L D. Phys ica l and che mica l pretreatment forenhanc ing cellulose saccharification. Biotechnolo gy a nd bioengineeringsymposium,1976,6:125-153
    [80] Chosdu R, Hilmy N, Eriza l Erlinda T B, et al. Radiatio n and chemica lpretreatment of cellulosic waste. Radiation Phys ics and Chemistry,1993,42:695-698
    [81] Iyer P V, Wu Z W, K im S B, et al. Ammo nia recycled percolation process forpretreatment of herbaceous bio mass. Applied Bioche mistry and Biotechnolo gy,1996,57:121-132.
    [82] Kim S, Holtzapple M T. De lignification k inetics o f corn stover in limepretreatment. Bioresource Techno logy,2006,97:778-785
    [83] Chang V S, Nagwani M, Kim C H, et al. Oxidative lime pretreatment ofhigh-lignin bio mass: poplar wood and newspaper. Applied Bioche mistry andBiotechno logy,2001,94(1):1-28
    [84] Saha B C, Cotta M A. Ethano l production fro m alka line peroxide pretrea tedenzymatically saccharified wheat straw. Biotechno logy Progress,2006,22:449-453
    [85] US DOE. Advanced bioetha no l techno logy. Department o f Energy, Office ofEnergy Effic ienc y and Renewable Energy, Office of Transportation Technolo gies.Washingto n DC. USA./www.ott.doe.gov/b iofue ls/. US,2003
    [86] Azza m A M. Pretreatment o f cane bagasse with alkaline hydrogen peroxide forenzymatic hydro lys is of cellulose and ethano l fermentatio n. J. Environ. Sci.Health. B.,1989,24(4):421-433
    [87] Chum H L, Johnsoon D K, Black S. Organosolv pretreatment for enzymatichydro lys is o f poplars:1. enzyme hydrolys is of ce llulosic res idues. Biotechno logyand Bioengineering,1988,31:643-649
    [88] Thring R W, Chorent E, Overend R. Recovery of a solvo lytic lignin: effects ofspent liquor/ac id vo lume ration, ac id concentratio n and te mperature. Bio mass,1990,23:289-305
    [89] Sarkanen K V. Acid-catalyzed delignification of lignocellulosics in organicsolve nts. Prog. Bio mass Convers.,1980,2:127-144
    [90] Papatheofanous M G, Billa E, Koullas D P, et al. Twostage acid-catalyzedfractionation of lignoce llulos ic bio mass in aqueous etha nol syste ms at lowtemperatures. Bioresource Techno logy,1995,54:305-310
    [91] Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic b io mass forenzymatic hydrolys is. App lied Microbio logy and Biotechno logy,2009,82:815-827
    [92] Pan X J, Gilkes J, Kadla K, et al. Bioconversio n of hybrid poplar to etha nol andco-products us ing a n organosolv fractio nation Process: Optimization o f processyie lds. Biotechno logy and Bioengineering,2006,94:851-861
    [93] Pan X J, Xie K Y, Kang S L, et a l. Effect of orga nosolv etha nol pretreatme ntvariab les on phys ica l characteristics of hybrid poplar substrates. AppliedBioche mistry and Biotechno logy,2007,137:136-140
    [94] Pan X, Xie D, Gilkes N, et al. Strategies to enhance the enzymatic hydrolys is ofpretreated softwood with high res idua l lignin content. Applied Bioche mistry andBiotechno logy: Part A: Enzyme Engineering and Biotechnolo gy,2005,124:1069-1079.
