基于还原法的高铝铁矿石铝铁分离基础及新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究为国家自然科学基金委国家杰出青年科学基金“矿物工程与物质分离科学”项目(批准号:50725416)资助课题。
     高铝铁矿是一类典型的难处理矿石,采用常规选矿工艺难以有效实现铝铁分离。为实现高铝铁矿资源的综合利用,本文以印尼某铁矿石为对象,系统研究了其物理化学特性及工艺矿物学特征;在探索试验基础上,针对该资源铁铝嵌布紧密的特点,研究了钠化还原焙烧过程中铁、铝、硅氧化物的热力学行为及条件;采用纯物质为原料进一步研究了钠化还原过程中铁、铝、硅氧化物的反应历程,建立了铁、铝、硅组分分离行为基础;通过深入研究焙烧球团的微观结构、还原气氛下钠盐的熔融特性及在钠盐存在条件下铁氧化物还原动力学,揭示了钠化还原焙烧过程中铁、铝、硅矿物分离的微观机制,阐明了不同钠盐对铝铁分离的作用机理,在此基础上开发了基于还原法的铝铁分离新工艺,形成高铝铁矿石铝铁分离技术原型。
     1、原料物化性能研究
     试验所用原料铁品位为48.92%,Al2O3和Si02含量分别为8.16%、4.24%。铁矿物以赤铁矿和针铁矿为主;脉石矿物主要是三水铝石、石英及硅酸盐类粘土矿物。原矿中占总铝含量40.44%的铝以类质同像形式存在于铁矿物中,硅酸盐矿物与铁矿物交生镶嵌,形成矿石内部铁、铝、硅矿物复杂的嵌布关系,采用常规选矿方法难以有效脱除铁矿中的Al2O3和Si02。
     2、热力学研究
     (1)固体碳还原铁氧化物,当T>968K,CO%>59.1%时,铁氧化物可被还原为金属铁。还原过程中FeO、SiO2、Al2O3三者之间将发生固相反应,生成铁橄榄石、FeO·Al203及Al2O3·Si02。固体碳还原FeO·Al203的开始温度为1190K,添加硫酸钠后开始还原温度为1010K,添加碳酸钠后开始还原温度为1080K。
     (2)氧化气氛下Al2O3、8iO2很难与硫酸钠自发反应,还原气氛下Al2O3、Si02均优先与钠盐反应生成铝硅酸钠,Al2O3和Si02与Na2CO3开始反应的最低温度为275K,与Na2SO4开始反应的最低温度为500K。同时,添加硫酸钠还原时,FeS及Na2S能自发生成,Na2SO4被还原为S的最低温度为690K。
     (3)根据各反应△G大小可知,当1000KNa2O·Al2O3·4Si02>Na2O·2Si02>Na2O·SiO2>NaAlO2>2Na2O·Si02;硫酸钠存在的还原体系各物质生成的优先顺序为:Na20·Al203·6SiO2>Na20·Al2O3·4SiO2>Na20·2SiO2>Na2O·Si02>2Na2O·Si02>NaAlO2。
     3、纯物质体系还原焙烧过程中各组分物相变化研究
     (1)在Fe2O3-Al2O3-SiO2-Na2SO4体系,600℃-700℃时,铁的物相为Fe3C、Fe1-xS和NaFeS2;800℃-1000℃时,铁的物相为Fe和NaFeS2;1150℃时铁的物相为FeO、Fe、NaFeS2和NaFe3Si2O6;1250℃时铁的物相为FeO、Fe、NaFeS2和(Fe0.88Al0.12)(Al1.88Fe0.12)O4。SiO2、Al2O3在700℃与硫酸钠反应生成铝硅酸钠。
     (2)在Fe2O3-Al2O3-SiO2-Na2CO3体系,400℃-700℃时,铁的物相为Fe3C、FeO和Fe3O4;800℃-1100℃时,铁的物相为Fe。SiO2与Al2O3在550℃时反应生成Al2O3·SiO2,同时铝硅酸钠开始大量生成。
     (3)在Fe2O3-SiO2-Na2SO4体系,600℃时,铁的物相有Fe3C、FeO、FeS、NaFeS2;740℃时铁的物相有FeO、Fe和FeS;800℃时铁的物相为FeO、Fe、FeS和NaFeO2.35Si0.175;900℃-1000℃时铁的物相是FeO和Fe;1100℃铁的物相为FeO、Fe、FeO·SiO2和Fe2SiO4。SiO2在800℃时与铁、钠反应生成NaFeO2.35Si0.175,900℃时与硫酸钠反应生成Na2Si2O5,1100℃时与FeO反应生成硅酸铁。
     (4)在Fe2O3-Al2O3-Na2SO4体系,600℃-700℃时,铁的物相以Fe3C、Fe3O4和NaFeS2为主,800℃-1100℃时,铁的物相以Fe和NaFeS2为主。Al2O3与硫酸钠在740℃时开始反应生成铝酸钠。
     4、还原焙烧过程中铁、铝、硅矿物分离的微观机制研究
     (1)物相研究表明,高铝铁矿石不添加钠盐还原焙烧,铁氧化物部分被还原成无磁性的γ-Fe,难以通过磁选回收;添加钠盐后,铁氧化物的还原得到改善,脉石矿物Al2O3、SiO2与钠盐发生反应生成铝硅酸钠。
     (2)还原球团显微结构研究表明,不添加钠盐还原,大部分铁矿物与铝、硅矿物结合紧密;碳酸钠能促进铁氧化物的还原,但是铁晶粒数目多、粒度小,与脉石矿物铝硅酸钠结合较紧密;添加硫酸钠还原,铁晶粒与脉石矿物界限分明;硼砂能促进铁晶粒沿边界析出连接长大,使得铁晶粒间相互连接成一个整体。
     (3)还原气氛钠盐熔融性质研究表明,硫酸钠存在的还原体系将新生成S、Na2S、FeS等物质,在局部形成液相,为铁离子的扩散提供通道。而碳酸钠存在的还原体系,铁离子的迁移只能通过固相扩散进行,迁移阻力较大,因此铁晶粒与脉石矿物的界限不及添加硫酸钠时分明。
     (4)硫酸钠和碳酸钠均能显著提高铁矿石的还原速率,在还原初期,添加碳酸钠还原速率较硫酸钠要慢。因此,碳酸钠存在的还原体系,在还原初期,一方面,铁氧化物的还原速度较硫酸钠慢,另一方面,碳酸钠与铝、硅矿物反应温度低,速度快,铝硅酸钠的快速生成成为铁离子迁移的壁垒,铁离子扩散的势垒增大,不利于铁晶粒长大及其与脉石矿物的分离。
     5、高铝铁矿石钠化还原铝铁分离新工艺研究
     (1)钠化还原-磨矿磁选工艺能有效实现铝铁分离,在硫酸钠用量12%,硼砂用量2.5%,焙烧温度1050℃,焙烧时间60min,磨矿细度-0.074mm粒级占98%,磨矿浓度50%,磁场强度675mT的条件下,可获得铁品位91.00%,Al2O3含量1.36%的金属铁粉,铁的回收率为91.58%,铝的脱除率为90.47%。
