氯氰菊酯降解菌株的筛选、鉴定、降解机制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟除虫菊酯(以下简称菊酯)是人工合成的一类高效、广谱、神经致毒性杀虫剂,被广泛应有于农业病虫害的防治和家庭卫生害虫的杀灭。作为高毒、难降解的有机磷和有机氯农药替代品,菊酯类除草剂在世界范围内得到广泛应用,目前菊酯类杀虫剂占我国农业杀虫剂使用面积的三分之一以上。
     相对有机磷和有机氯农药,菊酯类杀虫剂对哺乳动物低毒,环境危害较低。但最近的研究表明该类杀虫剂对哺乳动物的神经、生殖、免疫、内分泌和心血管系统等仍有明显的毒副作用;此外,菊酯类杀虫剂对蜜蜂、鱼类和水生无脊椎动物等非靶标性生物高毒,比如对鱼的急性毒性浓度一般在μg/L级。
     菊酯类杀虫剂在环境中的残留和降解越来越成为关注的焦点。以微生物降解为基础的生物修复是一种环境友好型污染物消除技术。本研究拟从拟除虫菊酯杀虫剂降解菌的分离筛选入手,同时研究其降解途径,通过易错PCR技术对菊酯水解酶进行体外定向进化,获得比酶活大幅提高的突变酶,解决了常规菌株难以降解联苯菊酯的问题。
     一、氯氰菊酯杀虫剂降解菌的分离和鉴定
     从生产菊酯杀虫剂的废水处理系统中分离到三株新菌株,分别命名为LQY-7T、LQY-18T和BA-3T。利用多相分类学技术对这三株菌的分类学地位进行了研究。
     菌株LQY-7T革兰氏染色阴性,菌体杆状,无鞭毛,无芽孢;菌落颜色为黄色,圆形并向上凸起,边缘光滑,直径2-4mm,并且粘着于平板上;细胞内无非扩散性黄色素。好氧,化能异养型。该菌株的呼吸醌为MK-6和MK-7;主要的脂肪酸为iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, anteiso-C15:0和iso-C15:0 3-OH; DNAG+C含量为34 mol%,将菌株LQY-7鉴定为Flavobacterium属的一个新种,命名为Flavobacterium haoranii sp. nov.。
     LQY-18T革兰氏染色反应呈阴性,无鞭毛,无芽孢,在TSA琼脂培养基上能够形成的黄色、表面凸起、光滑湿润,有边缘规则的菌落;主要的呼吸醌为MK-7;主要的脂肪酸为summed feature 3 (C16:1ω6c and/or C6:1cω7c), iso-C15:0和iso-C17:0 3-OH);包含磷脂酰乙醇胺,鞘脂,未知氨基磷脂,未知氨基脂,未知脂;DNA G+C含量为40.3 mol%。通过以上多相分类结果和16S rRNA基因序列相似性分析结果,将LQY-18鉴定为鞘氨醇杆菌属的一个新种,命名为Sphingobacterium wenxiniae sp. nov.。
     菌株BA-3T革兰氏染色反应呈阴性,无芽孢,杆状,无鞭毛,在MLB固体培养基上茵落呈灰白色、圆形、边缘规整、突起、不透明、质地均匀,严格好氧;主要的脂肪酸是C16:0、C14:02 -OH和Summed feature 8 (C18:1ω6c and/or C18:1ω7c);所含极性酯主要为乙醇酸磷酯、磷脂酰甘油、双磷脂酰甘油和神经鞘糖脂类和鞘糖脂;主要的醌是Q-10,主要的多胺是亚精胺;G+C含量为63.8 mol%。因此根据表型及多相分类特征、16S rRNA系统发育和DNA-DNA杂交分析,将菌株BA-3鉴定为鞘脂菌属的一个新种,命名为江苏鞘酯菌Sphingobium jiangsuense sp. nov.。
     二、菊酯水解酶PytH的定向进化
     根据已报道的菊酯水解酶基因序列设计引物,通过PCR从降解菌株JZ-2中克隆到了菊酯水解酶pytH基因,pytH结构基因共有840个碱基,编码280个氨基酸序列。将pytH基因连接到表达质粒载体pET29a上,在E.coli BL21实现了基因的高效表达。通过易错PCR对野生型pytH基因进行随机突变,获得了1个联苯菊酯水解活力增强的突变体LB37。和野生型PytH相比,突变体LB37有2个氨基酸位点发生改变(Y19F,H127R),其水解联苯菊酯的动力学参数kcat和kcat/Km比原始PytH分别提高6和70倍。通过定点突变技术,将野生型PytH的这两个氨基酸突变为相应的突变体LB37氨基酸,获得两个突变体M19(Y19F)和M127(H127R),酶动力学参数的测定结果表明,突变体M19的kcat/Km比原始PytH提高了5.5倍,M127的kcat/Km比原始PytH提高了14倍。
     三、菌株JZ-2对3-苯氧基苯甲酸的代谢途径研究
     菌株JZ-2以3-PBA为唯一碳源生长时,能够在24小时内完全降解100 mg·L-13-PBA;利用MS/MS技术检测了该菌株降解3-PBA的代谢产物,并检测了相关降解酶的酶活,结果表明3-PBA在3-苯氧基苯甲酸1,2双加氧酶的作用下断裂醚键生成邻苯二酚和间羟基苯甲酸,邻苯二酚经1,2-双加氧酶作用开环降解,而间羟基苯甲酸不能进一步降解。这是一条不同于国内外已有报道的3-PBA微生物降解代谢新途径。
     用MEGA分析软件将已报道的邻苯二酚1,2-双加氧酶基因进行了同源性比对,选择高保守区域设计兼并引物,以菌株JZ-2基因组DNA为模板成功扩增出约400bp的特异性条带,通过在GeneBank上进行核酸和蛋白质序列比对,发现该片段与咔唑降解菌Sphingomonas sp. KA1 plasmid pCAR3邻苯二酚1,2-双加氧酶(GeneBank Aeeession No. AB270530)同源性为98%,将catA基因的一个片段克隆至自杀性质粒pJQ200SK,转化至E. coli DH5αλpir中获得同源重组载体pJQ-catA,通过三亲接合转入JZ-2中,通过同源重组单交换将pJQ200SK插入catA基因获得突变子JZ-2-△catA.JZ-2-△catA失去了降解邻苯二酚的功能,并且由于邻苯二酚的反馈抑制使3-PBA降解速率下降,24h降解率约为30%,并且突变株不能在含有3-PBA的无机盐平板上生长,进一步证明了3-PBA是经过邻苯二酚的代谢过程被完全降解。
     采用以sacB基因为反向筛选标记的同源重组载体,将3-HBA降解基因mbhDHIM整合到Sphingobium faniae JZ-2T的染色体上,构建了遗传稳定、不含外源抗性基因的可以完全矿化3-PBA的工程菌株JZ-2-mbhDHIM。
     四、降解菌剂对菊酯污染的植株修复技术应用
     应用菊酯农药降解菌剂进行了浙江丽水茶叶的菊酯污染修复研究,通过试验发现降解菌的降解效果与菌剂用量成正相关,降解菌剂对不同类菊酯的降解效果有显著差异,适量的降解菌剂对甲氰菊酯、氯氟氰菊酯有较好的降解效果,对溴氰菊酯降解效果较差。降解菌剂对甲氰菊酯、氯氟氰菊酯3d后降解率达60%以上,7d后降解率达70%以上,而对溴氰菊酯3d后降解率只有32.26%,7d后降解率56.21%,降解菌的使用时间以药后1d傍晚处理效果最好。
Synthetical pyrethroids (SPs), which are synthetic version of an extract from the chrysanthemum, are now the major class of insecticides used for insect control in agriculture and households as a replacement for more toxic and environmentally persistent organochlorine and organophosphorus pesticides. Currently, SPs annual sales are estimated to reach above 1.5 billion dollars and rank the second in global insecticide sales. In China, SPs account for 1/3 of total pesticides application area.