    [95] Duff S J B, Murray W D. Bioconvers ion of forest products industry wastece llulos ics to fue l etha nol: a review. Bioresource Techno logy,1996,55:1-33
    [96] Morjano ff P J, Gray P P. Optimization of steam explos ion as method forincreasing s usceptib ility of s ugarcane bagasse to enzymatic saccharification.Biotechno logy and Bioengineering,1987,29:733-741
    [97] Grous W R, Converse A O, Grethle in H E. Effect of steam exp losio n pretreatme nton pore size and enzymatic hydro lys is of poplar. Enzyme and Microbia lTechno logy,1986,8:274-280
    [98] Browne ll H H, Yu E K C, Saddler J N. Steam-explos ion pretreatment of wood:effect of chip s ize, ac id, mo isture content a nd pressure drop. Biotechno logy andBioengineering,1986,28:729-801
    [99] Varga E, Réczey K, Zacchi G. Optimization of steam pretreatment of corn stoverto enha nce enzymatic digestib ility. Applied Biochemistry and Biotechnology,2004,113:509-23
    [100] Soderstrom J, P ilcher L, Galbe M, et al. Two-step steam pretreatment o f softwoodby dilute H2SO4impregnation for ethano l production. Bio mass and Bioenergy,2003,24:475-486
    [101] Tengborg C, Stenberg K, Galbe M, et al. Comparison of SO2and H2SO4impregnation of softwood prior to steam pretreatme nt on ethano l production.App lied Microbiolo gy and Biotechnolo gy,1998,70:3-15
    [102] Ave llar B K, Glasser W G. Steam-assisted b iomass fractionation. I. Processcons ideratio ns and economic eva luatio n. Bio mass Bioenergy,1998,14:205-218
    [103] Oliva J M, Sáez F, Ballesteros I, et al. Effect of lignocellulosic degradationcompounds fro m stea m explos ion pretreatme nt on ethanol fermentation bythermotolerant yeast Kluyvero myces marxia nus. Applied Microbio logy andBiotechno logy,2003,105:141-154
    [104] Palo nen H, Thomse n A B, Tenkanen M, et al. Eva luation of wet oxidationpretreatment for enzymatic hydrolys is of softwood. Applied Bioche mistry andBiotechno logy,2004,117:1-17
    [105] Olsson L, Jorgensen H, Krogh K B R, et a l. Bioetha nol productio n fro mlignoce llulos ic materia l. In: Dimitriu, S.(Ed.), Polysaccharides Structura lDivers ity and Functio nal Versatility. New York: Marcel Dekker,2005,957-993
    [106] Martí n C, Thomse n M H, Hauggaard H, et a l. Wet oxidation pretreatment,enzymatic hydro lys is and s imulta neous saccharification and fermentatio n ofclover-ryegrass mixtures. Bioresource Techno logy,2008,99:8777-8782
    [107] Klinke H B, Ahring B K, Schmidt A S, et al. Characterization of degradationproducts from alka line wet oxidation of wheat straw. Bioresource Technolo gy,2002,82:15-26
    [108] Palo nen H, Thomse n A B, Tenkanen M, et al. Eva luation of wet oxidationpretreatment for enzymatic hydrolys is of softwood. Applied Bioche mistry andBiotechno logy,2004,117:1-17
    [109] Varga E, Schmidt A S, Réczey K. Pretreatment o f corn stover using wet oxidationto enhance enzymatic d igestib ility. Applied Bioche mistry and Biotechnolo gy,2003,104(1):37-50
    [110] Boominathan K, Reddy C A. cAMP-mediated differentia l regulatio n of ligninperoxidase and manganese-dependent peroxidase production in the white-rotbasid io mycete Phanerochaete chrysosporium. Proceedings of the Nationa lAcademy of Sciences,1992,89(12):5586-5590
    [111] Bla nchette R A. Delignificatio n by wood-decay fungi. Annua l Re view ofPhytopatholo gy,1991,29:381-398
    [112] Schurz J. In: Ghose TK, editor. Bioconvers ion of Cellulos ic Substances intoEnergy Chemica ls and Microbia l Protein Sympos ium Proceedings. New Delhi:IIT,1978,37
    [113] Lee J. Review: Bio lo gical conversion o f lignocellulosic b iomass to etha nol.Journa l of Biotechno logy,1997,56(1):1-24
    [114] Sánche z C. Lignocellulos ic resid ues: biodegradatio n and bioconvers ion by fungi.Biotechno logy Advances,2009,27:185-194
    [115] Ander P, Ericksson KE. Se lective degradatio n of wood components by white-rotfungi. Phys io logy plant,1977,41:239-248
    [116] Kumar P, Barrett D M, Delwiche M J, et al. Methods for pretreatment oflignoce llulos ic b iomass for effic ie nt hydrolys is and b iofue l productio n. Industria l&Engineering Chemistry Research,2009,48:3713-3729
