褐煤型清洁固体还原剂开发与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对铜火法精炼朝着低成本、环境友好发展的要求,采用褐煤为基本原料加工成褐煤型固体还原剂替代原木、木炭粉、重油、柴油、液化石油气、天然气、氨、丙烷等这些在铜火法精炼过程中常用的物质,经过数年的努力,解决了褐煤炭化的关键技术,在新型固体还原剂手动喷吹设备的基础上,开发了智能化的新型固体还原剂LV自动补偿喷吹系统,并在推广应用过程中解决了工艺和工程的嵌入适应问题,使得研究成果先后在金川集团公司和云铜股份公司获得成功应用。
     在褐煤的综合利用研究方面,本论文研究综合利用褐煤扬长避短生产还原剂,副产煤焦油,煤气作为能源返回燃烧外,多余部分有作为化工原料(如作为生产甲醇、二甲醚的初级原料)的可能。由于本研究褐煤深加工产品定位于冶金用新型还原剂,附加值较高,能获得较好的经济效益,能为褐煤的开发利用提供一种新思路。褐煤半焦还原剂除用于高温电冶金、有色冶炼行业外,在高炉喷吹、黄磷生产、电石加工等方面也有应用前景。
     研究结果表明:弥勒褐煤(水分18.96%、灰分9.33%、挥发分47.19%、固定碳43.48%)进行间接加热炭化,在炭化温度为800℃、炭化时间1小时的条件下,所得半焦质量指标为:固定碳大于72%,挥发份约12%、灰份小于16%、比电阻大于4000Ω·mm2/m。此半焦质量指标已经达到粗铜火法精炼用还原剂的基础料和铁合金生产用还原剂的要求。
     褐煤炭化中试设备的研发充分考虑了褐煤炼焦的特点:(1)褐煤没有结焦性,半焦成散状,故不能用推焦的办法从炉子的侧面出焦;(2)因半焦在炉内有流动性,所以可以连续上进料下出料,炉子可以设计成连续生产的竖炉;(3)褐煤及半焦化学活性高,易与空气中的氧发生燃烧反应,导致烧损使出炉半焦固定碳降低;(4)炉气中含有大量的CO和碳氢化合物。为此,本项目研究自行设计了外热式快速炭化炉,具有快速炭化、炭化过程中避免半焦烧损、过程自热的优点。具体表现在:(1)采用导热性能优异的碳化硅砖砌筑炭化室;采用硅砖砌筑燃烧室;干燥段及冷却段由于温度变化剧烈、受热温度较低,采用粘土砖砌筑,合理用砖降低造价确保炉寿。(2)炉气从燃烧室的上部引入向下燃烧,烟气从底部烟道排出使炭化室炉壁受热均匀。(3)弥勒新哨褐煤的焦油含量为12%(干基),在热解过程中有大量的煤气生成。综合回收利用的措施是将热分解的挥发物气体导入净化系统,首先高温烟气进入第一换热器冷却,使焦油蒸汽由气体状态转变为液体状态,粗煤气中的水蒸气在第二换热室也转变为液态水分离,提高煤气的发热值;最后煤气回到炭化炉的燃烧室作为燃料。第一换热室烟气的温度调节由冷空气的流量控制。
     入炉褐煤的水份是决定炭化过程稳定顺利进行的关键因素。水份高的褐煤入炭化炉带来的主要问题是,炭化过程由于水的蒸发吸热使炭化室温度下降,炉料停留时间过长,降低了炉子生产能力,另一方面单位时间内处理的炉料少,导致炉气中煤气浓度低,煤气返回燃烧室利用由于气量小很难达到自热平衡。本研究设计的褐煤干燥方法如下:
     用钢筋制作数个鼠笼间隔适当距离水平并列置于干燥室地面,鼠笼的一端与总风管连接,将褐煤推在鼠笼上,先从总风管通入常温空气脱除褐煤的水份至25%以下,再将风管中的气流转换成换热室出来的热空气继续干燥,使褐煤水份降到15%以下就可以作为炭化入炉原料。实际生产应用证明褐煤的干燥关键在于一定要让料堆里的饱和湿空气流动,使其逸出料面,才能达到整体干燥的效果。即使只通入常温空气,干燥速度也不慢。干燥过程中褐煤会发生爆裂,产生碎料,但不至于堵塞气流通道。这种设计可以机械化布料和出料,投资省,运行成本低,适合大规模生产。
     褐煤型炼硅还原剂开发试验研究表明,以褐煤半焦作原料,采用油团聚选择性絮凝法进行深度脱灰处理,可以得到灰分含量达到4%以下的精焦。影响脱灰的主要因素是:(1)半焦的粒径大小对油团聚脱灰有较大影响。半焦要磨至250目才能达到其中的无机矿物质与有机质的单体解离。(2)低浓度的料浆有利于絮凝脱灰。(3)絮凝过程中,絮凝剂的用量对脱灰的效果起非常关键的作用。当油的用量在30%-40%之间脱灰效果最好,此时形成的团聚物最结实,焦的回收率也最高。(4)在高速搅拌絮凝过程中,当搅拌强度为每分钟12000转时,絮凝时间控制在10min左右脱灰效果较好。(5)团聚剂油的加入方式对脱灰也有影响,将柴油与适量水乳化后加入料浆中脱灰效果更好。加入适当的分散剂对料浆进行预处理对提高脱灰率也有益处。(6)褐煤半焦孔隙发达,类似活性炭,半焦孔隙中的微粒灰分不易移位解离出来,导致难于深度脱灰。