     Although pyrethroid pesticides generally have lower acute oral mammalian toxicity than organophosphate and organochlorine insecticides, exposure to pyrethroid pesticides might cause damage to reproductive, immune, endocrine and cardiovascular systems. Especially, most pyrethroid pesticides possess acute toxicity to some nontarget organisms, such as bees, fish, and aquatic invertebrates, with LC50 values less than 0.5μg/L and factor of safety lower than 0.063 to fish.
     Great concerns have been raised about the persistence and degradation of pyrethroid pesticides in the environment. Bioremediation based on the degradation ability of microorganisms was an environment friendly method in the treatment of pollutants.The aim of this study was to isolate pyrethroid-degrading strains, elucidate the degradation pathway, clone the degradation-related genes, which would be helpful to research the gene function and establish foundation of construct the genetic engineered strain by enhanced degrading capacity.
     Three novel bacteria strains designated LQY-7T, LQY-18Tand BA-3Twere isolated from activated sludge in a synthetic pyrethroid-manufacturing wastewater treatment facility in Yangnong Chemical Group Co., LTD., Jiangsu Province, China by using a classic enrichment method. Strains LQY-7T, LQY-18Tand BA-3T showed obviously distincted morphological, chemotaconomic and phylogentic characteristics from their cloest neighbors. Based on the polyphasic taxonomic results, the isolated strains LQY-7T, LQY-18T and BA-3Twere assigned to the members of the genus Flavobacterium, Sphingobacterium and Sphingobium.
     LQY-7T cells are Gram-negative rods,0.3-0.7μm in width and 1.3-2.0μm in length, non-spore-forming, and motile by gliding. Congo red is not absorbed and flexirubin-type pigments are not produced. Colonies on TSA are yellow, glistening, sticky, convex and circular with entire margins. The major fatty acids (>5%) are iso-C15:0(39.5%), iso-C15:1 G (26.3%), iso-C17:03-OH (7.9%), anteiso-C15:0(6.3%) and iso-Ci1:0 3-OH (5.6%). The major isoprenoid quinone is MK-7 (87%) and MK-6 (13%), the DNA G+C content is 34 mol%. on the basis of the phylogenetic evidence and fatty acids together with the phenotypic characteristics, strain LQY-7T should be classified as representing a novel species of the genus Flavobacterium, for which the name Flavobacterium haoranii sp. nov. is proposed.
     LQY-18T cells are Gram-negative, non-motile, non-spore-forming, non-flagellated, strictly aerobic rods, approximately 0.6-1.4μm in length and 0.3-0.6μm in diameter. After 3 days of incubation on TSA, colonies are 1.0-2.0 mm in diameter, yellowish, convex, circular and smooth with entire margins. The almost complete 16S rRNA gene sequence of strain LQY-18T indicated that strain LQY-18T belongs to the genus Sphingobacterium of the phylum Bacteroidetes and showed sequence similarities of 89.1-92.9% with recognized species of the genus Sphingobacterium. Phylogenetic analysis demonstrates strain LQY-18T belongs to the genus Sphingobacterium and forms a subclade with Sphingobacterium shayense CCTCC AB 209006T. The major respiratory quinone is MK-7. The major polar lipid is phosphatidylethanolamine and an unknown aminolipid and several unknown polar lipids are also detected. Sphingolipid is present. The major cellular fatty acids are summed feature 3 (C16:1ω6c and/or C16:1ω7c), iso-C15:0 and iso-C17:0 3-OH. The DNA G+C content of the type strain is 40.3 mol%. On the basis of phenotypic, genotypic and phylogenetic properties. Strain LQY-18T should be classified as a novel species of the genus of Sphingobacterium, for which the name Sphingobacterium wenxiniae sp. nov. is proposed.
     BA-3T cells are aerobic, Gram-negative, catalase-and oxidase-positive, non-motile, non-sporulating rods with rounded ends, approximately 0.6-0.8μm wide and 1.0-1.2μm long. Colonies on 10-fold-diluted LB agar are circular (0.2-0.4 cm in diameter), convex and cream-white. The major quinone is ubiquinone Q-10. The Major fatty acids(>5%) are summed feature 8 (C18:1ω6c and/or C18:1ω7c), C16:0, summed feature 3 (C16:1ω6c and/or C16:1ω7c) and C14:0 2-OH. The polar lipids are diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), sphingoglycolipids (SGL1-SGL2), glycolipid (GL) and phosphatidylcholine (PC). The major cellular polyamine is spermidine. DNA G+C content is 63.8 mol%. Strain BA-3T should be classified as a novel species of the genus of Sphingobium, for which the name Sphingobium jiangsuense sp. nov.BA-3Tis proposed.
     The primers were constructed based on the published sequence of the pyrethroid-hydrolying gene. The pyrethroid-hydrolying gene(pytH) was cloned by PCR from JZ-2. The analysis and alignment of the pyrethroid-hydrolying gene revealed that this gene has 840 bases, which coding for the pyrethroid hydrolase contained 280 amino acids. The pytH gene from the strain JZ-2 was linked to the expression plasmid vector pET29a, the expression strain of the gene was gained by transfer of the expression plasmid into strain BL21 (DE3).
