高磷鲕状赤铁矿分选性能及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂西鲕状赤铁矿有30-40亿吨的储量,其开发利用一直是一个世界性的难题。
     本文首先对鄂西鲕状赤铁矿石的工艺矿物学进行了研究,矿石中主要矿物为赤铁矿、鲕绿泥石、石英,其次是褐铁矿、云母类矿物、粘土矿物和胶磷矿。矿石结构主要有鲕状、网脉状、蜂窝状,以鲕状为主。根据核心的矿物成份不同,可分为以石英为核心、以鲕绿泥石为核心、以胶磷矿为核心、以褐铁矿为核心、以鲕绿泥石与胶磷矿集合体为鲕核等的同心环带结构。赤铁矿与鲕绿泥石、石英、粘土等脉石矿物互层以环带产出,多数环带层很薄,且环界线不平整,从而造成赤铁矿与脉石矿物解离十分困难。而铁以鲕状环带结构存在的占75%,非鲕状结构存在的占25%。
     论文进行了重液分离、跳汰、溜槽及摇床等重力分选研究,对含铁43%的原矿石,经重力分选所得铁精矿含铁一般均不超过51%,部分含铁大于54%的重产品其回收率很低,小于36%;强磁选方面进行了原矿石磨细到-0.045mm占95%时,经强磁粗选和精选,铁精矿含铁能提高到54.20%,铁回收率已降至36.31%。上述铁精矿中含磷都比较高,一般都在0.6%-0.8%。为了降低磷含量,采用反浮选脱磷-强磁选脱硅工艺处理原矿石,获得的铁精矿含铁54.05%,含磷可降低到0.20%,这时铁精矿的回收率只有18.83%;总之,对鄂西鲕状高磷赤铁矿石采用重力选矿、强磁选、浮选等工艺均难以得到合格铁精矿,含铁一般都在55%以下,并且铁的回收率也比较低。
     研究了马弗炉磁化焙烧,使赤铁矿转变为磁铁矿。焙烧矿石磨矿细度为-0.045mm占85%,经弱磁选可得到铁精矿产率63.77%,含铁58.88%,含磷0.712%,铁回收率85.77%,铁精矿中含磷较高。对该铁精矿再进行反浮选脱磷得到铁精矿产率46.86%,含铁60.25%,含磷0.31%,铁回收率71.63%。通过试验考察了原矿石在焙烧前或焙烧后浮选脱磷对最终铁精矿中含磷的影响,试验表明原矿石焙烧前脱磷比焙烧后从铁精矿中脱磷效果稍好一些。焙烧磁选指标良好,说明鄂西鲕状赤铁矿用磁化焙烧可以有效地分选回收矿石中的铁矿物,但是磁化焙烧的工业装备,还需要研究。
     通过闪速磁化焙烧技术的研究与开发,已初步研究成功处理闪速磁化焙烧的扩大试验装置,把原矿石粉磨至-0.1mm,矿石经旋风筒三段预热后进入还原反应器,在反应器内使赤铁矿几乎完全转变为磁铁矿,焙烧矿石弱磁选,得到铁精矿产率60.17%,铁品位58.32%,铁回收率81.15%的工艺指标。铁矿物分选技术指标优异,说明闪速磁化焙烧装置和技术焙烧效果好,磁铁矿转化率高。
     论文最后进行了机理研究,初步说明了该鲕状赤铁矿难磁化焙烧的原因和解决途径。
There are 3-4 billion tons of oolitic hematite ore reserves in western Hubei Province. Exploitation of these resources is a world class problem.
     The process mineralogy of oolitic hematite ores in western Hubei has been studied first in this dissertation. It is found that the major minerals in the ores are hematite, oolitic chlorite, and quartz, followed by limonite, mica, clay minerals and collophanite. The ore structures are mainly oolitic, stockwork, honeycomb, dominated by oolitic form. According to the core minerals, they can be divided into concentric ring structures with quartz as the core, oolitic chlorite as the core, collophanite as the core, limonite as the core, and oolitic chlorite-collophanite aggregates as the nucleus. Hematite interbeds with oolitic chlorite, quartz, clay and other gangue minerals as concentric rings. Most of the ring bands are very thin, and the ring boundaries are not smooth. These result in difficult dissociation of hematite from gangue minerals. Iron minerals existing in oolitic structure account for 75%, and the others existing in non-oolitic structure account for 25%.