     用盐酸浸出半焦选择性脱出灰份中的铁、钙、镁和铝是可行的。当采用浸液下进上出、槽浸的方式,控制浸出条件为半焦粒度0.5mm以下,液固比2:1,盐酸浓度2ml/L,常温浸出16小时。取得指标加下:脱灰半焦灰份9.37%、灰份中的主要成份为:Si02:81.09%、Al203:13.36%、CaO:0.74%、Fe203:1.87%:MgO:0.20%。其中铁在酸浸半焦中的含量为0.18%。
     褐煤半焦采用油团聚方法和采用化学浸出方法均可以脱除有害杂质,精半焦质量达到炼硅所用还原剂的要求,但这两种方法各有优缺点,油团聚方法的难点是作为团聚剂的油要用间接加热的方式回收,设备较复杂。采用化学浸出法有工艺及设备简单的优点,但残存在产品中的氯离子会对冶金过程产生潜在危害。
     LV自动补偿喷吹系统的成功开发,使该系统实现固体还原剂还原作业自动化,同时实现远距离输送和喷吹,具有自动、高效、安全、环保、集约的特点。集给料单元、支撑称重单元、安全防爆单元、流化增压单元、流化混合调节单元、反馈调节喷射单元、喷吹系统气动控制站、PLC过程控制单元为一体,为炭质固体还原剂替代重油及液化石油气等高污染或高成本原料的先进工艺过程系统设施,具有火法冶金熔池冶炼气—液—固相复杂反应体系中反应平衡控制的广泛适应性及推广性。
     新型还原剂及自动化喷吹系统运用在金川集团公司熔炼厂进行的还原精炼试验获得成功。金川公司冶炼厂75t阳极炉生产实现新型固体还原剂完全代替重油还原,还原过程稳定,单炉还原时间为50-80min,较重油还原节约30分钟以上。所得阳极板板面平整,还原效果好;还原过程环境评价烟气黑度为林格曼等级一级,避免了铜熔炼车间采用重油还原时逸冒黑烟的问题;新型固体还原剂单耗为13-18Kg/t-Cu,由于处理的是金川二次铜精矿生产的高镍粗铜,氧化深度较深,铜熔炼车间75t阳极炉熔池浅,造成固体还原剂单耗稍高。采用固体还原剂还原相对重油每产一万吨阳极板可节约还原成本9.06万元,实际上经济效益最显著的是还原时间缩短带来的作业成本降低,仅能耗的节约每年就有上千万元。
     对金川公司二次铜精矿冶炼所产粗铜还原精炼过程研究分析,要降低阳极板的含氧量,可以采用以下几种措施:氧化精炼时,依据炉料含镍量控制氧化时间即控制氧化铜样含氧量,当含镍过高时,为提高一次直收率,可适当采用加冷料冲稀的方法,使铜液镍含量降低,达到生产指标;氧化渣尽量扒尽;新型固体还原剂还原精炼是调节阳极含氧的主要工序,因此还原精炼过程需现场取样分析,得到合理的还原时间和还原剂喷吹量;
     对精炼过程镍的脱除及形态控制研究得出以下结论:镍在氧化精炼和还原精炼过程中都是以铜镍合金的形式存在于铜液和溶解在铜液的Cu2O中,未发现NiO及其他形态;镍在火法精炼工序是较难脱除的,特别是在还原精炼工序,还原过程的温度、还原气氛等条件影响下,要脱除铜液中的镍在热力学上是不可能的。因此,镍的脱除主要是在卡尔多炉纯氧吹炼工序完成,要保证入阳极炉粗铜含镍量达标;还原工序,未排净的氧化渣中镍含量高,但采用新型固体还原剂还原时因灰分及添加剂对渣的调节作用及固镍作用,渣中的镍被还原进入铜液的量大大降低,绝大部分镍留在渣中,提高了阳极板的质量。
     本论文研究的主要创新点:开发出褐煤型还原剂成功替代重油、天然气、木炭等还原剂用于铜火法精炼,工艺上有创新;设计外热式连续快速炭化炉制褐煤半焦,设备开发上有创新;酸浸褐煤半焦选择性脱灰研究在工艺上和装置上有创新。LV自动补偿喷吹系统的开发完全是基于冶金控制过程的认识,自主开发。
     在新型还原剂的开发、新设备的研制以及推广应用在铜冶炼行业的过程中,成功解决了工艺及工程方面的关键问题,使得本研究主要成果转化为现实生产力。