     Error Prone PCR was used to generate PytH variants improvement in hydrolysis of substrates and a mutation was obtained. The variant, LB37 which had two site mutations (Y19F, H127R), exhibited increase energy for bifenthrin hydrolysis.
     According to the results we obtained two site-mutation variants by site-directed mutagenesis. Study of their kinetic parameters for hydrolysis of bifenthrin was performed. Results showed that M19 exhibited a 5.5-fold increase in kcat/Km values and H127R exhibited a 14-fold increase in kcat/Km values. The best variant Mn7 displayed a 6-fold increase in kcat and 70-fold increase in kcat/Km values, this is synthetical effect of two mutants.
     The proposal metabolic pathway of 3-Phenoxybenzoic acid was deduced as follows: strain JZ-2 metabolized 3-Phenoxybenzoic acid to m-hydroxybenzoic acid and catechol; catechol then metabolized by ortho cleavage pathway, m-hydroxybenzoic acid could not be degraded.
     The reported catechol 1,2-dioxygenasegenes were aligned using Clustalx software and degenerated primers were designed according to the conserved sequence. A 400bp length segment was amplified from JZ-2 genomic DNA, and sequence analysis showed a significant level of homology (98%) to catechol 1,2-dioxygenase of Sphingomonas sp. KA1 plasmid pCAR3 (GeneBank Aeeession No.AB270530). Gene catA was cloned into the suicide vector PJQ200SK for knocking out of the catA in JZ-2 and the resultant strain JZ-2-dcatA lost the ability to degrade catechol and the feedback control of hydroquinone bring on the consequence that JZ-2-AcatA can just degrade 3-PBA slightly, about 30%in 24 hours. When used strain JZ-2 to degrade the SPs residue in Tea in Lishui, Zhejiang Province, we found that the degradation rate reached 55-75%, showed that strain JZ-2 has a strong prospect.
     A genetically engineered microorganism(GEM) designated as JZ-2-mbhDHIM, capable of mineraling 3-PBA was successfully constructed by homologous recombination. The 3-HBA-degrading genes mbhDHIM was inserted into the chromosome of JZ-2 by using a homologous recombination vector with sacB gene as counter selectable marker. The GEM was relatively stable and without bringing any antibiotic marker. The homologous recombination events were confirmed by PCR detection.
引文
1. Abril M, Michan C, Timmis K & Ramos JL (1989) Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. Journal of bacteriology 171,6782.
    2. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211,132.
    3. Awasthi MD (1997) Degradation and persistence of synthetic pyrethroids in tropical soil and aquatic environment. Indian Journal of Environment and Toxicology 7,36-38.
    4. Beckman RA, Mildvan AS & Loeb LA (1985) On the fidelity of DNA replication:manganese mutagenesis in vitro. Biochemistry 24,5810-5817.
    5. Bergey D, Harrison F, Breed R, Hammer B & Huntoon F (1923) Genus Ⅱ. Flavobacterium gen. nov. Bergey's Manual of Determinative Bacteriology,97"C117.
    6. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K & Vandamme P (1996) Cutting a Gordian knot:emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov.(basonym, Cytophaga aquatilis Strohl and Tait 1978). International Journal of Systematic and Evolutionary Microbiology 46,128.
    7. Cases I & De Lorenzo V (2001) The black cat/white cat principle of signal integration in bacterial promoters. The EMBO journal 20,1-11.
    8. Casida JE, Ueda K, Gaughan LC, Jao LT & Soderlund DM (1975) Structure-biodegradability relationships in pyrethroid insecticides. Archives of Environmental Contamination and Toxicology 3,491-500.
    9. Cebolla A, Sousa C & de Lorenzo V (1997) Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. Journal of Biological Chemistry 272,3986.
    10. Chapman R, Tu C, Harris C & Cole C (1981) Persistence of five pyrethroid insecticides in sterile and natural, mineral and organic soil. Bulletin of Environmental Contamination and Toxicology 26, 513-519.
    11. Chen S, Lai K, Li Y, Hu M, Zhang Y & Zeng Y Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology,1-13.
    12. Cheng T, Harvey SP & Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Applied and environmental microbiology 62,1636.
    13. Crameri A, Dawes G, Rodriguez Jr E, Silver S & Stemmer WPC (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotech 15.436-438.
    14. Di Gennaro P. Rescalli E. Galli E. Sello G & Bestetti G (2001) Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Research in microbiology 152,641-651.
    15. Eckert K & Kunkel T (1991) DNA polymerase fidelity and the polymerase chain reaction. Genome Research 1,17.
    16. Engesser KH, Fietz W, Fischer P, Schulte P & Knackmuss HJ (1990) Dioxygenolytic cleavage of aryl ether bonds:1,2-dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1, 2-dioxygenation in 3-and 4-carboxy biphenyl ether degradation. FEMS microbiology letters 69, 317-321.
    17. Garey J & Wolff MS (1998) Estrogenic and Antiprogestagenic Activities of Pyrethroid Insecticides* 1. Biochemical and biophysical research communications 251,855-859.
    18. Gelfand DH & White TJ (1990) Thermostable DNA polymerases. PCR protocols: A guide to methods and applications,129-141.
    19. Go V, Garey J, Wolff MS & Pogo B (1999) Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line. Environmental Health Perspectives 107,173.
    20. Grant R & Betts W (2003) Biodegradation of the synthetic pyrethroid cypermethrin in used sheep dip. Letters in applied microbiology 36,173-176.
    21. Gu X, Zhang G, Chen L, Dai R & Yu Y (2008) Persistence and dissipation of synthetic pyrethroid pesticides in red soils from the Yangtze River Delta area. Environmental Geochemistry and Health 30,67-77.
    22. Guo P, Wang B, Hang BJ, Li L, Ali SW, He J & Li S (2009) Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. International Biodeterioration & Biodegradation 63,1107-1112.
    23. Halden RU, Tepp SM, Halden BG & Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310 (pPOB) and two modified Pseudomonas strains. Applied and environmental microbiology 65,3354.
    24. He Y, Stockley PG & Gold L (1996) In VitroEvolution of the DNA Binding Sites of Escherichia coli Methionine Repressor, MetJ. Journal of molecular biology 255,55-66.
    25. Henry L & Kishimba M (2006) Pesticide residues in Nile tilapia (oreochromis niloticus) and nile perch (Lates niloticus) from Southern Lake Victoria, Tanzania. Environmental Pollution 140, 348-354.
    26. Jimenez JI, Minambres B & Garcia JL (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environmental microbiology 4,824-841.
    27. Kakko I, Toimela T & Tahti H (2004) The toxicity of pyrethroid compounds in neural cell cultures studied with total ATP, mitochondrial enzyme activity and microscopic photographing. Environmental Toxicology and Pharmacology 15,95-102.