     Gravity separation processes, including heavy liquid separation, jigging, chute separation, and tabling, have been investigated. For raw ore with iron content of 43%, the grades of iron concentrates obtained by gravity separation were usually lower than 51%. Some heavy products with iron grades above 54% had iron recoveries less than 36%. For high intensity magnetic separation, as the ore was crushed and ground to 95% of-0.045mm, the grade of iron concentrate could be increased to 54.20% Fe through roughing and cleaning, while iron recovery dropped to 36.31%. These iron concentrates had high phosphorus contents, generally 0.6% to 0.8%. In order to reduce phosphorus content, reverse flotation to remove phosphorus and high intensity magnetic separation to remove silicates were employed successively. Iron concentrate obtained had an iron content of 54.05% , and phosphorus content could be reduced to 0.20%. The iron recovery of iron concentrate was only 18.83%. In a word, for oolitic hematite ores with high phosphorus contents in western Hubei, qualified iron concentrates are hard to obtain using gravity separation, high intensity magnetic separation, and flotation processes. Generally, the grades of iron concentrates are below 55% Fe, and iron recoveries are also low.
     Magnetizing roasting using muffle furnace to convert hematite to magnetite has been investigated. For roasted ore with a grinding fineness of 85% below 0.045mm, iron concentrate with a production rate of 63.77%, iron content of 58.88%, phosphorus content of 0.712%, and iron recovery of 85.77% could be obtained by low intensity magnetic separation. As phosphorus content in this iron concentrate was high, iron concentrate with a production rate of 46.86%, iron content of 60.25%, phosphorus content of 0.31% , and iron recovery of 71.63% was obtained through dephosphorizing by reverse flotation. Comparative experiments were conducted to investigate the effects of dephosphorizing before roasting and dephosphorizing after roasting on the phosphorus contents of final iron concentrates. The results show that dephosphorizing before roasting was slightly better. Beneficiation indexes for magnetizing roasting-magnetic separation process were favorable, which indicates that iron minerals can be effectively recovered from oolitic hematite ores in western Hubei through magnetizing roasting-magnetic separation. However, effective industrial equipments for magnetizing roasting still need to be developed.
     Through the study and development of flash magnetizing roasting technology, expanded testing device has been built preliminarily. The raw ore was milled to-0.1mm. Then the ore powder was delivered into the reduction reactor after three stages of preheating in the cyclones. Hematite was almost completely transformed to magnetite in the reactor. Roasted ore was processed with low intensity magnetic separation, and iron concentrate with a production rate of 60.17%, iron grade of 58.32%, and iron recovery of 81.15% was obtained. The technical indexes of iron mineral concentration are excellent, which demonstrates that the roasting effect of flash magnetizing roasting equipment and technology is good, and conversion rate of hematite to magnetite is high.
     Finally, mechanism study has been conducted. The causes for oolitic hematite ores hard to be magnetized through roasting and solving approaches have been explained preliminarily.
引文
[1]赵一鸣,毕承思.宁乡式沉积铁矿床的时空分布和演化[J].矿床地质,2000,4:350-362
    [2]John Nold. Geology & geophysics senior section[J].(Collegiate & Senior Divisions).Transactions of the Missouri Academy of Science,2004,38:95.