In this dissertation, in meet the needs of low costs and environment protection for metallurgical process, the key technique of carbonization of brown coal is solved, and the system, named the LV automatic intelligent-compensation injection system, for the novel solid reductant is developed on the basis of manually operated equipment. The reductant, which is made of brown coal, is successfully used in copper pyro-refining process instead of traditional reductants, such as wood, charcoal, heavy oil, LPG, natural gas, ammonia and propane. The system is successfully applied to the processes in Jinchuan Nonferrous Metals Co.(Group), Gansu Province and Yunnan Copper Co.(Ltd), Yunnan Province, and the problems existed in metallurgical operation and engineering suitability while using the reductant are solved.
     In study of comprehensive utilization of brown coal, the reductant production and the gas which is used as energy resource are researched. The possibility of other crackates used as chemical raw materials(e.g. for production of methyl alcohol and dimethyl ether) is discussed. Due to this study being designed to producing novel reductant used in metallurgy, the high value product can be obtained and the good economic performance can be reached. It also provides a new train of sought for exploiting brown coal resource. The semicoke from brown coal has an applying prospect in blast injection, phosphorous production and carbide production besides in high temperature electro-metallurgy and nonferrous metallurgy.
     The experimental results show that the quality of semicoke is:fixed carbon> 72%, volatile ca.12%, ash< 16% and specific resistance> 4000Ω·mm2/m under the carbonization condition of indirect heating temperature of 800℃for 1 h when use of brown coal from Mile County, Yunnan Province. The quality meets the needs of reductant for copper pyro-metallurgy and for ferroalloy production.