    28. Kasai S (2004) Role of cytochrome P450 in mechanism of pyrethroid resistance. Journal of Pesticide Science 29,220-221.
    29. Khan SU, Behki RM, Tapping RI & Akhtar MH (1988) Deltamethrin residues in an organic soil under laboratory conditions and its degradation by a bacterial strain. Journal of agricultural and food chemistry 36,636-638.
    30. Koprucu K & Aydin R (2004) The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pesticide Biochemistry and Physiology 80,47-53.
    31. Lee S, Gan J, Kim JS, Kabashima JN & Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environmental toxicology and chemistry 23,1-6.
    32. Leung DW, Chen E & Goeddel DV (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1,11-15.
    33. Li G, Wang K & Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact 7,38.
    34. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX & Liu YH (2005) Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of agricultural and food chemistiy 53,7415-7420.
    35. Liu N & Scott JG (1995) Genetic basis of monooxygenase mediated resistance to pyrethroid insecticides in the house fly. Pesticide science 43,245-246.
    36. Liu Y, Wei Q, Wang SJ, Liu H & Zhou NY (2010) Construction of an engineered strain free of antibiotic resistance gene markers for simultaneous mineralization of methyl parathion and ortho-nitrophenol. Applied Microbiology and Biotechnology 87,281-287.
    37. Malato S, Blanco J, Fernandez-Alba A & Ag1era A (2000) Solar photocatalytic mineralization of commercial pesticides:acrinathrin. Chemosphere 40,403-409.
    38. Maloney S, Maule A & Smith A (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Applied and environmental microbiology 54,2874.
    39. Maloney S, Maule A & Smith A (1992) Transformation of synthetic pyrethroid insecticides by a thermophilic Bacillus sp. Archives of microbiology 158,282-286.
    40. Matcham G & Bowen A (1996) Biocatalysis for chiral intermediates:Meeting commercial and technical challenges. Chimica oggi 14,20-24.
    41. Musumeci MR & Ostiz SB (1994) Binding of cypermethrin residue in Brazilian soils and its release by microbial activity. Rev microbiol 25,216-219.
    42. Nagata Y, Ohtsubo Y, Endo R, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N & Tsuda M (2010) Complete genome sequence of the representative {gamma}-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26. Journal of bacteriology 192,5852.
    43. Neidle EL & Ornston LN (1986) Cloning and expression of Acinetobacter calcoaceticus catechol 1, 2-dioxygenase structural gene catA in Escherichia coli. Journal of bacteriology 168,815.
    44. Nelson K, Weinel C, Paulsen I, Dodson R. Hilbert H, Martins dos Santos V, Fouts D, Gill S, Pop M & Holmes M (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental microbiology 4,799-808.
    45. Nixon AE, Ostermeier M & Benkovic SJ (1998) Hybrid enzymes:manipulating enzyme design. Trends in biotechnology 16,258-264.
    46. Nogales J, Canales, Jim"|nez-Barbero J, Garc"aa JL & D"aaz E (2005) Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. Journal of Biological Chemistry 280, 35382.
    47. Oudou H, Alonso R & Bruun Hansen H (2004) Voltammetric behaviour of the synthetic pyrethroid lambda-cyhalothrin and its determination in soil and well water. Analytica chimica acta 523, 69-74.
    48. Paingankar M, Jain M & Deobagkar D (2005) Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnology Letters,27 23,1909-1913.
    49. Patel R, Hou C, Felix A & Lillard M (1976) Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus:purification and properties. Journal of bacteriology 127,536.
    50. Perez-Pantoja D, De la Iglesia R, Pieper DH & Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant degrading bacterium Cupriavidus necator JMP134. FEMS microbiology reviews 32,736-794.
    51. Ramos JL, Stolz A, Reineke W & Timmis KN (1986) Altered effector specificities in regulators of gene expression:TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proceedings of the National Academy of Sciences of the United States of America 83,8467.
    52. Richaud C, Mengin-Lecreulx D, Pochet S, Johnson E, Cohen G & Marliere P (1993) Directed evolution of biosynthetic pathways. Recruitment of cysteine thioethers for constructing the cell wall of Escherichia coli. Journal of Biological Chemistry 268,26827.
    54. Saikia N, Das SK, Patel BKC, Niwas R, Singh A & Gopal M (2005) Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain SI. Biodegradation 16,581-589.
    55. Saikia N & Gopal M (2004) Biodegradation of |A-Cyfluthrin by Fungi. Journal of agricultural and food chemistry 52,1220-1223.
    56. Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology 29,757-777.
    57. Shao Z, Zhao H, Giver L & Arnold FH (1998) Random-priming in vitro recombination:an effective tool for directed evolution. Nucleic acids research 26,681.
    58. Shingler V (2003) Integrated regulation in response to aromatic compounds:from signal sensing to attractive behaviour. Environmental microbiology 5,1226-1241.
    59. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proceedings of the National Academy of Sciences of the United States of America 91,10747.
    60. Steyn P, Segers P, Vancanneyt M, Sandra P, Kersters K & Joubert J (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species:Pedobacter heparinus comb, nov., Pedobacter piscium comb, nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 48,165.
    61. Stok JE, Huang H, Jones PD, Wheelock CE, Morisseau C & Hammock BD (2004) Identification, expression, and purification of a pyrethroid hydrolyzing carboxylesterase from mouse liver microsomes. Journal of Biological Chemistry 279,29863.
    62. Tallur PN, Megadi VB & Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19,77-82.
    63. Timmis KN & Pieper DH (1999) Bacteria designed for bioremediation. Trends in biotechnology 17, 200-204.
    64. Topp E & Akhtar MH (1990) Mineralization of 3-phenoxybenzoate by a two-membered bacterial co-culture. Canadian Journal of Microbiology 36,495-499.
    65. Topp E & Akhtar MH (1991) Identification and characterization of a Pseudomonas strain capable of metabolizing phenoxybenzoates. Applied and environmental microbiology 57,1294.
    66. Wang B, Guo P, Hang B, Li L, He J & Li S (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Applied and environmental microbiology 75,5496.
    67. Wang B, Ma Y, Zhou W, Zheng J, Zhu J, He J & Li S Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1. World Journal of Microbiology and Biotechnology,1-10.
    68. Weinel C, Nelson KE & T"1mmler B (2002) Global features of the Pseudomonas putida KT2440 genome sequence. Environmental microbiology 4,809-818.