    [3]朱继存.宁乡式铁矿床成因的新认识[J].合肥工业大学学报,2001,2:143-145
    [4]周家云,郑荣才,张裕书,等.华南泥盆纪古地理环境对宁乡式铁矿床时空分布、矿石特征的制约[J].地质科技情报,2009.1:93-98
    [5]李桂玲,邹本利.”宁乡式”铁矿的选矿与利用研究[J].应用技术,2007.4:191-193
    [6]龚银杰,秦元奎,胡俊良,等.湘西北宁乡式铁矿的成因与质量[J].化工矿产地质,2010,9:113-148
    [7]姚敬劬, 张华成.宁乡式铁矿工艺矿物学特征及选矿效果预期[J].资源环境与工程,2008,10:481487
    [8]肖巧斌,戈保梁,杨波,等.云南某鲕状赤铁矿选矿试验研究,金属矿山,2005,8:153-155
    [9]柏少军,刘殿文,文书明.云南某难选褐铁矿石选冶联合工艺研究[J].矿冶,2009,9:16-20
    [10]白丽梅,刘丽娜,李萌,等.张家口地区鲕状赤铁矿还原焙烧-弱磁选试验研究[J].中国矿业,2009,3:83-87
    [11]王成行,童雄,孙吉鹏.某鲕状赤铁矿磁化焙烧一磁选试验研究[J].金属矿山,2009,5:57-59
    [12]王秋林,陆小苏,彭泽友,等.高磷鲕状赤铁矿焙烧一磁选一反浮选试验研究[J].湖南有色金属,2009,8:12-15
    [13]肖军辉,张昱.某鲕状高磷赤、褐铁矿回转窑磁化焙烧试验研究[J].金属矿山,2010,3:43-47
    [14]周建军,朱庆山,王化军,等.某鲕状赤褐铁矿流化床磁化焙烧一磁选工艺[J].过程工程学报,2009,4:307-313
    [15]王国军,王智化,杨丽,等.某鲕状赤铁矿循环流化床焙烧一磁选试验研究[J].金属矿山,2010,2:57-61
    [16]李德方.褐铁矿选矿工艺探讨[J].昆钢科技,2009,9:7-11
    [17]周亮,张旭东.某菱铁矿的选矿试验研究[J].云南冶金,2008,8:14-16,27
    [18]张汉泉,彭然,张泽强.广西某赤褐铁矿选矿试验研究[J].武汉工程大学学报,2010,3:49-53
    [19]邱崇栋,徐永仁.东川包子铺褐铁矿选矿试验研究[J].矿冶工程,2010,2:35.37
    [20]罗丕,周美兰,罗琳,等.从江西某铁矿尾矿中回收铁精矿[J].湿法冶金2008,6:117-119
    [21]罗小苟,廖薇,杨学方.江西某赤铁矿选矿试验研究[J].矿业工程,2009,2:28-30
    [22]张欧邦,邓强,刘文全.贵州某难选褐铁矿磁化焙烧弱磁选试验研究[J].现代矿业,2009,5:48-51
    [23]王志红,高润贵,韩晓冉.利用磁化焙烧技术开发低品位褐铁矿的可行性研究[J].现代矿业,2009,8:96-97
    [24]蔡震雷,曹明礼,车丽萍,等.包钢选矿厂强磁选粗精矿磁化焙烧一弱磁选尾矿回收稀土的选矿工艺研究[J].金属矿山,2009,7:155-157
    [25]郑桂兵,王立君,田袢兰,等.印度某铁矿选矿工艺研究[J].有色金属2009,2:26-28,13
    [26]于福家,王泽红.吉林羚羊难选铁矿的选矿研究[J].矿产保护与利用,2008,10:27-30
    [27]龚俊,张邦文,李保卫.含铁尘泥磁化焙烧一弱磁选试验研究[J].中国矿业,2010,6:64-72
    [28]王秋林,陈雯,余永富,等.綦江铁矿焙烧-磁选-阴离子反浮选试验研究[J].矿冶工程,2006,12:32-38
    [29]付元坤,王雪松,杨龙,等. 回转窑磁化焙烧黄铁矿烧渣的研究[J]安徽工业大学学报,2003,10:137-141
    [30]梁晓平,苏成德.硫铁矿烧渣回收铁的研究[J].中国矿业,2006,3:41-43
    [31]田锋.硫铁矿烧渣综合利用试验研究[J].矿产综合利用,2010,2:38-42
    [32]朱贺民,夏征宇.马钢利用球团竖炉焙烧菱铁矿工业试验[J]. Research on Iron and Steel,2010,3:1-3
    [33]姜华.不断改进的酒钢选矿厂竖炉焙烧工艺[J].金属矿山,2006,7:4447
    [34]徐辉,邹宗树,周渝生,等.竖炉生产直接还原铁过程的模型研究[J]. World Iron & Steel,2009,9(2):1-4
    [35]郑子恩.大型回转窑磁化焙烧菱铁矿的工艺设计[J].工程设计与研究,2008.6:4-6
    [36]冯志力,余永富,刘根凡,等.王家滩菱铁矿流态化磁化焙烧试验研究[J].金属矿山,2009,9:58-60,73
    [37]刘小银,余永富,陈雯.大西沟菱铁矿闪速磁化焙烧一磁选探索试验[J].金属矿山,2009,10:84-85,89
    [38]王秋林, 陈雯,余永富, 等.复杂难选褐铁矿的闪速磁化焙烧试验研究[J].矿产保护与利用,2010,6:27-30
    [39]R. Sakthivel, N. Vasumathi, D. Sahu,et al. Synthesis of magnetite powder from iron ore tailings[J].Powder Technology,2010,201(2):187-190.