     (2)在钠化还原焙烧过程中,铁氧化物被还原成金属铁,大部分铝、硅矿物与硫酸钠反应生成不溶于水的铝硅酸钠,经磁选后进入非磁性物中,从而实现了铝铁的高效分离。
     (3)钠化还原法所得金属铁粉经过进一步处理后可用于电炉炼钢,非磁性物可综合回收铝、硅、钠、铬等有价元素,从而实现资源的综合利用。
High-aluminium content iron ore is a typical refractory ore, traditional processes are found invalid to separate aluminium and iron. To utilize such resources, a high-aluminium content iron ore, taken from Indonesia, is used in the thesis. The physicochemical properties and mineralogy characters are systematically studied. Considering the close distribution relationship between iron and aluminium, the thermodynamic behaviours and conditions of ferreous, aluminiferous and silaceous oxides in the process of reduction roasting with addition of sodium salts are analysed. The reaction processes of ferreous, aluminiferous and silaceous oxides are studied by using pure materials, and the fundamental of separation behaviour is set up. The micromechanism of ferreous, aluminiferous and silaceous minerals in the process of reduction roasting with addition of sodium salts is revealed, and the action mechanism of different sodium salts on the Al-Fe separation is also illuminated, based on the studies of the microstructure of roasted pellets, smelting characters of sodium salts in reduction atmosphere and reduction dynamics of iron oxides with addition of sodium salts. On this basis, the new process of reduction roasting is developed, and the Al-Fe separation technological prototype for hig-aluminium content iron ore is formed.
     1. Research on the physicochemical properties of materials
     It is indicated that major iron minerals in the ore, with 48.92% TFe, 8.16% Al2O3 and 4.24% SiO2, are hematite and goethite, and gangue minerals are gibbsite, quartz and silicate-clay. There are 40.44% aluminium of total Al2O3 content exist in iron minerals in the form of isomorphism, and silicate minerals also form complex relationship with iron minerals. It is shown that the existential relationship among ferreous, aluminiferous and silaceous minerals is very complex, resulting in the difficult removal of aluminiferous and silaceous minerals from ferreous minerals by using normal physical beneficiation methods.
     2. Thermodynamics investigation
     (1) When iron oxide is reduced by carbon, iron oxide is reduced to metallic iron when temperature exceeds 968K and CO concentration exceeds 59.1%. FeO, SiO2 and Al2O3 will react with each other and form FeO·SiO2, FeO·Al2O3 and Al2O3·SiO2 in the reduction process. The lowest reduction temperature of FeO·Al2O3 is found to be 1190K by carbon reduction, while the lowest temperature is 1010K when sodium sulfate added, and the temperature is 1080K when sodium carbonate added in the reduction process.
