长效LHRH拮抗剂类似物的设计、合成及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过调研LHRH拮抗剂类似物研究进展及酶学研究结果,提出假设:如果在多肽合适的位置上连接一些强的质子给体、受体或两者兼有的基团,使之能够在水解反应中与酶的活性中心以氢键的形式形成过渡态类似物,有可能会抑制蛋白酶对肽键的水解,从而延长多肽的作用时间。
     基于此假设,以LHRH拮抗剂LXT-101为先导化合物,对其进行合理氨基酸修饰或替换,设计并合成了33个新的十肽化合物。经大鼠体内抑制睾酮作用实验的初步筛选,有31个类似物显示出拮抗活性,其中10个类似物活性强于阳性对照LXT-101,5个类似物活性与LXT-101相当。此外,对6个合成的LHRH拮抗剂类似物进行了胰混合酶体系中的降解实验,有5个类似物的半衰期长于阳性对照LXT-101。
     根据体内活性及体外代谢评价,本文得到以下初步结论:(1)体内活性评价:N端进行乙酰化、氨甲酰基化修饰的系列类似物活性较N端未修饰的系列类似物活性强;对Phe苯环引入氨基、脲基、羟基等基团,选择侧链上带有胍基、酰胺、羧基等脂肪族氨基酸,并将这些氨基酸引入多肽序列5位,所得类似物拮抗活性明显强于修饰前结构(5位为Phe、Leu的系列类似物)。(2)胰混合酶体系代谢评价:N端氨甲酰基化修饰可以提高多肽的抗酶解能力,且作用强于乙酰化修饰;5位为Aph、Phe(NAM)的系列类似物代谢时间明显长于5位为Phe的系列类似物。(3)以上初步结论与课题提出假设相符。
According to the development of LHRH antagonists and proteolytic mechanism, we hypothesize that adequate proteolytic stability could be obtained with peptides which have proton-donor and proton-receptor groups in the suitable sites of the side chains, probably induced by forming hydrogen bonds and a transition state between the peptide side chains and active site of a proteinase.Based on this hypothesis, 33 new decapeptides were designed and synthesized by using LXT-101, an effective LHRH antagonist, as a leading compound. There are 31 of analogs showing inhibiting testosterone-activity. 10 of them are more potent than LXT-101, and 5 are the same as LXT-101. A proteolysis test of 6 new analogs was studied in pancreas proteinase mixture. Half-lives of 5 new analogs are longer than that of LXT-101.It found that the inhibiting activity of the analogs with N-terminal modification with acetyl and aminoformyl is stronger than that of unmodified analogs. When the functional groups such as amino, ureido, hydroxyl, carboxyl, amide, guanidine were introduced on the side chains of Phe or Leu at positions 5, the inhibiting activity of the produced analogs is obviously stronger than that of unmodified analogs. The proteolytic stability of the analogs with aminoformyl functional group on N-terminal could be increased, and their half-lives are longer than that of the analogs with acetyl. The proteolytic stability of the analogs with Aph, Phe(NAM) on position 5 is higher than that of analogs with Phe on position 5. The results are consistent with the hypothesis we proposed.
引文
[1] Zhou X. H. Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs[J]. J. Controlled Release, 1994, 29: 239-252.
    
    [2] Takaori K., Burton J. donowitz M. The transport of an intact oligopeptide across adult mammalian jejunum[J]. Biochem. Biophys. Res. Commun., 1986,137: 682-687.
    [3] Michel G, Aprahamian M., Defontaine L., et al. The effect of site of administration in the gastrointestinal tract on the absorption of insulin from nanoparticles in diabetic rats[J]. Journal of Pharmacy and Pharmacology, 1991,43:1-5.
    [4] Reddy K. R. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs[J]. Ann. Pharmacother, 2000,34: 915-923.
    [5] So. T., Ito. H. O., Hirata M., et al. Extended blood half-life of monomethoxypolyethylene glycol-conjugated hen lysozyme is a key parameter controlling immunological tolerogenixity[J]. Cell Mol. Life Sci., 1999,55:1187-1194.