    [117] Shi J, Chinn M S, Sharma-Shivappa R R. Microb ial pretreatment of cotton stalksby solid state cultivation of Phanerochaete chrysosporium. BioresourceTechno logy,2008,99:6556-6564
    [118] Hatakka A I. Pretreatme nt of wheat straw by white-rot fungi for enzymaticsaccharificatio n of cellulose. Applied Microbio logy and Biotechno logy,1983,18:350-357
    [119] Ander P, Eriksson K E. Selective degradatio n of wood components b y white-rotfungi. Phys io logy Plant,1977,41:239-248
    [120] Akin D E, Rigsby L L, Sethura ma n A, et al. Alterations in structure, che mistry,and biodegradability of grass lignocellulose treated with the white rot fungiCeriporiops is subvermispora ad Cyathus stercoreus. Applied and Enviro nmenta lMicrobio logy,1995,61:1591-1598
    [121] toh H, Wada M, Honda Y. Bioorganosolve pretreatme nts for s imultaneoussaccharificatio n and fermentatio n of beech wood by ethano lys is and white rotfungi. Journa l of Biotechnolo gy,2003,103:273-280
    [122] Kuhar S, Nair L M, Kuhad R C. Pretreatment of lignocellulos ic materia l withfungi capable of higher lignin degradatio n and lower carbohydrate degradationimproves substrate acid hydrolys is and eventua l conversion to ethano l. Canad ianJourna l of Microb iolo gy,2008,54:305-313
    [123] Singh P, Suma n A, Tiwari P. Bio logica l pretreatme nt of sugarcane trash for itsconversio n to fermentab le sugars. World Journa l of Microbio logy andBiotechno logy,2008,24:667-673
    [124] Graf A, Koehler T. Oregon Cellulose-Ethano l Study. Sale m OR USA: OregonOffice of Energy,2000,30
    [125] Ojumu T V, Ogunk unle O A. Production of glucose fro m lignocellulos ic underextreme ly low acid and high temperature in batch process, auto-hydrolys isapproach. Journa l of Applied Sc iences,2005,5(1):15-17
    [126] Badger Enginners. Inc., SERI Subcontract Report. No.ZX-3-03096-1,1982
    [127] Stone&Webster Engineering Corp. SERI Subcontract Report No. ZX-3-03096-1,1982
    [128] Wright J. Ethano1fro m bio mass by enzymatic hydro1ys is. Che mica l EngineeringProgress,1988,84:62
    [129] Yamada T, Fitigati M, Zhang M. Performa nce of immobilized Zymomonas mobilis31821(pZB5) on actual hydro lysates produced by arkenol tec hnolo gy. AppliedBioche mistry and Biotechno logy,2002,98:899-907
    [130] Zhang Y H P, Lynd L R. Toward an aggre gated understand ing of enzymatichydro lys is o f cellulose: nonco mple xed cellulose syste ms. Biotechno logy andBioengineering,2004,8(7):797-824
    [131] Nidetzky B, Ste iner W, Hayn M. Cellulose hydro lys is by the cellulases fro mTric hoderma reesei: a new model for synergistic interaction. Bioche mistry,1994,298:705-710
    [132] Wang L S, Zha ng T Z, Gao P J. A nove l function for the ce llulose binding moduleof cellobiohydrolase I. Scie nce in China Series C: Life Sciences,2008,51:620-629
    [133] Wang L, Zhang Y, Gao P, et al. Changes in the structura l properties and rate ofhydro lys is of cotton fibers during extended enzymatic hydrolys is. Biotechno logyand Bioengineering,2006,93(3):443-56
    [133] Beguin P, Aubert J P. The b iolo gical degradation o f cellulose. FEMSMicrobio logy Reviews,1994,13:25-28
    [134] Lynd L R, Weimer P J, van Zyl W H. Microbia l ce llulose utilization:funda menta ls and biotechno logy. Microbio logy and Molecular Bio logy Reviews,2002,66(3):506-577
    [135] Suominen P L, Mantyla A L, Karhunen T. High frequency one-step genereplace ment in Tric hoderma reesei. II Effects of deletions of ind ividua l cellulasegenes. Mo lecular Genetics and Geno mics,1993,241:523-530
    [136]阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学,1995,7(5):21-29
    [137] Davies G J. structura l studies on cellulases. Bioche m soc trans,1998,26:167-173
    [138] Zhang Y H, Lynd L R. Kinetics and relative importance of phosphoro lytic andhydro lytic c leavage o f cellodextrins and cellob iose in cell extracts of Clostrid iumthermocellum. Applied and Environme nta l Microbio logy,2004,70:1563-1569