     (2) It is difficult for the reaction of Al2O3 and SiO2 with Na2SO4 in air atmosphere, while sodium aluminosilicate will be formed preferentially in reducing atmosphere among Al2O3, SiO2 and sodium salts. The lowest temperature for reaction of Al2O3 and SiO2 with Na2CO3 is found to be 275K, and for Al2O3 and SiO2 with Na2SO4, the temperature is 500K. On the other hand, FeS and Na2S will be formed spontaneously in the reduction system with sodium sulfate exited, and the lowest temperature for formation of S is 690K.
     (3) It is known that, according to the values ofΔG, when 1000K     Na2O·Al2O3·6 SiO2>Na2O·Al2O3·4SiO2>Na2O·2 SiO2> Na2O·SiO2>NaAlO2>2Na2O·SiO2.
     And in reduction system with sodium sulfate exited is as the following:
     Na2O·Al2O3·6SiO2>Na2O·Al2O3·4SiO2>Na2O·2SiO2>Na2O·SiO2>2N a2O·SiO2>NaAlO2.
     3. Research on the phase transformation of components in the reduction roasting process in the pure materials system
     (1) For Fe2O3-Al203-SiO2-Na2SO4 system, Fe3C, Fe1-xS and NaFeS2 are found as main iron phases in the temperatures of 600℃-700℃, and Fe and NaFeS2 will be formed when temperature is between 800℃-1000℃. Iron phases are FeO, Fe, NaFeS2 and NaFe3Si2O6 at 1150℃, and when temperature is 1250℃, iron phases are FeO, Fe, NaFeS2 and (Fe0.88Al0.12)(Al1.88Fe0.12)O4. SiO2 and Al2O3 react with Na2SO4 at 700℃and form sodium aluminosilicate.
     (2) For Fe2O3-Al2O3-SiO2-Na2CO3 system, iron phases are Fe3C, FeO and Fe3O4 in the temperatures of 400℃-700℃, and when temperature is between 800℃-1100℃, iron phase is metallic Fe mainly. SiO2 and Al2O3 react with each other at 550℃and forms Al2O3·SiO2, then sodium aluminosilicate will be formed simultaneously.
     (3) For Fe2O3-SiO2-Na2SO4 system, iron phases are Fe3C, Fe, FeS and NaFeS2 at 600℃, FeO, Fe and FeS at 740℃, and FeO, Fe, FeS and NaFeO2.35Si0.175 at 800℃. FeO and Fe are main iron phases in roasted ore when temperature is between 900℃-1000℃. FeO, Fe, FeO·SiO2 and Fe2Si04 are main iron phases at 1100℃. SiO2 reacts with FeO and Na2O at 800℃and forms NaFeO2.35Si0.175, and Na2Si205 is formed at 900℃, and iron silicate is formed at 1100℃.
     (4) For Fe2O3-Al2O3-Na2SO4 system, iron phases are Fe3C, Fe3O4 and NaFeS2 when temperature is between 600℃-700℃, and iron phases are Fe and NaFeS2 when temperature is between 800℃-1100℃. Al2O3 reacts with Na2SO4 at 740℃and forms sodium aluminate.
     4. The micromechanism of separation of ferreous, aluminiferous and silaceous minerals in the reduction roasting process
     (1) Some iron oxides are reduced to non-magnetic ironγ-Fe, which is unable to be recovered through magnetic separation, when high-aluminium content iron ore is reduced without sodium salts. The reduction of iron oxides gets improvement when sodium salts are added, and SiO2, Al2O3 will react with Na2CO3 or Na2SO4 to produce sodium aluminosilicate.
     (2) It is indicated by the results of microstructure of reduced pellets that, most ferrous minerals combine with aluminiferous and silaceous minerals tightly without addition of sodium salts in the roasting process. Sodium carbonate can be able to promote the reduction of iron oxides, and many iron grains with small size are found in the pellet, which combine with sodium aluminosilicate closely. While the boundary between iron grains and gangue minerals is clear as sodium sulfate is added. Addition of borax promotes iron grains to separate out along borderline of gangue minerals and grow big, making iron grains join together.
     (3) The smelting properties of sodium salts show that, S, Na2S and FeS will be formed spontaneously in reduction system with addition of sodium sulfate, which become liquid phase in local area, providing migrating passage for iron ions. While in reduction system with sodium carbonate existed, iron ions only diffuse in solid phase, and the migrating resistance is relatively big, so the boundary between iron grains and gangue minerals is not clear as sodium sulfate exited.