    [6] Duncan R. Drug-polymer conjugates: potential for improved chemotherapy[J]. Anticancer Drugs, 1992, 3:175-210.
    [7] Ghosh M. K., Mitra A. K. Enhanced delivery of 5-iodo-2'-deoxyuridine to the brain parenchyma[J]. Pharm. Res., 1992, 9:1173-1176.
    [8] Greig N. H., Stahle P. L., Shetty H. U., et al. High-performance liquid chromatographic analysis of chlorambucil tert-butyl ester, and its active metabolites chlorambucil, and phenylacetic mustard in plasma, and tissue[J]. J. Chromatogr., 1990,534: 279-286.
    [9] H. Bundgaard, J. Moss. Prodrugs of peptides, 6 bioreversible derivatives of thyrotropin-releasing hormone with increased lipophilicity and resistance to cleavage by the TRH-specific serum enzyme[J]. Pharm. Res., 1990, 7: 885-892.
    [10] Spatola A. F., Saneji H., Edwards J. V., et al. Structure-activity relationships of enkephalins containing serially replaced thiomethylene amide bond surrogates[J]. Life Sci.,1986,38:1243-1249.
    
    [11] Pauletti Giovanni M., Gangwar Sanjeev, Siahaan Teruna J., et al. Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies[J]. Advanced Drug Delivery Reviews, 1997, 27: 235-256.
    
    [12] Bradbury A. F., Smyth D. G. Modification of the N- and C- termini of bioactive peptides: amidation and acetylation. In: Fricker LD, editor. Boca Raton: CRC Press 1991, p231-242.
    [13] Veber K., Friedlinger R. M. The design of metabolically-stable peptide analogs[J]. Trends Neuroscience, 1988, 392-396.
    [14] Pauletti Giovanni M., Gangwar Sanjeev, Knipp Gregory T., et al. Structural requirements for intestinal absorption of peptide drugs[J]. Journal of Contrlled Realease, 1996,41: 3-17.
    [15 Bundgaard Hans, Rusmussen Gitte Juel. Prodrugs of peptides 9. bioreversible N-a-hydroxyalkylation of the peptide bond to effect protection against carboxypeptidase or other proteolytic enzymes[J] Pharmaceutical Research, 1991, 8(3): 313-322.
    [16] Berahard Kutscher, Michael Bernd, Thomas Beckers, et al. Chemistry and molecular biology in the search for new LHRH antagonists[J]. Angew. Chem. Int. Etl Engl., 1997,36:2148-2161.
    [17] Witt Ken A., Gillespie Terrence J., Huber Jason D., et al. Peptide drug modification to enhance bioavailability and blood-brain barrier permeability[J]. Peptide, 2001, 22: 2329-2343.
    [18] Pauletti Giovanni M., Gangwar Sanjeev, Knipp Gregory T., et al. Structural requirements for intestinal absorption of peptide drugs[J]. Journal of Contrlled Realease, 1996,41: 3-17.
    [19] Shally A. V. Structure of the porcine LH- and FSH-releasing hormone confirmation of the proposed structure by conventional sequential analyses[J]. Biochem. Biophy. Res. Commun, 1971, 44(1): 459-463.
    [20] Guillenmin R. Purification amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin[J]. Biophys. Res. Commun., 1971,44(1): 205-210.
    [21] Naor Z., Shacham S. Signal transduction of the GnRH receptor: crosstalk of calcium protern kinase C(PKC) and arachidonic acid [J].Cell Mol. Neurobiol., 1995,15: 527-544.
    [22] Evans J. J. Modulation of gonadotropin levels by peptides acting at the anterior pituitary gland[J]. Endocr. Rev., 1999, 20: 46-47.
    [23] Fluker M. R. Gonadotropin-releasing hormone antagonists[J]. Curr Opin Endocrinol Diabetes, 2000, 7: 350-356.