    [139] Bansal P, Hall M, Realff M J, et al. Modeling cellulase kinetics on lignocellulosicsubstrates. Biotechnolo gy Adva nces,2009,27(6):833-48
    [140] Tengborg C, Galbe M, Zacchi G. Influe nce of enzyme loading and phys ica lparameters on the enzymatic hydrolysis o f steam-pretreated softwood.Biotechno logy Progress,2001,17:110-117
    [141] Lynd L R, Wyman C E, Gerngross T U. Biocommodity engineering. DartmouthColle ge/Tha yer School o f Engineering. Hanover NH. USA,1999
    [142] Foody B. Form presentatio n at the27th Symposium on Biotechno lo gy for Fue lsand Chemica ls. Chattanooga. TN. USA,2004
    [143] Fang X, She n Y, Zhao J. Status and prospect of lignocellulosic b ioethano lproductio n in China. Bioresource Technolo gy,2010,101(13):4814-4819
    [144] Krogh K B, Morkeberg A, Jogense n H. Screening genus Penic illum for producersof cellulo lytic and xyla nolytic enzymes. App lied Bioche mistry and Biotechno logy,2004,114:389-401
    [145] Rapp P, Grote E, Wagner F. Formation and locatio n of1,4-β-glucosidases fro mPenic illium janthine llum. Applied and Enviro nmenta l M icrobiolo gy,1981,41:857-856
    [146] Wood T M, McCrae S I, Macfarlane C C. The isolation,purification properties ofthe ce llobiohydrolase component of Penicillium funic ulosum cellulase.Biotechno logy and Bioengineering,1980,105(4):718-728
    [147] Mikan V J F, Castella noss D E. Screening for isolation a nd characterisatio n ofmicroorganis ms and e nzymes with use ful potential for degradatio n of ce lluloseand hemice llulose. Revista Colombiana de Biotecnología,2004,6:58-67
    [148] Sanche Z C. Lignocellulos ic residues: Biodegradatio n and bioconversio n byfungi.Biotechnolo gy Adva nces,2009,27:185-194
    [149] Jorge nsen H A, Morkeberg K B R, Krogh. Productio n of cellulases andhemice llulases by three Penic illium species: effect of substrate and evaluation ofce llulase adsorption by capillary electrophoresis. Enzyme and Microbia lTechno logy,2005,36:42-48
    [150] Zeng G M, Jin-Gang Shi, Yuan X Z, et al. Effects of Tween80and rhamnolip idon the extracellular enzymes of Penicillium simplicissimum iso lated fro m compost.Enzyme and M icrobial Techno logy,2006,39:1451-1456
    [151] Velkovska S, Marten M R, Ollis D F. Kinetic model for batch cellulase productionby Tric hoderma reesei RUT C30. Journa l of Biotechno logy,1997,54:83-94
    [152] Fang X, Yano S, Inoue H. Stra in improve ment of Acre monium cellulo lytic us force llulase production by mutatio n. Journa l of Bioscie nce and Bioengineering,2009,107(3):256-261
    [153] Amidon T E, Wood C D, Shupe A M. Biorefinery: conversio n of woody biomassto che micals, energy and materials. Journa l o f Biobased Materials and Bioenergy,2008,2(2):100-120
    [154] Xiao Z H, Qu Y B, Gao P J. Cellulose-bind ing doma in of e ndoghcanase Ⅲ fro mtric hoderma reesei disrupting the structure of cellulose. Biotechno logy Letters,2001,23(9):711-715
    [155] Sun R C, Tomk inson J. Comparative study of lignin iso lated by alkali andultrasound-assister a lkali extractions fro m wheat straw. UltrasonicsSonoche mistry,2002,9:85-93
    [156]陈洪章,邱卫华.秸秆发酵燃料乙醇关键问题及其进展.化学进展,2007,19:1116-1121
    [157]刘秉钺,梁文芷,邢效功.桦木磺化化机浆化学预处理废液的循环使用.北方造纸,1997,3:46-48
    [158]刘巽浩.秸秆还田的机理与技术模式.北京:中国农业出版社,2001
    [159] Xu F, Sun J X, Sunc R C, et al. Comparative study of organoso lv lignins fro mwheat straw. Industria l Crops and Products,2006,23:80-193
    [160] Maloney M T, Chap man T W, Baker A J. Dilute acid hydrolys is of paper b irch:kinetics stud ies of xyla n and acetyl group hydro lys is. Biotechno logy andBioengineering,1985,27:355-361
    [161] Taherzadeh M J, Nik lasson C, Liden G. Convers ion of d ilute-acid hydro lyzates ofspruce and birch to ethano l by fed-batch ferme ntation. Bioresource Technolo gy,1999,69(1):59-66
    [162] Beck M J, Strick land R C. Production of etha nol by b ioconvers ion of wood sugarsderived fro m two-stage dilute acid hydrolys is of hardwood. Bio mass,1984,6(1-2):101-110