     The characteristics of brown coal carbonization is thoroughly considered in designing the equipment in industrial scale experiment. Firstly, the semicoke product is non-coherent because of its bad coking characteristic, and the ramming machine at side door of the furnace is not suitable. Secondly, the carbonization furnace is designed as shaft one which can be operated continuously with feed inlet at the upper of the furnace and products outlet at the lower of the furnace. Thirdly, the brown coal and semicoke are chemically active and may be burned with oxygen in air which can be resulting in lowering of the fixed carbon in semicoke. Fourthly, a large amount of CO and hydrocarbons exist in furnace gas. Therefore, the carbonization furnace with external heating is designed, and it has the advantages of fast carbonization, avoid of burning loss and autothermal process. Those can be expressed as follows:(1) Different kinds of bricks are used in different parts of the furnace to lower the cost and guarantee furnace life. The carbonization chamber is masonry work of silicon carbide bricks which have the excellent heat conductivity; the combustion chamber is masonry work of silica bricks; and of the furnace the drying nest and the cooling zone, in which it is with low temperature but the temperature changes fast from time to time, are masonry work of firebricks. (2) To keep the wall of carbonization chamber heating evenly, the furnace gas is conducted from the inlet at the upper part of burning chamber, then it is burned downward, and the flue is removed from the outlet at the lower part of burning chamber. (3) A great amount of furnace gas generate in pyrolysis because of 12%(Ad) of tar content in Mile brown coal. The measure for comprehensive utility is that the volatile gas from pyrolysis process is conducted to purification system first. Then the gas with high temperature is cooled in No.1 heat exchanger, in which tar vapor is transformed from gas state to liquid state. The steam in raw gas is transformed to liquid water in No.2 heat exchanger and the calorific value of gas is increased. Finally the gas is used as fuel in the burning chamber of carbonization furnace. The temperature adjustment of flue in No.1 heat exchanger is controlled with air flow.
     The key factor to guarantee stable and smooth carbonization process is water content in brown coal. The main problems caused by high strength of water in the coal are the decreasing temperature in carbonization chamber because of heat absorption brought about by water evaporation, the lowering of furnace productivity because of the longer retention time of charge in furnace, the low strength of gas in flue because of less amount of charges in unit time, and the difficulty of autogenesis balance because of less amount of gas in burning chamber. So the following is the drying method designed by this study:
     The several squirrel cages, made from reinforcing bars, are placed side by side and kept suitable distance on the drying chamber ground. The one end of the cage is connected with main blast line. After brown coal is put in cages, the air at normal temperature is blown from main blast line and the coal can be dried to 25% of water in content. Then the hot air is blown from main blast line in which the flow from heating exchange chamber is changed and it can be dried to less 15% of water. To reach the overall drying effect, the key is to make the saturated wet air in brown coal charges flow and escaped out of charges. This is proved by actual production process. Even if the ordinary air is blasted, the drying is not slow. The decrepitation happens in drying process and fines produces. But flow paths are unlikely blocked. The mechanical distribution and discharge may be realized in this design, and it is in low investment, low running cost and suitable for industry.
     The experimental results of developing reductant from brown coal for silicon production show that the refined semicoke in which the ash content is less 4% can be obtained when brown coal is de-ashed carefully by coacervation with oil and selective flocculating. The main factors that influence the de-ashing process are:(1) The particle size affects de-ashing process by coacervation with oil considerably. The cleavage of minerals and inorganic substances needs semicoke particles ground to-250 mesh. (2) Low strength of pulps is beneficial to flocculating. (3) The use level of flocculant has a key effect in flocculating process on de-ashing. The best level is 30%-40%, and under this condition the formed conglomerate is the densest and the recovery of semicoke is the best. (4) In the process highly agitated, the de-ashing effect is favorable when the agitating strength is 12000 r.p.m. and coacervating time is kept in 10 min. (5) The de-ashing effect also is influenced by the way of putting in flocculant oil. The better effect can be achieved when the emulsion is added in the pulps after a suitable amount of diesel oil and water are emulsified. It is also beneficial when the pulps is added with dispersion agent. (6) The semicoke from brown coal is with high porosity(as activated carbon), the ash particles in pores are difficult to remove and this results in being hard to de-ash thoroughly.
     Iron, calcium, magnesium and aluminum in ash of semicoke can be removed by hydrochloric acid. The leaching vessel is designed as the inlet at bottom and the outlet at top. Under the leaching condition of semicoke particles<0.5 mm, liquid solid ratio 2:1, HCl strength 2 mL/L and leaching time 16 h at normal temperature, the ash content in semicoke after leaching are 9.37%, and main compositions of the ash are SiO281.09%, Al2O313.36%, CaO 0.74%, Fe2O31.87%, MgO 0.20% and Fe 0.18%.