    69. Werner I, Deanovic L, Hinton D, Henderson J, De Oliveira G, Wilson B, Krueger W, Wallender W, Oliver M & Zalom F (2002) Toxicity of stormwater runoff after dormant spray application of diazinon and esfenvalerate (Asana(R)) in a French prune orchard, Glenn County, California, USA. Bulletin of Environmental Contamination and Toxicology 68,29-36.
    70. WERNER RA & HILGERT JW (1992) Effects of permethrin on aquatic organisms in a freshwater stream in south-central Alaska. Journal of economic entomology 85,860-864.
    71. Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, Coetzee M, Hemingway J & Ranson H (2009) Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Research 19,452.
    72. Wu PC, Liu YH, Wang ZY, Zhang XY, Li H, Liang WQ, Luo N, Hu JM, Lu JQ & Luan TG (2006) Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. Journal of agricultural and food chemistry 54,836-842.
    73. Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, Wu W, Wang S & Wang X (2004) Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate. Toxicology 203, 49-60.
    74. YABUUCHI E, KANEKO T, YANO I, MOSS CW & MIYOSHI N (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-Nonfermenting Gram-Negative Rods in CDC Groups IIK-2 and Ⅱb. International Journal of Systematic and Evolutionary Microbiology 33,580.
    75. Yuanfan H, Jin Z, Qing H, Qian W, Jiandong J & Shunpeng L (2010) Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin. Journal of environmental management.
    16. Zhao H, Giver L, Shao Z, Affholter JA & Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nature biotechnology 16,258-261.
    77安丽,蔡原,吕相征等.高效氯氰菊酯对雄性小鼠免疫功能的影响.中国公共卫生.2002,16(4):69-70
    78陈万义,薛振祥,王能武.新农药研究与开发,北京:化学工业出版社1999.
    79丁海涛,李顺鹏,沈标等.拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究.土壤学报.2003,40(1):123-129
    80段晓芹,郑金伟,张隽等.3-PBA降解菌BA3的降解特性及基因工程菌构建.环境科学.2011,(01),240-246.
    81何丽莲,李元.农田土壤农药污染的综合治理.云南农业大学学报.2003,18(4):431-434.
    82洪永聪,辛伟,崔德杰等.蜡状芽孢杆菌菌株tr2对氯氰菊酯降解作用的小区试验.青岛农业大学学报(自然科学版).2007,24(4):291-293.
    83洪永聪,辛伟,来玉宾等.茶树内生防病和农药降解菌的分离.茶叶科学.2005,25(3):183-188.
    84洪源范,洪青,沈雨佳等.甲氰菊酯降解菌Sphingomonas sp.JQL4-5对污染土壤的生物修复.环境科学.2007,28(5):1121-1125.
    85胡云平,周志俊,薛寿征.Ⅱ型拟除虫菊酯类农药心脏毒性研究.职业卫生与应急救援.1999, 17(1):10-13.
    86焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S-23SrDNA间区.微生物学通报.2001,28(01).85-89.
    87林淦,韩萍.甲氰菊酯降解酶的海藻酸钙凝胶固定化研究.西北林学院学报.2006 a,21(4):126-128
    88林淦,韩萍,吴传兵.固定化农药降解酶对受污染水体的净化作用.安徽农业科学.2006 b,34(4):4371-4372
    89林淦,吴传兵,王海燕.混合微生物对茶树土壤中氯氰菊酯的降解作用.湖北农业科学.2007,46(4):576-577
    90刘君寒,王兆守,何健等.一株氯氰菊酯降解菌的分离和鉴定.南京农业大学学报.2007,30(3):68-72
    91刘尚钟,王敏,陈馥衡.拟除虫菊酯类农药的研究和展望.农药.2004,43(7):289-293
    92马国兰,柏连阳,刘占山.土壤—植物系统中农药污染的防治方法及其研究展望.现代化农业.2005,11:10-13
    93欧阳主才,王奕恒,李小妮等.鞘氨醇单胞菌株xj对农药的降解效能.华南农业大学学报.2008,29(2):47-49
    94沈锡辉,刘志培,王保军等.苯酚降解菌红球菌PNAN5菌株(Rhodococcus sp.strain PNAN5)的分离鉴定、降解特性及其开环双加氧酶性质研究.环境科学学报.2004,24(03),482-486.
    95孙彩霞,徐俊锋,董国垄.中国24种出口蔬菜农残超标研究.中国农学通报.2009,25(06):262-265.
    96孙侠,韩长城,牛玉杰等.溴氰菊酯对小鼠免疫系统的损伤作用.河北医科大学学报.2005,21(1):1-4.
    97王朝晖,尹伊伟,许忠能等.8种拟除虫菊酯农药对稀有鲫的急性、亚慢性毒性研究.应用与环境生物学报.1998,4(4):379-382.
    98王兆守,林淦,李秀仙等.拟除虫菊酯降解菌的分离、筛选及鉴定.福建农林大学学报(自然科学版).2003,32(2):176-180.
    99王卓娅,刘玉焕,李荷.克雷伯氏菌zd112氯氰菊酯降解酶基因的克隆与生物信息学分析.广东药学院学报.2008,24(3):277-281.
    100吴家红,赵彤言.拟除虫菊酯对昆虫钠通道作用的研究进展.寄生虫与医学昆虫学报.2004,(03)
    101伍宁丰,梁果义,邓敏捷等.有机磷农药降解酶及其基因工程研究进展.生物技术通报.2003,(05)
    102许育新,戴清华,李小慧,等.氯氰菊酯降解菌株CDT3的分离鉴定及生理特征研究[J].农业环境科学学报,2004,23(5):958-963
    103许育新,李晓慧,滕齐辉,等.氯氰菊酯污染土壤的微生物修复及对土著微生物的影响[J].土壤学报,2008,45(4):693-698
    104许育新,李晓慧,滕齐辉等.氯氰菊酯污染土壤的微生物修复及对土著微生物的影响.土壤学报.2008,,45(04),693-698.
    105姚克文,王介东.拟除虫菊酯类农药的男(雄)性生殖毒性研究进展.中华男科学杂志.2008,14(3):268-271.
    106应松鹤.拟除虫菊酯类农药的应用技术,北京:化学工业出版社,1988.
    107虞云龙,宋凤鸣,郑重,等.一株广谱性农药降解菌(Alcaligenes sp.)的分离与鉴定[J].浙江农业大学学报,1997,23(2):111-115
    108虞云龙,盛国英,傅家谟等.一株农药降解菌的分离与鉴定.华南理工大学学报(自然科学版).1996,24(S1):183-187.
    109张一宾.2004年世界农药品种市场概况及2009年各类农药市场趋向.中国农药.2006,(04)
    110钟文辉,何国庆,孙明等.假单胞菌的氯儿茶酚1,2-双加氧酶基因的克隆和表达.中国环境科学.2004,(02),209-214.