    [24] Schally A. V., Comaru-Schally A. M. Hypothalamic and other peptide hormones. Principles of Endocrine Therapy. Section, 15: 715-729.
    [25] Kutscher B., Bernd M., Beckers T., et al. Chemistry and molecular biology in the search for new LHRH antagonists[J]. Angew. Chew. Int. Ed. Engl., 1997, 36: 2148-2161.
    [26] Handelsman D. J., Swerdloff R. S. Pharmacokinetics of gonadotropin-releasing hormone and its analogs[J]. Endocr. Rev., 1986, 7: 95-105.
    [27] Bennett H. P. J., McMartin C. Peptide hormones and their analogues: distribution, clearance from the circulation, and inactivation in vivo[J]. Pharmacol. Rev., 1978,30: 247-92.
    [28] Dutta A. N. Luteinizing hormone-releasing hormone (LHRH) agonists[J]. Drugs Future, 1988, 13: 43-57.
    [29] Karten M. J., Rivier J. E. Gonadotropin-releasing hormone analog design. Structre-fuction studies trward the development of agonists and antagonists: Rationale and perspective[J]. Endocr. Rev., 1986, 7: 44-66.
    [30] Coy D. H., Vilchez-Martinez J. A., Coy E. J., Schally A. V. Analogs of luteinizing hormone-releasing hormone with increased biological activity produced by D-amino acid substitutions in position 6[J]. J. Med. Chem., 1976, 19: 423-425.
    [31] Fujino M., Fukuda T., Shinagawa S., Kobayashi S., Yamazaki I., Nakayama R., Seely J. H., White W. F., Rippel R. H. Synthetic analogs of luteinizing hormone-releasing hormone(LHRH) substituted in positions 6 and 10[J]. Biochem. Biophys. Res. Commun., 1974, 57: 1248-1256.
    [32] Schally A. V. The use of LHRH analogs in gynecology and tumor therapy. In Belfort P, Pinotti JA, Eskes TKAB, editors. Advances in Gynecology and Obstetrics, General Gynecology, Vol 6. Carnforth, UK: Parthenon Publishing, 1989, p3-20.
    [33] Schally A. V., Bajusz S., Redding T. W., Zalatnai A., Comaru-Schally A. M. Analogs of LHRH: the present and the future. In: Vickery BH, Lunenfeld V, editors. GnRH analogs in Cancer and in Human Reproduction. Basic Aspects, Vol. 1. Dordrecht: Kluwer Academic, 1989, p5-31.
    [34] Schally A. V., Comaru-Schally A. M. Hypothalamic and other peptide hormones. Chapter 71. In: Holland J. F., Frei E., Bast R. C., Kufe D. E., Morton D. L, Weichselbanm R. R., editors. Cancer Medicine, 4th Ed. Baltimore: Williams and Wilkins, 1997, p1067-1086.
    [35] Vickery B. H. Comparison of the potential for therapeutic utilities with gonadotrophin-releasing hormone agonists and antagonists[J]. Endocr. Rev., 1986, 7: 115-24.
    [36] Limonta P., Moretti R. M., Marelli M. M., et al. The biology of gonadotropin hormone-releasing hormone: role in the control of tumor growth and progression in humans[J]. Fron. In. Neuro., 2003, (24): 279-295.
    [37] Okada H. One-and three-month release injectable micropheres of the LH-RH superagonist leuprorelin acetate[J]. Adv. Drug Deliver Rev., 1997, 28: 43-70.
    [38] Kol S. GnRH antagonists in art: lower embryo implantation[J]. Human Repro., 2000, 15(9): 1881-1883.
    [39] Dorothea Weckermann, Rolf Harzmann. Hormone therapy in prostate cancer: LHRH antagonists versus LHRH analogues[J]. European Urology, 2004, 46: 279-284.
    [40] Plant T. M. Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate{J}. Front. Neuroendocrinol, 2001, 22(2): 107-139.