     The harmful impurities in semicoke can be removed by coacervation with oil or by chemical leaching, and the quality of refined semicoke can meet the requirement of reductant used in silicon industry. Both methods have advantages and disadvantages. The difficultly of coacervation with oil is flocculant oil should be recovered by indirect heating and the equipments are complicated. Chemical leaching is with the advantage of simple process and equipment, but Cl- ions in products might be potentially harmful to metallurgical process.
     The development of LV automatic compensation injection system is made the automatic reducing operation possible. The distant convey of redutant and injection are realized. The system is with the characteristics of automatic, high efficiency, safety, environmental protection and intense. It is composed from feeding unit, supporting and weighing unit, safety and anti-explosion unit, fluidizing and pressurizing unit, fluidizing and mixing-adjustment unit, feedback adjustment and jetting unit, pneumatic control unit and PLC control unit. It is an advanced, systematic equipment for carbonaceous reductant to replace high pollution reductant or high cost (e.g. heavy oil and LPG). It is with extensive adaptability and spreading values for reaction control of gas-liquid-solid system in bath smelting.
     The novel reductant and the automatic injection system are successfully applied to copper smelting shop in Jinchuan Nonferrous Metals Co.(Group). The reducing process is stable in 75t anode furnace of the smelter, and heavy oil used before is replaced by the reductant. The reducing time is 50~80 min, which is less 30 min when heavy oil is used. The surface of anode product is smooth. The blackness of flue from reducing process is grade 1 in Lingermann scale, and the problem of emitting black flue when heavy oil is used as reductant is solved. The unit consumption is 13~18 kg/t-Cu. This slightly higher consumption is caused by two reasons:one is highly oxidization of copper melts because there is a mount of nickel in it; the other is shadow bath of 75t anode furnace. The cost for every 10 thousand-ton anode can decrease¥906000 compared to heavy oil reductant. Actually, the most benefit is obtained by deceasing reducing time which decreases the operation cost, the cut down of energy resource cost is more than 10 million yuan every year.
     Research on anode from refining process in Jinchuan Nonferrous Metals Co.(Group) shows that in order to decrease oxygen content in anode several measures can be taken:In oxidizing process, it can be controlled according to nickel content in copper melts. Adding cold burden to copper melts can dilute the solution under the condition of high nickel content. And slag in oxidization process should be tapped as complete as possible. The adjustment of oxygen in anode is mainly in reducing process. Therefore sample taking and analysis in situ are necessary to determine reducing time and reductant injection.
     Research on de-nickel and its phase pattern control shows that nickel exists in the form of Ni-Cu alloy in copper melts and in CU2O which is dissolved in copper melts. NiO and other forms of nickel are not found yet. In pyro-refining process, especially in reducing operation, de-nickel is thermodynamically impossible. So, de-nickel is mainly completed in pure oxygen blowing operation in Kaldo furnace. In reducing operation, nickel can be kept in the slag because the novel reductant has an effect of adjustment for slag composition and nickel fixing to some extent. Thus the quality of anode is improved.
     The main new ideas of this dissertation include that in metallurgical process the novel reductant used in copper pyro-refining from brown coal is developed for replace of heavy oil, natural gas and charcoal, that in equipment carbonization furnace for producing semicoke from brown coal is designed and developed, and that the design and development of the LV automatic compensation injection system are based on the deep understanding of control of metallurgical process.
     In the process of research on novel reductant, novel equipment and applying it to copper industry, the key problems in metallurgical process and engineering are solved successfully, and the achievements in this dissertation are turned to realistic productive force.