    [40]XiuMing Liu, John Shaw, JianZhong Jiang,et al. Analysis on variety and characteristics of maghemite[J]. SCIENCE CHINA Earth Sciences,2010,53(8):1153-1162.
    [41]Wancheng Zhu, Xili Cui, Li Wang,et al.Monodisperse porous pod-like hematite: Hydrothermal formation, optical absorbance, and magnetic properties[J].Materials Letters, 2011,65(6):1003-1006.
    [42]I. S. Lyubutin, E. A. Alkaev, Yu. V. Korzhetskiy,et al. Monitoring by Mossbauer spectroscopy the thermal reduction of hematite into magnetite: the surface effect and charge disproportionality in iron oxide nanoparticles[J].Hyperfine Interactions,2009,189(1-3): 21-30.
    [43]Ute Frank, Norbert R. Nowaczyk. Mineral magnetic properties of artificial samples systematically mixed from haematite and magnetite[J]. Geophysical Journal International,2008,175(2):449-461.
    [44]Gunther Kletetschka, M.H. Acuna, Tomas Kohout,et al. An empirical scaling law for acquisition of thermoremanent magnetization[J]. Earth and Planetary Science Letters,2004, 226(3-4):521-528.
    [45]I. ZnamenaAkova, M. Lovas, A. MockovAiakova, et al. Modification of magnetic properties of siderite ore by microwave energy[J].Separation and Purification Technology,2005, 43(2):169-174.
    [46]Ozden Ozdemir, David J. Dunlop. Chemico-viscous remanent magnetization in the Fe3O4-γ Fe2O3 system[J].Science,1989,243:1043-1047.
    [47]罗立群,余永富,尚亿军.复杂铁矿物闪速磁化焙烧前后的物化特征[J].中国矿业,2009,11:84-87
    [48]罗立群,余永富,张泾生.闪速磁化焙烧及铁矿物的微观相变特征[J].中南大学学报,2009,10:1172-1177
    [49]罗立群,乐毅.难选铁物料磁化焙烧技术的研究与发展[J].中国矿业,2007,3:55-58
    [50]王秋林,陈雯,余永富,等.难选铁矿石磁化焙烧机理及闪速磁化焙烧技术[J].金属矿山,2009,12:73-76
    [51]宋海霞,徐德龙,酒少武,等.悬浮态磁化焙烧菱铁矿及冷却条件对产品的影响[J].金属矿山,2007,1:52-54,62
    [52]酒少武,徐德龙,李辉,等.悬浮态磁化焙烧菱铁矿粉料试验研究[J].金属矿山,2008,8:33-35,51
    [53]Mahmoud A. Youssef, Seddik S. Wahid, Maher A. Mohamed, et al. Experimental study on Egyptian biomass combustion in circulating fluidized bed[J]. Applied Energy, 2009,86(12):2644-2650.
    [54]Qi Miao, Chu Wang, Chuangzhi Wu, et al. Cholthicha Amornsirirat Fluidization of sawdust in a cold model circulating fluidized bed: Experimental study[J]. Chemical Engineering Journal,2011,167(1):335-341.
    [55]K. Redemann, E.-U.Hartge,Joachim Werther. A particle population balancing model for a circulating fluidized bed combustion system[J].Powder Technology,2009,191(1-2):78-90.
    [56]C.Bhasker. Flow simulation in industrial cyclone separator[J]. Advances in Engineering Software,2010,41 (2):220-228.
    [57]KhairyElsayed,Chris Lacor.The effect of cyclone inlet dimensions on the flow pattern and performance[J].Applied Mathematical Modelling,2011,4:1952-1968.
    [58]G. Gronald, J.J. Derksen. Simulating turbulent swirling flow in a gas cyclone: A comparison of various modeling approaches [J]. Powder Technology,2011, 205(1-3):160-171.
    [59]Amit Gupta,Ranganathan Kumar. Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations[J]. International Journal of Heat and Fluid Flow,2007,28(2): 249-261.
    [60]Zhengliang Liu, Ying Zheng, Lufei Jia,et al. Stereoscopic PIV studies on the swirling flow structure in a gas cyclone[J]. Chemical Engineering Science,2006,61(13):4252-4261.
    [61]Kazuyoshi Matsuzaki, Hideaki Ushijima, Mizue Munekata, et al. Numerical study on particle motions in swirling flows in a cyclone separator[J]. Journal of Thermal Science, 2006,15(2):181-185.