    
    [41] Karten M. J., Rivier J. E. Gonadotropin-releasing hormone analog design. Structre-fuction studies trward the development of agonists and antagonists: Rationale and perspective[J]. Endocr. Rev., 1986, 7:44-66.
    
    [42] Schally A. V., Kastin A. J., Coy D. H., Edward T. Tyler Prize Oration-LH-releasing hormone and its analogs:recent basic and clinical investigations[J]. Int. J. Fertil., 1976, 21:1-30.
    
    [43] Reissmann T., Felberbaum R., Diedrich K., Engel J., Comaru-Schally A. M., Schally A. V. Development and applications of LHRH antagonists in the treatment of infertility-an overview[J]. Hum. Reprod., 1995,10:1974-1981.
    [44] Canales E. S., Montvelinsky H., Zarate A., Kastin A. J., Coy D. H., Schally A. V. Suppressive effect of an inhibitory LHRH analog on the gonadotropin response to LHRH in normal women[J]. Int. J. Fertil., 1980, 25:190-192.
    [45] Gonzalez-Barcena D., Kastin A. J., Coy D. H., Nikolics K., Schally A. V. Suppression of gonadotropin release in man by an inhibitory analogue of luteinizing hormone-releasing hormone[J]. Lancet., 1977, 2: 997-998.
    
    [46] Jakesz R. LHRH Agonists[J]. Eur. J. Cancer, 2002, 38 [Suppl 3]: S44.
    [47] Bajusz S., Csernus V. J., Janaky T., Bokser L., Fekete M., Schally A. V. New antagonists of LHRH. II. Inhibition and potentiation of LHRH by closely related analogs[J]. Int. J. Peptide Prot. Res., 1988, 32: 425-435.
    [48] Reissmann T., Engel J., Kutscher B., Bernd M., Hilgard P., Peukert M., Szeleny I., Reichert S., Gonzalez-Barcena D., Nieschlag E., Comaru- Schally A. M., Schally A. V. Cetrorelix. Drugs Future, 1994,19: 228-237.
    [49] Schally A. V., Comaru-Schally A. M. Hypothalamic and other peptide hormones. Chapter 71. In: Holland J. F., Frei E., Bast R. C, Kufe D. E., Morton D. L., Weichselbaum R. R., editors. Cancer Medicine, 4th Ed. Baltimore: Williams and Wilkins, 1997, p.1067-1086.
    [50] Jiang G.C., Stalewski J., Galyean R., Dykert J., et al. LHRH Antagonists: a new generation of long acting analogues incorporating para-ureido-phenylalanines at position 5 and 6[J]. J. Med. Chem., 2001, 44: 453-467.
    [51] Bajusz S., Kovacs M., Gazdag M., et al. Highly potent antagonists of luteinizing hormone-releasing hormone free of edematogenic effects[J]. Proc. Natl. Acad. Sci. USA, 1988, 85:1637-1641.
    [52] Ljungqvist A., Feng D. M., Hook W., et al. Antide and related antagonists of luteinizing hormone release with long action and oral activity[J]. Proc. Natl. Acad. Sci. USA, 1988,85:8236-8240.
    [53] Rivier J., Porter J., Hoeger C, Theobald P., Craig A. G., Dykert J., et al. Gonadotropin-releasing hormone antagonists with N omega-triazolylornithine, -lysine, or -p-aminophenylalanine residues at positions 5 and 6[J]. J. Med. Chem., 1992,35:3942-3948.
    [54] Nestor J. J., Jr., Tahilramani R., Ho. T. L, Goodpasture J. C, Vickery B. H., Ferrandon P. Potent gonadotropin releasing hormone antagonists with low histamine- releasing activity[J]. J. Med. Chem., 1992,35:3942-3948.
    [55] Carnick M. B., Campion M. Abarelix depot, a GnRH antagonist, v LHRH superagonists in prostate cancer: differential effects on follicle-stimulating hormone[J]. Mol. Urol., 2000,4:275-277.