    [163] Papatheofanous M G, Billa E, Koullas D P, Monties B, Kouk ios E G. Twostageac id-cata lyzed fractionation of lignocellulos ic bio mass in aqueous ethano lsystems at low te mperatures. Bioresource Technolo gy,1995,54(3):305-310
    [164] Yan Y, Li T, Ren Z. A study on catalytic hydro lys is o f peat. BioresourceTechno logy,1996,57(3):269-273
    [165] Kim K H, Tucker M, Nguye n Q. Convers ion of bark-rich b iomass mixture intofermentab le sugar by two-stage dilute acid-catalyzed hydrolys is. BioresourceTechno logy,2005,96(11):1249-1255
    [166] Lu X, Zha ng Y, Liang Y. Kinetic stud ies of he micellulose hydro lys is of cornstover at atmospheric pressure. Korean Journa l of Che mical Engineering,2008,25(2):302-307
    [167] Té lle z-Luis S J, Ramíre z J A, Vá zque z M. Modelling o f the hydro lys is o fsorghum straw at atmospheric pressure. Journa l of the Sc ience of Food andAgriculture,2002,82(5):505-512
    [168] Ruo fei Hu, Lu Lin, Tingjun Liu. Dilute sulfuric acid hydrolys is of sugar maplewood extract at atmospheric pressure. Bioresource Techno log,2010,101:3586-3594
    [169] Zhao H B, Kwak J H, Wang Y, et a l.Effects of crystallinity on d ilute acidhydro lys is o f cellulose by cellulose ball-milling study.Energy Fue ls,2006,20:807-811
    [170] Endo T, Kitagawa R, Hirotsu T, et al. Fine-powdering of fibrous cellulose bymecha nical milling. Kobunshi Ro nbuns hu,1999,56(3):166-173
    [171] Kelsey R G, Shafizadeh F.Enhance ment of cellulose accessibility and enzymatichydro lys is by s imultaneous wet milling. Biotechno logy and Bioengineering,1980,22:1025-1036
    [172] Furcht P W, Silla H.Compariso n of s imultaneous wet milling and enzymatichydro lys is of ce llulose in ba ll mill a nd attritio n mill reactors.Biotechnolo gy andBioengineering,1990,35:630-645
    [173] Mais U, Esteghla lia n A R, Saddler J N, etal. Enha nc ing the enzymatic hydrolys isof cellulosic materia ls us ing s imultaneous ball milling. Applied Biochemistry andBiotechno logy,2002,98:815-832
    [174] Hua R, Lin L, Liu T, et al. Dilute sulfuric acid hydrolys is o f sugar maple woodextract at atmospheric pressure. Bioresource Techno logy,2010,101:3586-3594
    [175] Zhu J Y, Pan X J. Woody b iomass pretreatment for cellulos ic ethano l production:Techno logy and energy consumption eva luation. Bioresource Technolo gy.2010,101,4992-5002
    [176] Hung C L. Revealing fibril angle in wood science by ultrasonic treatment. Woodand Fiber Science,1995,27:49-54
    [177]叶君,梁文芷,范佩明.超声波处理引起纸浆纤维素结晶度变化.广东造纸,1999,2:6-9
    [178] Ima i M, Ikari K, Suzuk i I. High-performance hydro lys is o f ce llulose us ing mixedce llulase species and ultrasonication pretreatment. Bioche mical EngineeringJourna l,2004,17(2):79-83
    [179] Hendriks A T W M, Zeema n G. Pretreatme nts to enha nce the digestibility o flignoce llulos ic bio mass. Bioresource Techno logy,2008,100:10-18
    [180]行星式球磨仪.工作原理. www. caigou. com. cn/Product/detail/product_218220.shtml,2012-08-01
    [181] Ghose T K.Measureme nt of cellulase activities.Pure and Applied Che mistry,1987,59257-268
    [182] Daia J, Wu Y, Chen S W, et al. Sugar compositiona l determination o fpolysaccharides fro m Duna lie lla salina by modified RP-HPLC method ofprecolumn derivatizatio n with1-phenyl-3-methyl-5-pyrazo lone. CarbohydratePolymer,2010,82:629-635
    [183] Sjostrom, E. Wood che mistry: Fouda menta ls and Applications. London:Academic Press,1981
    [184] Moye C J.5-Hydroxymethylfurfura l. Reviews of pure and applied chemistry1964,14:161-170
    [185] Van Da m H E, Kieboom A P G, van Bekkum H. The Convers ion o f Fructose andGlucose in Ac id ic Media: Formation o f Hydroxymethylfurfura l. Atarch/Starke,1986,38:95-101
    [186] Schoene mann K, Hofmann H. Die konsequente Anwe ndung der chemisc henReaktionstechnik. Chemica l Engineering Science,1957,8:161-176
    [187] Root D F, Saema n J F, Harris J F. Kinetics of the acid-cata lyzed conversio n ofxylose to furfura l. Forest Products Journa l,1959,9:158-165
    [188] Jones E O, Lee J M.Kinetic ana lys is of b ioconvers ion of ce llulose in attritionbioreactor. Biotechno logy and Bioengineering,1988,31:35-40