    111良天.农药(精细化工产品册),北京:化学工业出版社,2004.
    112邹明强,杨蕊,金钦汉.农药与农药污染.大学化学.2004,19(6):1-8,34.
    1. Altenburgera P, Kampferb P. Makristathisc A, Lubitza W & Bussea HJ (1996) Classification of bacteria isolated from a medieval wall painting. Journal of biotechnology 47,39-52.
    2. Bergey D, Harrison F, Breed R, Hammer B & Huntoon F (1923) Genus Ⅱ. Flavobacterium gen. nov. Bergey's Manual of Determinative Bacteriology,97-117.
    3. BERNARDET J & GRIMONT PAD (1989) Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. International Journal of Systematic and Evolutionaiy Microbiology 39,346.
    4. Bernardet J, Segers P, Vancanneyt M, Berthe F, Kersters K & Vandamme P (1996) Cutting a gordian knot:emended classification and description of the genus. In. Flavobacterium.
    5. Bernardet JF & Bowman JP (2006) The genus Flavobacterium. Prokaryotes 7,481-531.
    6. Bernardet JF, Nakagawa Y & Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. International Journal of Systematic and Evolutionary Microbiology 52,1049.
    7. Breznak JA & Costilow RN (1994) Physicochemical factors in growth. Methods for general and molecular bacteriology,137-154.
    8. Bruns A, Rohde M & Berthe-Corti L (2001) Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. International Journal of Systematic and Evolutionary Microbiology 51,1997.
    9. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK & Lim YW (2007) EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology 57,2259.
    10. Collins M & JONES D (1980) Lipids in the Classification and Identification of Coryneform Bacteria Containing Peptidoglycans Based on 2,4 diaminobutyric Acid. Journal of Applied Microbiology 48,459-470.
    11. Duan S, Liu Z, Feng X, Zheng K & Cheng L (2009) Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. The Journal of Microbiology 47,693-698.
    12. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5 c. Distributed by the author. Department of Genetics, University of Washington, Seattle. PHYLIP (Phylogeny Inference Package) version 35 c.
    13. Felsenstein J (1995) PHYLIP (phylogeny inference package), version 3.57 c. Department of Genetics, University of Washington, Seattle.
    14. Fitch Z WM 1971. Toward defining the course of evolution:Minimum change for a specific tree topology. Syst Zool 20,406416.
    15. Goodfellow M & O'Donnell A (1993) Roots of bacterial systematics. Handbook of new bacterial systemafics,3-54.
    16. Guo P, Wang B, Hang BJ, Li L. Ali S W, He J & Li S (2009) Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. International Biodeterioration & Biodegradation 63,1107-1112.
    17. He X, Xiao T, Kuang H, Lan X, Tudahong M, Osman G, Fang C & Rahman E (2010) Sphingobacterium shayense sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology 60, 2377.
    18. Kampfer P & Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Canadian journal of microbiology 42,989-1005.
    19. Kim KH, Ten LN, Liu QM, Im WT & Lee ST (2006) Sphingobacterium daejeonense sp. nov., isolated from a compost sample. International Journal of Systematic and Evolutionary Microbiology 56,2031.
    20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution 16, 111-120.
    21. Kimura M (1985) The neutral theory of molecular evolution. Cambridge Univ Pr.
    22. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. Journal of Liquid Chromatography & Related Technologies 5,2359-2367.
    23. Lane D (1991) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics (StackebrandtE & GoodfellowM, eds). J Wiley & Sons, Chichester,115-175.
    24. Lanyi B (1988) 1 Classical and Rapid Identification Methods for Medically Important Bacteria. Methods in microbiology 19,1-67.
    25. Liu R, Liu H, Zhang CX, Yang SY, Liu XH, Zhang KY & Lai R (2008) Sphingobacterium siyangense sp. nov., isolated from farm soil. International Journal of Systematic and Evolutionary Microbiology 58,1458.
    26. Mandel M & Marmur J (1968) Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12,195-206.
    27. Marmur J & Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature*. Journal of Molecular Biology 5,109-118.
    28. Matsuyama H, Katoh H, Ohkushi T, Satoh A, Kawahara K & Yumoto I (2008) Sphingobacterium kitahiroshimense sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology 58,1576.
    29. Mehnaz S, Weselowski B & Lazarovits G (2007) Sphingobacterium canadense sp. nov., an isolate from corn roots. Systematic and applied microbiology 30,519-524.
    30. Miller S, Dykes D & Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research 16,1215.
    31. Minnikin D, O'Donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A & Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of microbiological methods 2,233-241.
    32. Murray R, Wood WA & Krieg NR (1994) Methods for General and Molecular Bacteriology. Washington, DC: Am Soc Microbiol,33.
    33. Park M, Lu S, Ryu SH, Chung BS, Park W, Kim CJ & Jeon CO (2006) Flavobacterium croceum sp. nov., isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology 56,2443.
    34. Qu JH, Li HF, Yang JS & Yuan HL (2008) Flavobacterium cheniae sp. nov., isolated from sediment of a eutrophic reservoir. International Journal of Systematic and Evolutionary Microbiology 58,2186.
    35. Rainey FA, Kelly DP, Stackebrandt E, Burghardt J, Hiraishi A, Katayama Y & Wood AP (1999) A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. International Journal of Systematic and Evolutionary Microbiology 49,645.
    36. Rzhetsky A & Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9,945-967.
    37. Saha P & Chakrabarti T (2006) Flavobacterium indicum sp. nov., isolated from warm spring water in Assam, India. International Journal of Systematic and Evolutionary Microbiology 56, 2617.
    38. Saha S & Kaviraj A (2008) Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms. Bulletin of environmental contamination and toxicology 80,49-52.
    39. Saitou N & Nei M (1987) The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol 4,406-425.
    40. Sambrook J & Russell DW (2001) Molecular cloning: a laboratory manual. CSHL press.
    41. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. In. MIDI Technical Note.
    42. Smibert R & Krieg NR (1994) Phenotypic characterization. Methods for general and molecular bacteriology 1,607-654.
    43. Steyn P, Segers P, Vancanneyt M, Sandra P, Kersters K & Joubert J (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species:Pedobacter heparinus comb. nov., Pedobacter piscium comb, nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 48,165.
    44. Takeuchi M, Hamana K & Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology 51,1405.
    45. Takeuchi M, Kawai F, Shimada Y & Yokota A (1993) Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Systematic and applied microbiology 16,227-238.