    [56] Cook T., S. heridan W. P. Development of GnRH antagonists for prostate cancer: new approaches to treatment[J]. Oncologist, 2000,5:162-168.
    [57] Eghenghi R., Boutignon F.,Wuthrich P., Lenaerts V. Antarelix (EP24332) a novel water soluble LHRH antagonist[J]. Biomed. Pharmacother, 1993,47:107-110.
    [58] Messer W. S. Peptide hormones. Medicinal and biological chemistry department of the university of Toledo, 2000,3.
    [59] Beckers T., Bernd M., Kutscher B., et al. Structure-fuction studies of linear and cyclized peptide antagonists of the GnRH receptor[J]. Biochem. And Biophy. Res. Comm., 2001, 289: 653-663.
    [60] Ashton W. T., Sisco R. M.,Yang Y. T., et al. Orally bioavailable, indole-based nonpeptide GnRH receptor antagonists with high potency and functional activity[J]. Bioorg. & Med. Chem. Lett., 2001,11: 2597-2602.
    [61] Luthin D. R., Hong Y. F., Tompkins E., et al. Characterization of mono- and diaminopyrimidine derivatives as novel, nonpeptide gonadotropin releasing hormone(GnRH) receptor antagonists[J]. Bioorg. & Med. Chem. Lett., 2002,12: 3635-3639.
    [62] Ashton W. T., Sisco R. M., Yang Y. T., et al. Substituted indole-5-carboxamides and -acetamides as potent nonpeptide GnRH receptor antagonists[J]. Bioorg. & Med. Chem. Lett., 2001,11: 1723-1726.
    [63] Sasaki S., Imaeda T., HAayase Y., et al. A new class of potent nonpeptide luteinizing hormone-releasing hormone (LHRH) antagonists: design and synthesis of 2-phenylimidazo[1,2-a] pyrimidin-5-ones[J]. Bioorg. & Med. Chem. Lett., 2002,12: 2073-2077.
    [64] Jiang J. L., Devita R. J., Goulet M. T., et al. Syntheses and structure-activity relationship studies of piperidine-substituted quinolones as nonpeptide gonadotropin releasing hormone antagonists[J]. Bioorg. & Med. Chem. Lett., 2004, 14: 1795-1798.
    [65] 方宏清.多肽类药物制剂研究现状.美联多肽在线网,2004,4.
    [66] Richard C. Holz. The aminopeptidase from aemmonas proteolytical: structure and mechanism of co-catalytic metal centers involved in peptide hydrolysis[J]. Coordination Chemistry Reviews, 2002, 232: 5-26.
    [67] Mijoon Lee, Dong H. Kim. Hippuyl-a-methylphenylalanine and hippuryl-a-methylphenyllactic acid as substrates for carboxypeptidase A. synthesis kinetic evalution and mechanistic implication[J] Bioorganic & Medicinal chemistry, 2000, 8(4): 815-823.
    [68] Barrett A. J., Salvesen G.Proteinase inhibitors, Research monographs in cell and tissue physiology[J]. Elsevier Science Publishing Company Inc. New York, 1986, 12: 154-223.
    [69] Gilles A. M., Keil B. Evidence for an active-center cysteine in the SH-proteinase inhibitors alpha-clostripain through use of N-tosyl-L-lysine chloromethyl ketone[J]. FEBS Lett., 1984, 173: 58-62.
    [70] Steitz T. A., Shulman R. G. Crystallographic and NMR studies of the serine proteases[J]. Ann. Rev. Biophys. Bioeng., 1982, 11: 419-444.
    [71] Yoram S., Itzhak G, Iris L., et al. A new approach for prolonging the half-life of peptides, proteins and low-molecular-weight drugs in vivo[J]. Drugs of the future, 2001, 26(7): 669-676.
    [72] Kutscher B., Berud M., Beckers T., et al. Chemistry and molecular biology in the search of new LHRH antagonists[J]. Angew. Chem. Int. Ed. Engl., 1997, 36(20): 2148-2161.