    [189] Kim T H, Kim J S, Sunwoo C, et al. Ptetreatment of corn stover by aqueousammonia. Bioresource Technolo gy,2003,90(1):39-47
    [190] Larsson S, Palmq vist E, Hahn-Hagerdal B, et al. The generation o f ferme ntationinhib itors during dilute acid hydrolys is of softwood. Enzyme and Microbia lTechno logy,1999,24:151-159
    [191] Cruz J M, Dom nguez J M, Dom nguez H, et al.Preparatio n of ferme ntation mediafro m agricultura l wastes and the ir bioconversio n into xylito l. Food Biotechno logy,2000,14(1&2):79-97
    [192] Zhou J X, Chen D, Zhu Y H, et al. Simulta neous wet ball milling a nd mild acidhydro lys is of rice hull. Journa l of Che mical Techno logy&Biotechno logy,2010,85:85-90
    [193] Liao H D, Chen D, Yuan L. Immob ilized Cellulase by polyvinyl alcoho l/Fe2O3ma gnetic na nopartic le to Degrade M icrocrystalline Cellulose.CarbohydratePolymer,2010,82:600-604
    [194][195] Mazeau K, Heux L. Molecular d yna mics s imulatio ns of b ulk nativecrystalline and amorpho us structures o f cellulose. The Journa l o f Phys ica lChemistry B,2003,107:2394-2403
    [195] Vittad ini E, Dickinson L C, Chinachoti P.1H and2H NMR mobility in cellulose.Carbohydrate Polymer,2001,46:49-57
    [196] Mosier N, Wyman C, Dale B, et al. Features of promis ing technolo gies forpretreatment oflignocellulos ic biomass. Bioresource Techno logy,2005,96:673-686
    [197] Robinson J, Keating J D, Boussaid A, et al. The influence of bark on thefermentation o f Do uglas-fir whitewood pre-hydro lysates. Applied Microbio logyand Biotechnolo gy,2002,59:443-448
    [198] Bura R, Bothast RJ, Mans fie ld SD, et al. Optimization of SO2-catalyzed steampretreatment of corn fiber for ethano l production. Applied Bioche mistry andBiotechno logy,2003,105:319-335
    [199] Sjostrom E. Wood chemistry: fundame nta ls and app licatio ns2nd edn.Washongton DC: Academic,1981
    [200] Eriksson O, Lind gren B. About the linkage between lignin and he mice lluloses inwood. Svensk Papperstid ning,1977,80:59-63
    [201] Lai Y Z. In: Hon DN-S, Shirais hi N(eds)Wood and cellulose chemistry. New York:Marcel Dekker,1991
    [202] Bardet M D, Robert K, Lundquist S von Unge. Distribution o f erythro and threoforms of different types of β-O-4structures in aspen lignin by13C NMR using the2D INADEQUATE experime nt. Magnetic Resonance in Chemistry,1998,36:597-600
    [203] Lundquist K. IH NMRspectral stud ies of ligins. Quantitative estimates of sometypes of structura l ele ments. Nord Pulp paper Reseach,1991,6:140-146
    [204] Hon D N S. Mechanoche mica l reactions of lignocellulos ic materia ls. J ourna l ofApp lied Polymer Scie nce,1983,37:461-481
    [205] Faix, O. Class ificatio n of lignins fro m different botanica l origins by FT-IRspectroscopy. Holzforschung,1991,45:21-27
    [206] Jahan M S, Chowdhury D A N, Isla m M K. Bioresource Techno lo gy,2007,98:465-469
    [207] Xu F, Sun J X, Sun R C, et al. Comparative study o f organoso lv lignins fro mwheat straw. Industria l Crops and Products,2006,23:80-193
    [208] Sun R C, Lu Q, Sun X F. Fractio nal characterization of ash-AQ lignin bysuccess ive extraction with organic solvents from o il palm EFB fibre. Po lymerDegradation and Stab ility,2001,72:229-238
    [209] Patel S J, Onkarappa R, Shobha K S. Study o f ethano l productio n from funga lpretreated wheat and rice straw.The Internet Journal of Microbiology,2007,4:116-121
    [210] Guchi M, Suzuk i H, Watanabe D, et al. Eva luation o f pretreatment with Ple urotusostreatus for enzymatic hydro lys is of rice straw. Journal o f Bioscie nce andBioengineering,2005,100:637-643
    [211] Hame linck C N, Hooijdonk G V, Faaij A P. Biomass Bioenergy,2005,28:384-410
    [212] Duff S J B, Murray W D. Bioconvers ion of forest products industry wastece llulos ics to fue l etha nol: a review. Bioresource Technolo gy,1996,55:1-33
    [213]吴康.根癌农杆菌介导的丝状真菌简青霉遗传转化的研究.湖南大学学报:自然科学版,2010,37(10):72-76
    [214]徐海娟,梁文芷.白腐菌降解木素酶系及其作用机理.环境污染治理技术与设备,2000,1(3):51-54
    [215]郁红艳,曾光明,黄国和.简青霉Penicillium simplicissimum木质素降解能力.环境与科学,2005,26(2):167-171