     (4) Sodium sulfate and sodium carbonate can both accelerate the reduction of high-aluminium content iron ore. While the reduction rate is slow in reduction system with sodium carbonate exited compared with sodium sulfate exited during early stage. On the other hand, sodium carbonate reacts with aluminium and silicon oxide quickly, and the formation of sodium aluminosilicate becomes move holdback of iron ions, and the diffusion barrier of iron ions increases, which goes against the separation iron grains and gangue minerals.
     5. New process of sodium-added reduction for Al-Fe separation of high-aluminium content iron ore
     (1) The process of sodium-added reduction followed by grinding-magnetic separation has been developed to separate iron and aluminium effectively. A metallic iron powder with total iron grade of 91.00% and Al2O3 content of 1.36% is obtained at the sodium sulfate dosage of 12%, the roasting temperature of 1050℃and time of 60min, the grinding fineness of 98% less than 0.074mm and the magnetic field intensity of 675mT, then the iron recovery is 91.58%, and the removal of Al2O3 is 90.35%.
     (2) In the sodium-added reduction process, iron oxides are transformed into metallic iron, and most aluminiferous and silaceous minerals react with sodium sulfate and form no-nmagnetic sodium aluminosilicates, which enter into non-magnetic materials during magnetic separation, then Al-Fe separation is realized successfully.
     (3) The metallic iron powder obtained from the sodium-added reduction process can be used for steel-making in electric furnace by further treatment. Some valuable elements such as alimiunium, silicon, sodium and chrome can be recovered from non-magnetic materials, then the utilization of the resources is realized.
引文
[1]全钰嘉.钢铁冶金百科全书.北京:冶金工业出版社,2001.472-477
    [2]国际钢协.钢产量统计数据.http://www.worldsteel.org,2009
    [3]戚向东.2007年我国钢铁行业运行情况及2008年供需形势分析.冶金管理,2008,(2):17-25
    [4]何军红.2007年钢铁行业运行状况分析报告.冶金管理,2008,(1):10-16
    [5]何金祥.对我国钢铁工业发展的若干战略性思考.国土资源情报,2009,(3):12-18,11
    [6]邹健.中国铁矿供需形势分析.冶金管理,2009,(1):28-30
    [7]焦玉书,周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势.中国冶金,2004,(11):13-18
    [8]Olle, Ostensson.世界铁矿石资源—开发和利用的趋势.矿冶工程,2006,26(6):1-4
    [9]中国钢铁工业协会.铁矿石产量统计数据.http://www.chinaisa.org.cn,2009
    [10]陈世光,赵小燕.我国进口铁矿石市场分析及对策.水运管理,2009,31(3):13-16
    [11]刘树臣,马建明,崔荣国.国内外铁矿资源供需形势.国土资源情报,2008,(3):33-36
    [12]陈甲斌,许敬华.国内外铁矿石市场形势分析.江苏地质,2007,31(2):151-156
    [13]赵琰.铁矿石供需形势分析及政策建议.国土资源科技管理,2008,(3):129-132
    [14]杨晓菲.价格谈判引发铁矿石新涨潮.中国金属通报,2008,(10):15-18
    [15]刘树臣,马建明,崔荣国.国内外铁矿资源供需形势.国土资源情报,2008,(3):33-36
    [16]刘动.近年我国进口铁矿石的现状与分析.金属矿山,2009,(1):12-15,77
    [17]黄文娴,宋武元,伍泽权,等.广东口岸进口铁矿石质量情况分析.南方金属,2006,(6):32-34
    [18]胡顺峰,杨立明,李宜轩,等.进口印度铁矿石存在问题及对策.金属矿山,2007,(10):6-10
    [19]杨立明,苏征.我国进口铁矿石质量状况及对策.现代矿业,2009,25(4):15-19
    [20]孙锡丽.2004年进口铁矿检验情况综述.冶金管理,2005,(3):35-37
    [21]马建明,吴初国.缓解当前我国铁矿资源供求矛盾的关键何在.国土资源情报,2008,(7):33-35
    [22]松权衡,刘忠,杨复顶,等.国内外铁矿资源简介.吉林地质,2008,27(3):5-7
    [23]马建明,刘树臣,崔荣国.国内外铁矿资源供需形势.中国金属通报,2008,(32):30-31
    [24]平海波,张欢.我国铁矿资源禀赋特征与地质勘查基本思路分析.冶金管理,2008,(2):53-55
    [25]蔡敏,刘为华,张欢.我国铁矿石供给与需求的困境和对策.曲靖师范学院学报,2008,27(3):32-36
    [26]谢承祥,李厚民,王瑞江,等.中国查明铁矿资源储量的数量、分布及保障程度分析.地球学报,2009,(3):387-394
    [27]侯宗林.中国铁矿资源现状与潜力.地质找矿论丛,2005,20(4):242-247