    [73] Flanaganl C. A., Millar R. P., Illing N. Adances in understanding gonadotrophin-releasing hormone receptor structure and ligand interactions[J]. J. Repot. and Fert., 1997, (2): 113-120.
    [74] Millar R. P. GnRH Ⅱ and type ⅡI GrLRH receptors[J]. Trend in endo. and met., 2003, 14(1): 35-43.
    [75] Prased K. U., Roeske R. W., Weitl F. L. Structure-activity relationship in luterinizing hormone-releasing hormone[J]. J. Med. Chem., 1976, 19(4): 492-495.
    [76] Marvin J. Karten, Jean E. Rivier. Gonadotropin-releasing hormone analog design. Structure-ruction studies toward the development of agonists and antagonists: rationale and perspective[J]. Endocrine Reviews, 1986, 7(1): 44-66.
    [77] Koch Y., Baram T., Chobsieng P., Fridkin M. Enzymatic degradation of luteinizing hormone-releasing hormone(LHRH) by hypothalamic tissue[J]. Biochem. Biophys. Res. Commun., 1974, 61: 95.
    [78] Marks N., Steru F. Enzymatic mechanisms for the inactivation of luteinizing hormone-releasing hormone(LHRH)[J]. Biochem. Biophys. Res. Commun., 1974, 61: 1458.
    [79] Jayawardene D. S., Dass C. The effect of N-terminal acetylation and the inhibition activity of acetylated enkephalins on the amino- peptidase M-catalyzed hydrolysis of enkephalins[J]. Peptide, 1999, 20: 963-970.
    [1] He bing-lin, Liu ke-liang, Xiao shao-ho. Synthesis, resolution and protection of 4-cycloaminomethyl phenylalanines[J]. Chinese Science Bulletin, 1989, 34(12): 997-1000.
    [2] Venkatappa Viswanatha, Victor J. Hruby. Conversion of L-Tyrosine to L-Phenylalanine. Preparation of L-[3',5'-~(13)C_2]Phenylalanine[J]. J. Org. Chem.,1980, 45: 2010-2012.
    [3] Theobald P., Porter J., Rivier C., Corrigan A., et al. Novel gonadotropin-releasing hormone antagonist: Peptides incorporating modified N~ω-cyanoguanidino moieties[J]. J. Med. Chem., 1991, 34: 2395-2402.
    [4] J. Kitteringam M. R., Shipton M. Voyle. A simole method for synthesis of unsymmetrical ureas[J]. Synthetic Communications, 2000, 30(11): 1937-1943.
    [5] Bounkham Thavonekham. A practical synthesis of Ureas from Phenyl carbamates[J]. Synthesis, 1997, 10: 1189-1194.
    [6] G. C. Jiang, Jacek Stalewski, Robert Galyean, et al. GnRH antagonists: a new generation of long acting analogues incorporating p-Ureido-phenylalanines at positions 5 and 6[J]. J. Med. Chem., 2001, 44: 453-467.
    [7] Flanaganl C. A., Millar R.. P., Illing N. Advances in understanding gonadotrophin-releasing hormoer receptor stucture and ligand interactions[J]. J. Repro. and Fert., 1997, (2): 113-120.
    [8] John Porter, John Dykert, Jean River. Synthesis, resolution and characterization of ring substituted phenylalanines and tryptophans[J]. Int. J. Peptide Protein Res., 1987, 30: 13-21.
    [9] Yuichiro Yare, Chieko Minra, Yoshihiko Baba, Shinji Sawano. Synthesis and biological activity of Somatostatin analogues modified at the tryptophans residue[J]. Chem. Pharm. Bull., 1978, 26(3): 993-997.
    [10] 韩广甸,赵树玮,李述文等编译.有机制备化学手册.化学工业出版社,1980年5月第1版,P259-260.
    [1] 黄惟德,陈常庆.多肽合成.科学出版社,1985,p.197-205.
    [2] Zhang Y., Kennan A. J. Efficient introduction of protected guanidines in Boc solid phase peptide synthesis[J]. Org. Lett., 2001, 3(15): 2341-2344.