    46. Takeuchi M & Yokota A (1992) Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb, nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. Journal of General and Applied Microbiology 38,465-482.
    47. Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution 24,1596.
    48. Ten LN, Liu QM, Im WT, Aslam Z & Lee ST (2006) Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. Journal of microbiology and biotechnology 16,1728-1733.
    49. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research 25,4876.
    50. Tindall B (1990) Lipid composition of Halobacterium lacusprofundi. FEMS microbiology letters 66,199-202.
    51. Tindall B (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Systematic and applied microbiology 13,128-130.
    52. Vaz-Moreira I, Faria C, Lopes AR, Svensson L, Falsen E, Moore ERB, Ferreira ACS, Nunes OC & Manaia CM (2009) Sphingobium vermicomposti sp. nov., isolated from vermicompost. International Journal of Systematic and Evolutionary Microbiology 59,3145.
    53. Wang B, Guo P, Hang B, Li L, He J & Li S (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Applied and environmental microbiology 75,5496.
    54. Wang ZW, Liu YH, Dai X, Wang BJ, Jiang CY & Liu SJ (2006) Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment. International Journal of Systematic and Evolutionary Microbiology 56,439.
    55. Wayne L, Brenner D, Colwell R, Grimont P, Kandler O, Krichevsky M, Moore L, Moore W, Murray R & Stackebrandt E (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37,463-464.
    56. Wei W, Zhou Y. Wang X, Huang X & Lai R (2008) Sphingobacterium anhuiense sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology 58, 2098.
    57. Weon HY, Song MH, Son JA, Kim BY, Kwon SW, Go SJ & Stackebrandt E (2007) Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. International Journal of Systematic and Evolutionary Microbiology 57,1594.
    58. YABUUCHI E, KANEKO T, YANO I, MOSS CW & MIYOSHI N (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb, nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-Nonfermenting Gram-Negative Rods in CDC Groups IIK-2 and Ⅱb. International Journal of Systematic and Evolutionary Microbiology 33,580.
    59. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T & Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiology and immunology 34, 99.
    60. Yan QX, Wang YX, Li SP, Li WJ & Hong Q (2010) Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system. International Journal of Systematic and Evolutionary Microbiology 60,2724.
    61范秀容,李广武,沈萍.微生物学实验.北京:高等教育出版社,1988,75-78.
    62许育新,李晓慧,秦华等.3-苯氧基苯甲酸降解菌的分离及降解特性研究.微生物学通报.2005,32(5):62-67.
    63 F.奥斯伯,R.布伦特,R.E.金斯顿.精编分子生物学指南.北京:科学技术出版社,1999,36-40.
    1. Abe A, Tonozuka T, Sakano Y & Kamitori S (2004) Complex Structures of Thermoactinomyces vulgaris R-47 [alpha]-Amylase 1 with Malto-oligosaccharides Demonstrate the Role of Domain N Acting as a Starch-binding Domain. Journal of molecular biology 335,811-822.
    2. Ang EL, Obbard JP & Zhao H (2009) Directed evolution of aniline dioxygenase for enhanced bioremediation of aromatic amines. Applied microbiology and biotechnology 81,1063-1070.
    3. Ashida H, Galkin A, Kulakova L, Sawa Y, Nakajima N & Esaki N (2004) Conversion of cofactor specificities of alanine dehydrogenases by site-directed mutagenesis. Journal of Molecular Catalysis B: Enzymatic 30,173-176.
    4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72,248-254.
    5. Frueauf JB, Ballicora MA & Preiss J (2002) Alteration of inhibitor selectivity by site-directed mutagenesis of Arg294 in the ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Archives of Biochemistry and Biophysics 400,208-214.
    6. Kataoka K (2003) Alteration of substrate specificity of leucine dehydrogenase by site-directed mutagenesis.
    7. Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T & Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nature biotechnology 16,663-666.
    8. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature 227,680-685.
    9. Leung DW, Chen E & Goeddel DV (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1,11-15.
    10. Li G, Wang K & Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact 7,38.
    11. Maloney S, Maule A & Smith A (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Applied and environmental microbiology 54,2874.
    12. Perona JJ & Craik CS (1997) Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. Journal of Biological Chemistry 272,29987.
    13. Shen B (2002) PCR Approaches to DNA Mutagenesis and Recombination. PCR cloning protocols,167.
    14. Shi Y, Yu H, Sun X, Tian Z & Shen Z (2004) Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its functional expression using site-directed mutagenesis. Enzyme and microbial technology 35,557-562.
    15. Shinkyo R, Sakaki T, Takita T, Ohta M & Inouye K (2003) Generation of 2,3,7, 8-TCDD-metabolizing enzyme by modifying rat CYP1A1 through site-directed mutagenesis* 1. Biochemical and biophysical research communications 308,511-517.
    16. Stephens DE, Singh S & Permaul K (2009) Error prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability. FEMS microbiology letters 293,42-47.
    17. Top EM & Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Current opinion in biotechnology 14.262-269.
    18. Wang B,Guo P, Hang B, Li L, He J & Li S (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Applied and environmental microbiology 75,5496.
    19. Yabuki Y, Kubota K, Kojima M, Inoue H & Takahashi K (2004) Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis. FEBS letters 569,161-164.
    20. Yokoigawa K, Okubo Y, Soda K & Misono H (2003) Improvement in thermostability and psychrophilicity of psychrophilic alanine racemase by site-directed mutagenesis. Journal of Molecular Catalysis B: Enzymatic 23,389-395.
    21. Yu H, Li J, Zhang D, Yang Y, Jiang W & Yang S (2009) Improving the thermostability of N-carbamyl-d-amino acid amidohydrolase by error-prone PCR. Applied microbiology and biotechnology 82,279-285.
    22. Zhang ZG, Yi ZL, Pei XQ & Wu ZL (2010) Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Bioresource technology.
    23.景岳龙,朱凤晓,王军玲,呼世斌,秦宝福&张磊(2010)联苯菊酯降解菌的筛选、鉴定及其降解特性.西北农林科技大学学报.38(10),98-102.
    24.廖敏,张海军&谢晓梅(2009)降解拟除虫菊酯类农药的缺陷假单胞菌的分离、鉴定及降解特性研究.环境科学学报.29(7),1388-1394.
    25.陆健,曹钰,陈坚.运用定点突变提高重组木聚糖酶在毕赤氏酵母中的表达[J].微生物学报,2002,4:425-430.
    26.汪家政&范明(2000)蛋白质技术手册.In.科学出版社,北京.
    27.吴旭平.邻单胞菌M6甲基对硫磷水解酶催化特性的研究[A]南京农业大学硕士学位论文,2005.