    [28]徐叶兵,邓军.我国铁矿资源保障对策探讨.国土资源情报,2006,(6):37-40
    [29]张泾生.我国铁矿资源开发利用现状及发展趋势.钢铁,2007,42(2):1-6
    [30]宋雄,余中平.中国铁矿资源利用现状及其保证程度.地质与勘探,1998,34(2):1-4
    [31]赵一鸣.中国铁矿资源现状、保证程度和对策.地质论评,2004,50(4):396,417
    [32]王颖.我国铁矿资源形势分析与其可持续供给的策略.金属矿山,2008,(1):12-14
    [33]王德华,梁建波.铁矿石供给难题凸显.中国国情国力,2007,(2):23-26
    [34]牛京考.回眸50年展望新世纪—黑色冶金矿山科学技术回顾与展望.金属矿山,1999,(12):1-7
    [35]孙炳泉.近年我国复杂难选铁矿石选矿技术进展.金属矿山,2006,(3):11-13,56
    [36]M.Xu, M.W.Guo, J.L. Zhang. Beneficiation of Titanium Oxides From Ilmenite by Self-Reduction of Coal Bearing Pellets. Journal of Iron and Steel Research, 2006,13(2):6-9
    [37]L. J. Brennan, R.V. T.Field. Chemical beneficiation of zircon concentrates in Western Australia. International Journal of Mineral Processing,1984,13(4): 251-258
    [38]Z.F.Yuan, X.Q.Wang, C.Xu. A new process for comprehensive utilization of complex titania ore. Minerals Engineering,2006,19(9):975-978
    [39]余永富.我国铁矿山发展动向、选矿技术发展现状及存在的问题.矿冶工程,2006,(1):21-25
    [40]施月循,刘宏娟.高炉增加高铝铁矿冶炼的可行性探讨.上海金属,2001,23(1):7-10,22
    [41]沈峰满.高Al2O3含量渣系高炉冶炼工艺探讨.鞍钢技术,2005,(6):1-4
    [42]R.Benesch, A.Dzki, R.Kope,etal. Equilibrium of reduction of titanium oxides from blast-furnace-type slags of the CaO-MgO-SiO2-Al2O3-TiO2 system in liquid phases. Thermochimica Acta,1989,152(2):447-461
    [43]刘南松.关于铁矿石优化利用的探讨.冶金矿山设计与建设,1996,28(2):36-41
    [44]龙防.富Al2O3矿对炼铁原料及冶炼过程的影响:[硕士学位论文].武汉:武汉科技大学,2006
    [45]L.Lu, R.J. Holmes, J.R.Manuel. Effects of Alumina on Sintering Performance of Hematite Iron Ores. ISIJ International,2007,47(3):349-358
    [46]M.Hessienm, Y.Kashiwaya, K.Ishii, etal. Sintering and heating reduction processes of alumina containing iron ore samples. Ironmaking& steelmaking, 2008,35(3):191-204
    [47]C.V.Murty, A.De, A.Chatterjee, etal. Reduction of Alumina Reduction of alumina in iron ore classifier fines and its influence on sinter properties. Tata Search,1994,(1):7-13
    [48]杨华明,邱冠周.Al2O3对烧结矿RDI的影响规律.钢铁研究学报,1999,11(1):1-4
    [49]刘晓荣,邱冠周.Al2O3/SiO2对低温烧结成矿规律的影响.钢铁,2001,36(3):5-8
    [50]王树同,祈富安.Al2O3加剧烧结矿低温还原粉化原因的研究.烧结球团,1997,22(2):1-4
    [51]武轶.Al2O3含量对烧结矿性能的影响.钢铁研究,2005,33(6):5-8
    [52]秦学武,宋灿阳,阎媛媛.高炉高铝炉渣性能研究.山东冶金,2006,28(1):29-32
    [53]胡夏雨,林李全,李辽沙.高Al2O3炉渣性能的研究.中国冶金,2006,(2):36-41,45
    [54]李福民,吕庆,胡宾生,等.高炉渣的冶金性能及造渣制度.钢铁,2006,41(4):19-22
    [55]龙防,周国凡.富Al2O3高炉炉渣粘度实验研究.河南冶金,2006,14(1):11-13
    [56]陈培敦,孙守建,赵树民.高Al2O3炉渣对高炉生产的影响.山东冶金,2005,27(1):12-13
    [57]P.R.Dawson, J.Ostwald, K.Hayes. Influence of Alumina on Development of Complex Calcium Ferrites in Iron Ore Sinters. Transanctions of the Institution of Mining Metallurgy (Sect ion c:Mineral Processing and Extractive Metallurgy),1985,94(6):71-78
    [58]常久柱,赵勇.Al2O3对唐钢高炉炉渣性能的影响.炼铁,2004,23(3):10-13
    [59]S.V.Baev, G. A.Uryavin, L.N.Leont'Ev, etal. Heat exchange and reduction in high-alumina charges in the blast furnace. Metallurgist,1975,19(5):351-354
    [60]V.M.Korane, M.K.Choudhary, M.Sinha, etal.Limits and Constraints in Production of Low Basicity Sinters with High Alumina Iron Ores. Tata Search, 2006, (5):117-122
    [61]田青,施月循.高Al2O3渣脱硫能力的研究.炼铁,1998,17(4):32-33
    [62]李光辉,周太华,刘牡丹,等.难处理褐铁矿铝铁分离新工艺及机理研究.中国有色金属学报,2008,18(11):2087-2093
    [63]姜涛,刘牡丹,李光辉,等.高铝铁矿石工艺矿物学及铝铁分离技术.中南大学学报(自然科学版),2009,40(5):1165-1171