引文
[1]陈鹏编著.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001
    [2]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999
    [3]朱建荣.资源综合利用与煤炭工业产业结构调整的研究[J].中国煤炭.1997,23(3):29-31
    [4]杨昆民,何佩瑶,张东晶.阳宗海电厂670t/h锅炉启动试运的燃烧调整[J].云南电力技术.1997,25(3):1-4
    [5]郭树才.煤化工工艺学[M].北京:化学工业出版社,1991
    [6]M.M·沙维洪夫等.褐煤综合加工方向的选择[J].中国煤炭.1996,(9): 17-23
    [7]舒新前,葛岭梅,曲星武.木质褐煤制煤基木炭的成炭机理研究[J].煤炭转化,1994,17(2):20-24
    [8]陈景友.以煤代焦生产锰硅合金[J].四川冶金,1995,(5):38-39
    [9]陈嘉铨.褐煤及其燃烧技术简论[J].云南电力技术,1997,25(2): 37
    [10]何允平,王金铎编.工业硅科技新进展[M].冶金工业出版社.北京,2004,158
    [11]林金元.蓝炭在电石生产中的应用[J].化工技术经济.2004,(12):23-25
    [12]田长荫.我国硅铁专用焦的研究和应用[J],铁合金,1989,(1):37-38
    [13]占汉荣,杨康生.褐煤半焦在硅铁生产中的应用[J],铁合金,1995,(1):15-17
    [14]任祥军.低煤阶煤的干燥进展.煤炭加工与综合利用[J].1996,(4):85-87
    [15]马国君.海拉尔褐煤半焦特性及冶炼硅铁研究[J].煤炭加工与综合利用.1995,(5):28-30
    [16]R.W.Rammler. Erdol und Kohle. Erdgas. Petrochemie[J],19(1966),2:117
    [17]R.W.Rammler. Energy Progress [J].2(1982)2:121
    [18]何允平,我国的工业硅生产和贸易[J],世界有色金属,2006,(1):36-39
    [19]火力发电燃料试验方法[M].中华人民共和国水利电力部,25
    [20]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2004
    [21]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993
    [22]#12
    [23]#12 #12
    [24]钱耀强.粉煤成型研究[J].铁合金,1994,(6):55-57
    [25]翁之望,粟智,王蓓等.煤样中的挥发分及腐植酸的测定[J].新疆有色金属,2002,(1):41—42
    [26]M.A.雷斯.铁合金冶炼[M].北京:冶金工业出版社,1981
    [27]向英温,李静安.炼焦炉的特殊操作[M].北京:冶金工业出版社,2001
    [28]郭树才.煤化工工艺学[M].北京:化学工业出版社,1996
    [29]姜昌伟等.铜精炼反射炉还原期黑烟的治理[J].有色矿冶,2001,(1):27-30
    [30]郭治,刘俊川.焦化操作技术解疑.河北:河北科学技术出版社,1999
    [31]吴道蓉.关于用低变质程度煤焦作铁合金还原剂的建议[J].煤炭加工与综合利用,1994(5):9-10
    [32].谢心敏.2003年铁合金生产销售情况及预测2004年产销走势[J].铁合金,2003,34(6):17-17
    [33]许晓海.炼焦化工实用手册[M].北京:冶金工业出版社,1999
    [34]Raaness O, Gray R. Cole in the Production of Silicon Rich Alloys.In:Tuset J Kr, Tveit H Y, Page T G.INFACON 7 proceeding. Trondheim:FFF,1985:201-219
    [35]Hyldmo P. Lining Problems in Ferrosilicon/Silicon Furnace. Electric Furnace Conference Proceedings,1988,46:190-194
    [36]高东泉,刘红辉.使用煅后煤冶炼碱土金属硅合金的实践[J].铁合金,2002.(2):17-19
    [37]邓永辉.大粒度土焦在16.5MVA锰硅电炉上的应用[J].铁合金,2001,(6):28-30