    [216] Wood P J, Fulcher R G. Interaction of some dyes wit h cereal β-gluca ns. CerealChemistry,,1980,55:952-966
    [217] Wood P J. The interaction of direct dyes with water solub le substituted celluloseand cereal β-gluca ns. Industrial&Engineering Chemistry Product Research,1980,19:19-23
    [218] Wood P J. Specific ity in the interaction o f direct dyes with polysaccharides.Carbohdrate Research,1980,85:271-287
    [219] Teather R D, Wood P J. Use of congo red-p loysaccharide interactio n inenumeration and characterization o f cellulo lytic bacteria fro m the bovinerumen.Applied and Enviro nmenta l M icrobio logy,1982,43(4):777-780
    [220] Park C H, Kang Y K, Im S S. J. Biodegradability of ce llulose fabrics. Journa l ofApp lied Polymer Scie nce,2004,94:248-253
    [221] Xu X, Wang Q, Kong X G, et al. Pan mill type equip ment designed for po lymerstress reactions: theoretica l analys is of structure and milling process ofequip ment.P lastics and Rubber Processing and Applications,1996,25(3):152-158
    [222] Foody P. Method for increasing the accessib ility of ce llulose in lignocellulosicmateria ls,particularly hardwoods agricultura l residues and the like. US Patent4461648,1984
    [223] Schroeterl J, Felix F. Melting cellulose. Cellulose,2005,12:159-165
    [224] Mikus hina I V, Troitskaya I B, Dushk in A V. Tra ns formations o f Wood Structureunder Mechanoche mical Treatment. Che mistry for Susta inab le Develop ment,2003,11:363-370
    [225] Laureano-Pérez L, Teymouri F, Alizadeh H, et al. Understand ing factors that limitenzymatic hydrolys is of bio mass. Applied Bioche mistry and Biotechno logy,2005,121:1081-1099
    [226] Ebringerová A, Hromádková Z. An overview on the application of ultrasound inextraction, separation and purification of p lant polysaccharides. Centra l EuropeanJourna l of Chemistry,2010,8:243-257
    [227] Li M F, Fan Y M, Sun R C. Characterization o f extracted lignin o fbamboo(Neosinocala mus affinis) pretreated with sod ium hydroxide-urea solutionat low temperature. Bioresource Techno logy,2010,5:1762-1778
    [228] Yu J, Zha ng J, He J. Comb inations of mild physica l or che mical pretreatment withbiolo gical pretreatme nt for enzymatic hydrolys is of rice hull. BioresourceTechno logy,2009,100:903-908
    [229] Sun R C, Tomk inson J. Comparative study of lignin iso lated by alkali andultrasound-assister a lkali extractions fro m wheat straw. UltrasonicsSonoche mistry,2002,9:85-93
    [230] Sun R C, Tomk inson J. Characterizatio n of he micelluloses obta ined by c lassica land ultrasonically ass isted extractions fro m wheat straw. Carbohydrate Polymer,2002,50:263-271
    [231] Sun R C, Sun X F, Xu X P. Effect of ultrasound on the phys icochemica l
    [232] properties of organosolv lignins from wheat straw. Journa l o f Applied Po lymerScie nce,2002,84:2512-2522
    [233] Sun R C, Sun X F, Ma X H. Effect of ultrasound on the structura l andphys icochemica l of orga nosolv solub le he mice llu loses fro m wheat straw,Ultrasonics Sonochemistry,2002,9:95-101
    [234] Sun R C, Tomk inson J, Ye J. Phys ico-chemica l and structural characterization ofresidua l lignins iso lated with TAED activated peroxide fro m ultrasound irrad iatedand a lkali pre-treated wheat straw. Po lymer Degradation and Stability,2003,79:241-251
    [235] Kunaver M, Jasiukaityte E, Cuk N. Ultrasonica lly assisted lique factio n of
    [236] lignoce llulos ic materia ls, Bioresource Techno logy,2012,103:360-366
    [237] Yong-ze W, Xiong C, Zhi W, et al. Effect of low concentration alka li andultrasound comb ination pretreatment o n bio gas production by sta lk. AdvancedMateria ls Research,2012,383:3434-3437
    [238] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment techno logies for aneffic ient bioetha no l productio n process based on enzymatic hydro lys is: a review.Bioresource Techno logy,2010,101:4851-4861
    [239] Yunus R, Sa lleh S F, Abdulla h N, et al. Effect of ultrasonic pre-treatment on lowtemperature acid hydro lys is o f o il palm e mpty fruit bunc h. BioresourceTechno logy,2010,101:9792-9796