    [64]B.Das, S.Prakash, S. K.Das, etal. Effective Beneficiation of Low Grade Iron Ore Through Jigging Operation. Journal of Minerals& Materials Characterization& Engineering,2007,7(1):27-37
    [65]S.Bhattacharya, U. K.Viswakarma, P.Misra,etal. Meeting the challenges of a growing demand for steel in India. Journal of the Institution of Engineers (India) Part PR, Production Engineering Division,2009,90(17):24-36
    [66]俞成.采用选择性分散剂和絮凝剂对印度高铝铁矿泥进行选别研究.国外选矿快报,1994,(4):5-8
    [67]S.M.Privastava, S.K.Pan, N.Prasad, etal. Characterization and processing of iron ore fines of Kiriburu deposit of India. International Journal of Mineral Processing,2001,61(2):93-107
    [68]刘南松.印度高铝铁矿石的生产使用实践.中国金属学会提高钢铁企业经济效益研讨会.武汉:1998,276-283
    [69]Pradip. Utilization of Alumina-Rich Indian Iron Ore Slimes. Conference on Raw Materials and Sintering. Ranchi:1997,8-20
    [70]N.Pradhan, B.Das, C. S.Gahan, etal. Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans. Bioresource Technology,2006,97(15): 1876-1879
    [71]K.H.Rao, K.S.Narasimhan. Selective flocculation applied to Barsuan iron ore tailings. International Journal of Mineral Processing,1985,14(1):67-75
    [72]王立堂.赤泥利用的有效途径.世界有色金属,1998,(8):46-48,42
    [73]E.Kalkan.Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology,2006,87(3):220-229
    [74]株洲钢铁厂.高铝铁矿在小高炉上的使用.湖南冶金,1976,(3):24
    [75]S.S.De, S.K.Gupta, A.Bahadur.Use of Dunite in Sintering of High Alumina Iron Ores. Iron& Steelmaker,1995,22(2):49-56
    [76]B.Das, S.Prakash, B.K.Mohapatra, etal. Beneficiation of iron ore slimes using hydrocyclone. Mineral and Metallurgical Processing,1992,9(9):101-103
    [77]B.Das, B.K.Mohapatra, P.S.R.Reddy, etal.Characterization and beneficiation of iron ore slimes for further processing. Powder Handling and Process,1995,7(1): 41-44
    [78]K.H.Rao, K.S.Narasimhana. Selective flocculation applied to Barsuan iron ore tailings. International Journal of Mineral Processing,1985,14(1):67-75
    [79]B.Gujraj, J.P.Sharma, A.Baldawa, etal. Dispersion-flocculation studies on hematite-clay systems. International Journal of Mineral Processing,1983,11(2): 285-302
    [80]Pradip, S.A.Ravishankar, T.A.P.Sankar, etal. Beneficiation Studies on Alumina-Rich Indian Iron Ores Slimes using Selective Dispersants.ⅩⅧ International Mineral Processing Congress. Sydney:1993,1289-1294
    [81]S.A.Ravishankar, M.G.Pradip, R.Deo, etal. Selective Flocculation of Iron Oxide-Kaolin Mixtures using a Modified Polyacrylamide Flocculant. Bulletin of Materials Science,1988,10(5):423-433
    [82]Pradip.Beneficiation of alumina-rich Indian iron-ore slimes. Metals Materials and Processes,1995,6(3):179-194
    [83]P.A.Olubambi, J.H.Potgieter. Effectiveness of Gravity Concentration For The Beneficiation of Itakpe (Nigeria) Iron Ore Achieved Through Jigging Operation. Journal of Minerals&Materials Characterization and Engineering,2005,4(1): 21-30
    [84]B.Sarkar, A.Das, S.Roy, etal. In depth analysis of alumina removal from iron ore fines using teetered bed gravity separator. Mineral Processing and Extractive Metallurgy,2008,117(1):48-55
    [85]S.Roy.Recovery Improvement of Fine Iron Ore Particles by Multi Gravity Separation. The Open Mineral Processing Journal,2009,2(14):17-30
    [86]R. P.Bhagat, S.Dey. Flocculation of iron ore slimes of Joda and Kiriburu mines. Indian journal of chemical technology,1999,6(5):280-284