    [38]王永红,毛海全.优选炭质还原剂冶炼硅钙节能降铝的探讨[J],铁合金,1994,(1):44-45
    [39]张惠棠,吴宽鸿.铁砖焦做还原剂冶炼砖铁[J].铁合金,1994,(1):49-53
    [40]张秋民,郭树才.褐煤新法干馏制取高炉喷吹料和城市煤气初步研究[J].洁净煤技术,1995,(1):40-44
    [41]伍林,宗志敏,魏贤勇等.煤焦油分离技术研究[J].煤炭转化,2001,24(2): 17-21
    [42]Lamey S C. Using Co-boiling Method to Separate the Mixture of Methyl Napthalene and Ouinol ine. Separation Science,1974,9(5):391-400
    [43]于剑峰,杜希林,王宝光.煤焦油的净化、分离及应用浅析[J].煤化工,2004,111(4):29-31
    [44]白玉文,白子文,于学增.双组分聚氨酯防水材料的研制[J].太原理工大学学报,1999,30(4):391-393
    [45]郑延成,赵修太,李克华等.焦油改性酚醛树脂胶粘剂的研究[J].粘接,2000,21(4):10-22
    [46]魏兴海,查庆芳,陈荣耀等.从煤焦油研制耐热性沥青树脂[J].新型炭材料,2000,15(1):40-43
    [47]张怀平,吕春祥,李开喜等.空气氧化法制备的煤焦油沥青的性质研究[J].新型炭材料,2000,15(3):43-46
    [48]张劭诚,韩宝莲.煤焦油型混凝土板嵌缝材料[J].煤化工,1999,(4):56-59
    [49]邹祖桥,刘朗.用煤焦油研制通用级沥青炭纤维[J].煤炭转化,1998,21(2):87-89
    [50]王纯耀,章金涛,邢金山等.环磷酰胺、煤焦油对豫医无毛小鼠骨髓细胞微核的影响[J].河南医科大学学报,2001,36(6):707-708
    [51]冉富,武卫东.煤焦油在平炉炼钢工艺中的应用[J].炼钢,1998,(1):22-24
    [52]吴奇虎.中国大百科全书[M].化工卷.北京:大百科出版社,1987
    [53]张并立.工业硅冶炼中煤基炭做还原剂的工艺要求[J].有色矿冶,2001,17(5):33-36
    [55]J. R. Kershaw, et al, Fuel Processing Technology,1983,7,145-159
    [56]P. F. Nelson. Fuel.1988.67.86-93
    [57]H. Corteg, et al, Fuel Processing Technology,1980,3,297-311
    [58][美]M.A.埃利奥特编.煤利用化学[M].范辅弼,屠益生等译.北京:化学工业出版社,1991
    [59]梅炽,王临江,徐惠华等.有色冶金炉设计手册[M].北京:冶金工业出版社,2000
    [60]#12
    [61]van Heek K H, Hodek W. Fuel.1994,73(6):894
    [62]姜全华.褐煤焦化特征[J].阜新矿业学院学报,1994,13(4):31
    [63]罗康成等.用贵州非年轻煤种研制铁合金专用焦.煤炭加工与综合利用,1998,(5):25-28
    [64]史绍纯,张凤利.用煤代替部分焦炭生产硅锰合金的试验[J],铁合金,1997,(1):36-38
    [65]余忠珠.新型还原剂在金昌冶炼厂铜阳极炉上的应用[J],有色金属2003.55(4):89-90
    [66]王猛.煤基一α2β2γ3新型还原剂在铜反射炉精炼还原过程中的应用[J].中国有色冶金,2005,(2):18-19
    [67]冯秋艳等.煤基一α2β2γ3新型还原剂在铜回转式精炼炉还原过程中的应用[J].甘肃冶金,2007,29(1):12-13
    [68]张干.铜反射炉黑烟治理厦余热利用[J].工业炉,1995,77(3):27-29
    [69]朱祖泽,贺家齐主编.现代铜冶金学[M].科学出版社,北京,2003,447
    [70]罗道成,陈安国.提高细粒褐煤造粒浮选效果的试验研究[J].煤炭学报,2002,27(4):406-410
    [71]傅晓恒,支献华,张晋豫.用油团聚方法降低炼焦精煤的灰分和硫分[J].煤炭科学技术,1998,26(11):15-16
    [72]杨巧文.油水界面张力和煤的变质程度对煤油团聚脱灰的影响[J].煤炭加工与综合利用,1996.(2):37-39
    [73]戚家伟,朱书全,王仁哲,姚春彦,崔广文.选择性双向絮凝技术分选极细粒煤的试验研究[J].选煤技术,2004,(3):15-17