    [240] Rodrigues S, Pinto G A S. Ultrasound extraction of phenolic compounds fro mcoconut (Cocos nuc ifera) she ll powder. Journal o f Food Engineering,2007,80:869-872
    [241] Sulma n E M, Sulman M G, Prutenskaya E A. Effect of ultrasonic pretreatme nt onthe compositio n of lignocellulosic materia l in b iotechnolo gical processes.Catalys is Industria l,2011,3:28-33
    [242] Qi B C, Aldric h C, Lorenze n L. Effect of ultrasonication o n the humic acidsextracted fro m lignoce llulose substrate decomposed by anaerobic d igestion.Chemical Engineering Journa l,2004,98:153-163
    [243] Sun J X, Xu F, Sun X F, et al. Comparative stud y of lignins fro m ultrasonicirradiated sugar-cane bagasse. Polymer Internationa l,2004,53:1711-1721
    [244] Sun J X, Sun R C, Sun X F, et al. Fractiona l and phys ico-chemica lcharacterization o f he micelluloses fro m ultrasonic irrad iated sugarcane bagasse.Carbohydrate Research,2004,339:291-300
    [245] Yachme nev V, Condon B, Klasson T, et al. Acceleratio n of the enzymatichydro lys is of corn stover and sugar cane bagasse celluloses by low intens ityuniform ultrasound. Journa l of Biobased Materia ls and Bioenergy,2009,3:25-31
    [246] Velmurugan R, Muthuk umar K. Utilization of sugarcane bagasse for bioethano lproductio n: sono-assisted acid hydrolys is approach. Bioresource Technolo gy,2011,102:7119-7123
    [247] Yuan T Q, Sun S, Xu F. Isolatio n and phys ico-chemica l characterization o flignins from ultrasound irrad iated fast-growing poplar wood. BioResources,2011,6:414-433
    [248] Yuan T Q, Xu F, He J. Structura l and phys ico-che mica l characterization ofhemice lluloses fro m ultrasound-assisted extractions o f partia lly delignifiedfast-growing poplar wood through organic solvent and a lkaline solutions.Biotechno logy Advances,2010,28:583-593
    [249] Garcia A, Alrio ls M G, Ponte R L. Ultrasound-ass isted fractionation of thelignoce llulos ic materia l, Bioresource Techno logy,2011,102:6326-6330
    [250] Kadima liev D A, Revin V V, Atykya n N A. Effect of wood modification on lignincons umptio n and synthes is of ligno lytic enzymes by the fungus Panus (Lentinus)tigrinus. Applied Bioche mistry and Biotechno logy,2003,39:488-492
    [251] Gadhe J B, Gupta R B, Elder T. Surface modification o f lignocellulos ic fibersus ing high-frequency ultrasound. Cellulose,2006,13:9-22
    [252] Li C, Yoshimoto M, Ogata H. Effects of ultrasonic intens ity and reactor sca le onkinetics of enzymatic saccharificatio n of various waste papers in continuous lyirradiated stirred tanks. Ultrasonics Sonoche mistry,2005,12:373-384
    [253] Chang V S, Ho ltzapp le M. Fundame nta ls factors affecting b io mass reactivity.App lied Bioche mistry and Biotechno logy,2000,84:5-37
    [254] Ruiz H A, Ruzene D S, Silva D P. Developme nt and characterizatio n of anenvironme nta lly friend ly process sequence (autohydrolys is and organosolv) forwheat straw delignification. Applied Biochemistry and Biotechnolo gy,2011,164:629-641
    [255] Stewart D, Wilso n H M, Hendra P J. Fourier-transform infrared andRama n-spectroscopic study o f bioche mica l and chemica l treatments o f oak wood(Quercus rubra) and barley (Hordeum vulgare) straw. Journa l of Agricultura l andFood Che mistry,1995,43:2219-2225
    [256] Shea D, Xub F, Genga Z C. Phys icoche mical characterization of extracted ligninfro m sweet sorghum ste m. Industria l Crops and Products,2010,32:21-28
    [257] Sain M, Panthapulakkal S, Bioprocess preparation o f wheat straw fibers and the ircharacterization. Ind ustrial Crops and Products,2006,23:1-8
    [258] Sun X F, Sun R C, Fowler P. Extraction and characterizatio n of origina l ligninand hemice lluloses fro m wheat straw. Journa l of Agric ultural and Food Chemistry,2005,53:860-870
    [259] Sun X F, Jing Z, Fowlerb P. Structura l characterizatio n and isolatio n of lignin andhemice lluloses fro m barley straw. Industria l Crops and Products,2011,33:588-598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700