    [87]D.S.Rao, T.V.V.Kumar, S.S.Rao, etal. Mineralogy and Geochemistry of A Low Grade Iron Ore Sample from Bellary-Hospet Sector, India and Their Implications on Beneficiation. Journal of Minerals& Materials Characterization & Engineering,2009,8(2):115-132
    [88]S.Prakash, B.K.Mohapatra, B.Das. Recovery of iron values from iron ore slimes by selective magnetic coating. Separation Science and Technology,2000, 35(16):2651-2662
    [89]B.Das, S.R.P.Reddy, N.V.Misra. Recovery of Iron Values From Tailing Dumps Adopting Hydrocyclone and Magnetic Separation Techniques.2002 Iron Ore Conference. Perth:2002,165-174
    [90]M.K.Ghose, P.K.Sen. Recovery of Usable Ore Fines from Iron Ore Tailings and their Environmental Management-A Case Study. Land Contamination& Reclamation,1999,7(2):142-148
    [91]郑桂兵,王立君,田袆兰,等.印度某铁矿选矿工艺研究.有色金属:选矿部分,2009,(2):26-28
    [92]施爱加,张志华.马钢南山铁矿东选精矿降铝工艺改造.金属矿山,1999,(5):30-31
    [93]管建红.采用脉动高梯度磁选机回收赤泥中铁的试验研究.江西有色金属,2000,14(4):15-18
    [94]李卫东.拜耳法赤泥选铁新技术研究:[硕士学位论文].长沙:中南大学,2005
    [95]周太华.高铝褐铁矿铝铁分离研究:[硕士学位论文].长沙:中南大学,2008
    [96]S.Mahiuddin, S.Bandopadhyay, J. N.Baruah.A study onthe beneficiation of Indian iron ore fines and slime using chemical additives. International Journal of Mineral Processing,1989, (11):285-302
    [97]L.Piga, F.Pochetti, L.Stoppa. Recovering Metals from Red Mud Generate during Alumina Production. Journal of the Minerals Metals and Materials Society,1993,45(11):54-59
    [98]B.Mishra, A.Staley, D.Kirkpatrick. Recovery of value added products from red mud. Minerals& Metallurgical Processing,2002,19(2):87-89
    [99]B.米什拉,Amp,王中明,李长根.从赤泥中回收有价产品.国外金属矿选矿,2003,40(7):38-44
    [100]X.LI, W.Xiao, W.Liu,etal. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Transactions of Nonferrous Metals Society of China,2009,19(5):1342-1347
    [101]B.Mishra, A.Staley, D.Kirkpatrick.Recovery and utilization of iron from red mud.130th TMS Annual Meeting. Louisanna:2000,149-156
    [102]逯军正,于先进,张丽鹏.从赤泥中回收铁的研究现状.山东冶金,2007,29(4):10-12
    [103]李佩鸿.平果铝矿赤泥直接还原炼铁的研究.有色金属:选矿部分,1998,(1):16-18,19
    [104]梅贤功,袁明亮.高铁拜耳法赤泥煤基直接还原工艺的研究.有色金属:冶炼部分,1996,(2):27-30
    [105]梅贤功.广西高铁三水型铝土矿开发利用工艺流程概述.轻金属,1993,(2):12-17
    [106]梅贤功.高铁三水铝矿拜耳法溶出及赤泥直接还原工艺与理论研究:[博士学位论文].长沙:中南大学,1993
    [107]罗道成,刘俊峰,易平贵,等.氧化铝厂赤泥综合利用的新工艺.中国矿业,2002,11(5):50-53
    [108]Q.F.Xiang, X.H.Liang, E.M.Schiesinger. Low temperature reduction of ferric iron in red mud. TMS Annual Meeting. Louisanna:2000,157-162
    [109]陈恒芳.苏联哈萨克菱铁矿化铝土矿综合利用工艺的开发.轻金属,1991,(9):24-25
    [110]C.Li, H.Sun, B.Z.Yi,etal. Innovative methodology for comprehensive utilization of iron ore tailings:Part 1.The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Journal of hazardous materials, 2010,174(1-3):71-77
    [111]C.Li, H.Sun, B.Z.Yi,etal. Innovative methodology for comprehensive utilization of iron ore tailings:Part 2:The residues after iron recovery from iron ore tailings to prepare cementitious material. Journal of Hazardous Materials,2010, 174(1-3):78-83
    [112]B.Mishra, A.Staley. Recovery of value added products from red mud. Minerals and metallurgical Processing society for mining, Metallurgy and Exploration, 2002,19(2):87-89
    [113]何波.关于回收赤泥中铁的研究坝状.轻金属,1995,(12):23-26