    [74]杨巧文,武立俊,支献华,王祖讷.选择性聚团法制备超净煤的机理研究[J].中国矿业大学学报,2003,32(6):655-658
    [75]朱书全,戚家伟,姚春彦,解维伟.提高选择性双向絮凝分选极细粒煤效果的途径[J].选煤技术,2004,(4):17-19
    [76]Murata Toshiaki, Nippon Kogyo Kaishi,99.911-914(1983)
    [77]Timpe. R. C., Knudson, C. L. and Mack, P., Am. Chem. So. Div. Fuel Chem. 33(2),352-358(1988)
    [78]Venkatadri, R., Markuszewshi, R., Wheelock, T. D., Energy Fuel 2(2).145-150(1988)
    [79]Y. A. Liu, Physicel Cleaning of coal. Marcel Dekker 1982
    [80]Ignasiak,,B., Conf Clean Liq. Solid Fuel.11th.1986.2/13-2/43
    [81]Blaschke Zufia, Fizykochem. Probl Mineralurgii,19,177-182(1987)
    [82]Keller, D. V., Burry, W.,Colloid and Surface,22,37-50(1987)
    [83]马青兰,赵志坚,王仲英.煤的油团聚化学动力学理论[J].煤炭转化.2001,24(2):89-92
    [84]M. J. Jacgaes, A. D. Hovarongka AICHE J.,25,160 (1979)
    [85]Rao, T. C., Vanangamudi, M., Powder Technol.1984,40(195-205)
    [86]Rao, T. C., Vanangamudi, M., J. Mines. Met. Fuels,33(5),202-206(1985)
    [87]Labuschagen,B.,Prinslo,J.,Pro. Inst Conf Coal Sci.,529-532(1985)
    [88]JP 60 58494
    [90]Song S. Haidari S. Traaa O. Flotation of oil-Agglomerated coal for ash and pyrite remove. Proceedings of the 1st Vbc Mcgill Bi-Annual international symposium on fundamentals of mineral processing, Vancouver.BC, (1995)
    [91]杨巧文等.油团聚脱灰工艺的研究[J].煤化工.1995:38-41
    [92]马青兰,王琦璟.煤的油团聚表面热力学理论[J].燃料化学学报,1996,24(3):271-275
    [93]甘代顺.以煤替代木炭生产工业硅[J].铁合金,2002.32(2):25-27
    [94]田建强.精煤在工业砖生产中的应用[J].轻金属,2002,(8):49-51
    [95]王同华.用HF和H2SiF6脱灰制高精煤[J].燃料化学学报,1992,20(3):87-92
    [96]王同华.用含氟酸脱灰制取超纯煤[J].大连理工大学学报,1993,33(1):112-116
    [97]陈文敏.中国超纯煤的研制[J].煤炭科学技术,1994,6(22):40-42
    [98]李寒旭.高纯煤制备及反应机理初探[J].矿业科学技术,1993,(1):49-58
    [99]郑明东.高精煤新技术研究[J].华东冶金学院学报,1990,7(3):54-60
    [100]曾凡.常规酸碱化学脱灰法[J].煤炭加工与综合利用,1995,(1):32-36
    [101]许志华.东胜三合场煤的特加工探讨[J].中国矿业大学学报,1989,18(4):31-39
    [102]耿东森.酸碱脱灰法制备超低灰煤[J].河北煤炭,2000,(2):31-32
    [103]高晋生.稀碱处理法化学净煤的研究[J].煤炭转化,1994,17(3):58-64
    [104]李德伏.常压下煤的碱处理脱灰[J].煤炭转化,1992,15(4):83-88
    [105]尤隆渤.煤稀碱法连续脱灰制取超纯煤的研究[J].煤化工,1992,(3):1-7
    [106]高晋生.煤的碱处理脱灰的初步研究[J].煤化工,1990,(3):16-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700