    28.周杨晟,黄鹤,李士云,等.定点突变提高青梅素G酰化酶的稳定性[J].生物化学与生物物理学报,2000,32(6):581-585.
    29.由德林,曲红,陈强,等.次黄嘌呤-鸟喋呤磷酸核糖转移酶突变体的基因构建、表达和性质[J].生物化学与生物物理学报,2003,9:853-858.
    30.赵宇蕾,呼世斌,秦宝福,许炳云&余磊(2009)联苯菊酯降解菌的筛选及降解特性研究.西北农业学报□2009,18(3):273-276
    1 Bouwer EJ, Rittmann BE & McCarty PL (1981) Anaerobic degradation of halogenated 1-and 2-carbon organic compounds. Environmental Science & Technology 15,596-599.
    2. Casida JE & Ruzo LO (1980) Metabolic chemistry of pyrethroid insecticides. Pesticide Science 11,257-269.
    3. Elliott M, Janes N & Potter C (1978) The future of pyrethroids in insect control. Annual Review of Entomology 23,443-469.
    4. Engesser KH, Fietz W, Fischer P, Schulte P & Knackmuss HJ (1990) Dioxygenolytic cleavage of aryl ether bonds:1,2-dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3-and 4-carboxy biphenyl ether degradation. FEMS microbiology letters 69,317-321.
    5. Guo P, Wang B, Hang BJ, Li L, Ali SW, He J & Li S (2009) Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. International Biodeterioration & Biodegradation 63,1107-1112.
    6. Guo P, Wang BZ, Hang BJ, Li L, Li SP & He J (2009) Sphingobium faniae sp. nov., a pyrethroid-degrading bacterium isolated from activated sludge treating pyrethroid-manufacturing wastewater. International Journal of Systematic and Evolutionary Microbiology, ijs.0.009795-009790v009791.
    7. Halden RU, Tepp SM, Halden BG & Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310 (pPOB) and two modified Pseudomonas strains. Applied and environmental microbiology 65,3354.
    8. Jin H & Webster G (1998) GC-ECD determination of cypermethrin and its major metabolites in soil, elm bark, and litter. Fresenius'journal of analytical chemistry 360,573-579.
    9. Klomklang W, Tani A, Kimbara K, Mamoto R, Ueda T, Shimao M & Kawai F (2005) Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology 151,1255.
    10. Lack L (1959) The enzymic oxidation of gentisic acid. Biochimica et biophysica acta 34, 117-123.
    11. Li R, Wang G, Shen B, Wang R, Song Y, Li S & Jiang J (2009) Random transposon vectors pUTTns for the markerless integration of exogenous genes into gram-negative eubacteria chromosomes. Journal of microbiological methods 79,220-226.
    12. Maloney S, Maule A & Smith A (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Applied and environmental microbiology 54,2874.
    13. Miyamoto J, Beynon K, Roberts T, Hemingway R & Swaine H (1981) The chemistry, metabolism and residue analysis of synthetic pyrethroids. Pure Appl Chem 53,1967-2022.
    14. Neidle EL & Ornston LN (1986) Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli. Journal of bacteriology 168, 815.
    15. Patel R, Hou C, Felix A & Lillard M (1976) Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus:purification and properties. Journal of bacteriology 127,536.
    16. Perez Pantoja D, De la Iglesia R, Pieper DH & Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant degrading bacterium Cupriavidus necator JMP134. FEMS microbiology reviews 32,736-794.
    17. Roberts TR (1981) The metabolism of the synthetic pyrethroids in plants and soils. Prog Pestic Biochem 1,115-146.
    18. Sala trepat JM & Evans WC (1971) The meta cleavage of catechol by Azotobacter species. European Journal of Biochemistry 20,400-413.
    19. Stainer R & Ornston L (1973) The [beta]-ketoadipate pathway. Advances in microbial physiology 9,89-151.
    20. Tallur PN, Megadi VB & Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19,77-82.
    21. Topp E & Akhtar MH (1990) Mineralization of 3-phenoxybenzoate by a two-membered bacterial co-culture. Canadian Journal of Microbiology 36,495-499.
    22. Topp E & Akhtar MH (1991) Identification and characterization of a Pseudomonas strain capable of metabolizing phenoxybenzoates. Applied and environmental microbiology 57,1294.
    23. Wang B, Guo P, Hang B, Li L, He J & Li S (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Applied and environmental microbiology 75,5496.
    24. Wang S, He J, Cui Z & Li S (2007) Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Applied and environmental microbiology, AEM.02973-02906v02971.
    25. Williams PA & Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5,195-217.
    26蔡宝立,张富国,张心平等.苯甲酸类化合物的微生物降解研究.应用与环境生物学报.1998,4(3):282-287.
    27杜占文,张俊武.应用简并引物RT-PCR扩增锌指结构域筛选新基因.中国医学科学院学报.2001,23(3):281-284.
    28高兴祥,罗万春,于天丛等.儿种苯甲酸类化合物对甜菜夜蛾多酚氧化酶活性的影响.农药学学报.2004,37(5):687-691.
    29李顺鹏.环境生物学.北京:中国农业出版社,2002.
    30王洪振,周晓馥,宋朝霞等.简并PCR技术及其在基因克隆中的应用.遗传.2003,25(2):201-204.
    31王家玲.环境微生物学.北京:高等教育出版社,1991.
    32赵丽辉,匡欣,贾智萍等.苯甲酸类化合物好氧生物降解性研究.环境化学.1993,12(3):173-178.
    33钟文辉,何国庆,孙明等.假单胞菌的氯儿茶酚1,2-双加氧酶基因的克隆和表达.中国环境科学.2004,(02),209-214.
    1. Bragg JR, Prince RC, Harner EJ, Atlas RM. Effectiveness of bioremediation for the Exxon Valdez oil spill [J]. Nature 1994,368:413-418.
    2. Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA. Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska [J] Biodegradation 1992,3:315-335.
    3. Swannell RPJ, Head IM. Bioremediation comes of age [J]. Nature 1994,368:396-397.
    4. 王庆仁,刘秀梅.土壤与水体有机污染物的生物修复及其应用研究进展[J].生态学报2001,21(1):159-163.
    5. 杨景辉.土壤污染与防治[M].北京:科学出版社1995.
    6. 夏平,李学亚,刘斌斌.石油污染的生物修复.污染防治技术2005,19(3):37-40.
    7. 滕应,骆永明,李振高.多氯联苯复合污染土壤的土著微生物修复强化措施研究.土壤2006,38(5):645-651.
    8. 白建峰,林先贵,尹睿.砷污染土壤的生物修复研究进展.土壤2007,39(5):692-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700