    [114]N.J.Smith, V.E.Buchanan, G.Oliver. The potential application of red mud in the production of castings. Materials Science and Engineering,2006,420(1):250-253
    [115]E.Ercaj, R.Apak.Furnace smelting and extractive metallurgy of red mud: Recovery of TiO2, Al2O3 and pig iron. Journal of chemical technology and biotechnology,1997,70(3):241-246
    [116]N.Pradhan, B.Das, C.S.Gahan, etal. Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans. Bioresource Technology,2006,97(15): 1876-1879
    [117]N.Deo, K.A.Natarajan. Studies on Interaction of Paenibacillus Polymyxa with Iron Ore Minerals in Relation to Beneficiation. International Journal of Mineral Processing,1998,55(1):41-60
    [118]K.A.Natarajan, N.Deo. Role of bacterial interaction and bioreagents in iron ore flotation. International Journal of Mineral Processing,2001,62(1):143-157
    [119]N.Deo, A.Natarajan.Role of corundum-adapted strains of Bacillus polymyxa in the separation of hematite and alumina. Minerals& metallurgical processing, 1999,16(4):29-34
    [120]朱德庆,李建,邱冠周,等.一步法直接还原新疆磁铁精矿.中南大学学报(自然科学版),2007,38(3):421-427
    [121]邱冠周,姜涛,徐经沧,等.冷固结球团直接还原.长沙:中南大学出版社,2001.11,49-62
    [122]黎海雁,韩勇.化学选矿.长沙:中南工业大学出版社,1989.3-20
    [123]黄礼煌.化学选矿.北京:冶金工业出版社,1990.6-8,46-51
    [124]张临峰,郭培民,赵沛.碱金属盐对气基还原铁矿石的催化规律研究.钢铁钒钛,2008,29(1):1-5
    [125]郭兴敏,鲁显哲.Li2CO3在含碳球团还原中催化机理的研究.金属学报,2000,36(6):638-641
    [126]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002.1-3,72-73,83-85,366-367,654,660-662,669-670,923-925
    [127]丁子上.硅酸盐物理化学.北京:中国建筑工业出版社,1980.73-82
    [128]张家芸.冶金物理化学.北京:冶金工业出版社,2004.20-27
    [129]黄希祜.钢铁冶金原理.北京:冶金工业出版社,1990.285-301
    [130]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993.21-23
    [131]梁经冬.浮选理论与选冶实践.北京:冶金工业出版社,1995.444-453
    [132]J.R.Atkinson, M.A.Posner, P.J.Quirk. Adsorption of potential determining ion on the ferric oxide-aqueous electrolyte interface. The Journal of physical chemistry,1967, (71):550-558
    [133]崔忠圻,刘北兴.金属学与热处理原理.1998.68-69
    [134]谢希文,路若英.金属学原理.北京:北京航空工业出版社,1989.54-59
    [135]宋晶晶,郭守国,李雪亮.低品质蓝宝石改善实验及热处理工艺研究.材料导报,2009,23(12):96-98
    [136]管嵘清,杜梅芳,李洁,等.高熔点煤灰添加硼砂助熔的理论和实验研究.上海理工大学学报,2009,31(4):362-365
    [137]范晓慧,郭宇峰,邱冠周,等.钛精矿制取富钛料新工艺.矿产综合利用,2002,(4):3-7
    [138]朱德庆,姜涛,郭宇峰,等.钒钛磁铁精矿铁钒钛综合利用新流程.矿产综合利用,1999,(2):16-20
    [139]郭宇峰.钒钛磁铁矿固态还原强化及综合利用研究:[博士学位论文].长沙:中南大学,2007
    [140]徐南平.钢铁冶金实验技术和研究方法.北京:冶金工业出版社,1995.5
    [141]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987.6-8
    [142]胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版社,2000.119-133
    [143]王淀佐,邱冠周,胡岳华.资源加工学.北京:科学出版社,2004.1-3,132,282-283
    [144]傅菊英,姜涛,朱德庆.烧结球团学.长沙:中南工业大学出版社,1996.3-8,233-238,272-274
    [145]范晓慧,王祎,甘敏,等.提高有机粘结剂氧化球团矿强度的措施.钢铁研究学报,2008,20(5):5-8,19
    [146]黄柱成,李骞,杨永斌,等.混合料润磨预处理对氧化球团矿质量的影响.中南大学学报:自然科学版,2004,35(5):753-758
    [147]朱德庆,唐艳云,Vinicius,等.高压辊磨预处理强化巴西镜铁矿球团.北京科技大学学报,2009,31(1):30-35
    [148]傅菊英,朱德庆.铁矿氧化球团基本原理、工艺及设备.长沙:中南大学出版社,2005.43-45,78-88
    [149]张汉泉.膨润土在铁矿氧化球团中的应用.中国矿业,2009,(9):99-102
    [150]G.Z.Qiu, T.Jiang, X.H.Fan, etal. Effects of binders on balling behaviors of iron ore concentrates. Scandinavian Journal of Metallurgy,2004,33(1):39-46
    [151]G.Z.Qiu, T.Jiang, K.Fa, etal.Interfacial characterizations of iron ore concentrates affected by binders. Powder Technology,2004,79(2):302-303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700