    [3] Ishii A., Hojo H., Nakahara Y., et al. Silyl linker based approach to the solid-phase synthesis of Fmoc glycopeptide thioesters[J]. Biosci. Biotechnol. Biochem., 2002, 66(2): 225-232.
    [4] Birkemo G. A., Luders T., Andersen O., et al. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut(hippoglossus L.)[J]. Biochim. Biophys. Acta., 2003, 1646(1-2): 207-215.
    [5] Torok B., Bucsi I., Prakash G. K., et al. Role of cysteine residues in structural stability and function of a transmembrane helix bundle[J]. J. Biol. Chem., 2001, 276(42): 38814-38819.
    [6] Cerovsky V., Welker E., Scheraga H. A. A convenient incorporation of conformationally constrained 5,5-dimethylproline into the ribonuclease A 89-124 sequence by condensation of synthetic peptide fragments[J]. J. Pept. Res., 2003, 61(3): 140-151.
    [7] R. Paul, A. S. Kenda. A mechanism for the N,N'-dicyclohexylcarbodiimide -caused dehydration of Asparagine and maleamic acid derivatives[J]. J. Am. Chem. Soc., 1964, 6: 4162-4166.
    [8] D. T. Gish, et al. Unexpected formation of anhydro compounds in the synthesis of Asparaginyl and gutaninyl peptides[J]. J. Am. Chem. Soc., 1956, 78: 5954-5954.
    [9] C. Ressler. Formation of α, γ-diaminobutyric acid from Asparagine-containing peptides[J]. J. Am. Chem. Soc., 1956, 78: 5956-5957.
    [10] P. G. Katsoyannis, et al. Synthesis of two protected hexapeptides containing the N-terninal and C-terninal sequences of Arginie-Vasopressin[J]. J. Am. Chem. Soc., 1958, 80: 2558-2562.
    [1] Conn P. M., Crowley W. F. Gonadotropin-releasing hormone and its analogues[J]. Engl. J. of Med., 1991, 324(2): 93-103.
    [2] Graul A., Rabasseda X., Castafier J. Abarelix[J]. Drugs of the future, 1998, 23(10): 1057-1061.
    [3] Rivier J. E., Jiang G. C., Porter J., et al. Gonadotropin-releasing hormone antagonists: novel members of the azaline B family[J]. J. Med. Chem, 1995, 38(14): 2649-2662.
    [4] Broqua E, Conn M., Rivier J. E., et al. Pharmacological profile of a new, potent, and long-acting gonadotropin-releasing hormone antagonist: degarelix[J]. The Am. Soc. Pharm. Exp. Ther, 2002, 301(1): 95-102.
    [5] Jiang G. C., Stalewski J., Galyean R., et al. GnRH antagonists: a now generation of long acting analogues incorporating p-ureido- phenylalanines at positions 5 and 6[J]. J. Med. Chem., 2001, 44: 453-467.
    [6] Haviv E, Nichols C. J., Bush E. N., et al. In vitro and in vivo activities of reduced-size antagonists of luteinizing hormone -releasing hormone[J]. J. Med. Chem., 1994, 37(5): 701-705.
    [7] Lee M., Kim D. H. Hippuryl-a-methylphenylalanine and hippuryl-a-methylphenyllactic acid as substrates for carboxypeptidase. A. synthesis kinetic evalution and mechanistic implication[J]. Bioorg. Med. Chem., 2000, 8(4): 815-823.
    [8] Holz R. C. The aminopeptidase from aeromonas proteolytical: structure and mechanism of co-catalytic metal centers involved in peptide hydrolysis[J]. Coord. Chem. Rev., 2002, 232: 5-6.
    [9] Jayawardene D. S., Dass C. The effect of N-terminal acetylation and the inhibition activity of acetylated enkephalins on the amino- peptidase M-catalyzed hydrolysis of enkephalins[J]. Peptide, 1999, 20: 963-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700