    [62]Yaxin Su. The turbulent characteristics of the gas-solid suspension in a square cyclone separator[J].Chemical Engineering Science,61(5):1395-1400.
    [63]Ferhat M. Erdal, Siamack A. Shirazi. Local velocity measurements and computational fluid dynamics (CFD) simulations of swirling flow a cylindrical cyclone separator[J]. Journal of Energy Resources Technology,2004,126(4):326-333.
    [64]V. A. Kirakosyan, A. P. Baskakov, E. Yu. Lavrovskaya, et al. Heat-transfer intensity from swirling disperse flow to cyclone-chamber wall[J]. Journal of Engineering Physics,1990, 59(4):1291-1297.
    [65]Yaghoub Behjat, Shahrokh Shahhosseini, Mahdi Ahmadi Marvast. Investigation of catalyst particle hydrodynamic and heat transfer in three phase flow circulating fluidized bed[J]. International Communications in Heat and Mass Transfer,2011,38(1):100-109.
    [66]M. Narasimha, Mathew Brennan, P.N. Holtham. Prediction of magnetite segregation in dense medium cyclone using computational fluid dynamics technique[J]. International Journal of Mineral Processing,2007,82(1):41-56.
    [67]Cholthicha Amornsirirat, Benjapon Chalermsinsuwan, Lursuang Mekasut, et al. Experiment and 3D simulation of slugging regime in a circulating fluidized bed[J].Korean Journal of Chemical Engineering,2011,28(3):686-696.
    [68]Benjapon Chalermsinsuwan, Prapan Kuchonthara, Pornpote Piumsomboon. CFD modeling of tapered circulating fluidized bed reactor risers:Hydrodynamic descriptions and chemical reaction responses[J]. Chemical Engineering & Processing,2010,49(11):1144-1160.
    [69]Petras Vaitiekunas, Inga Jakstoniene. Analysis of numerical modelling of turbulence in a conical reverse-flow cyclone/Duju aerodinamikos kuginiame turbulentinio griztamojo srauto ciklone skaitinio modeliavimo analize[J]. Journal of Environmental Engineering and Landscape Management,2010,18(4):321-339
    [70]A. Kartushinsky, A. Martins, U. Rudi, et al. Numerical simulation of uprising gas-solid particle flow in circulating fluidised bed[J]. Oil Shale,2009,26(2):125-138.
    [71]陈作炳,李波,豆海建,等.基于fluent的旋风预热器模型热态性能数值分析[J].设计研究,2008,2:14-18
    [72]陈作炳,陈思维,豆海建,等.五级旋风预热器冷模单体流场数值研究[J].武汉理工大学学报,2005,5:56-58
    [73]李硕,李丽.旋风预热器系统静流场阻力的数值模拟[J].新世纪水泥导报,2006,5:16-17
    [74]余超,徐讯,谭克峰.旋风预热器窑预热过程仿真模型的研究[J].新世纪水泥导报,2002,3:20-23
    [75]夏国涛,李志,徐德龙.旋风预热器预热过程的模拟研究[J].海南大学学报自然科学版,2005,9:242-246
    [76]张佑林,刘伟华,B.ю.щepбиHa.旋风预热器气固两相流场的数值模拟[J].中国水泥,2006,8:45-47
    [77]谭永梅.影响旋风预热器实际分离效率的因素[J].内蒙古石油化工,2003,29:13-14
    [78]连文全.循环流化床应用之探讨[J].企业技术开发,2010,9:112-113
    [79]陈作炳,李波,豆海建,等.旋风预热器热态性能模拟研究一风速的选择[J].机械设计与制造,2008,6:110-112
    [80]陈作炳,李丽君,李硕.预分解窑系统预热器单体分离效率的研究[J].机械研究与应用,2006.12:21-22,31
    [81]陈钰,陈延信,徐德龙.涡壳式旋风预热器单体三维气相场的数值模拟[J]. 西安建筑科技大学学报,2007,2:105-114
    [82]张灵辉,彭耀.循环流化床锅炉热控控制分析[J].科技信息,2010,22:367-368
    [83]Nikolaos Koukouzas, Colin R. Ward, Dimitra Papanikolaou,et al. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology[J]. Journal of Hazardous Materials.2009,169(1-3): 100-107.
    [84]Yaghoub Behjat, Shahrokh Shahhosseini, Mahdi Ahmadi Marvast. Investigation of catalyst particle hydrodynamic and heat transfer in three phase flow circulating fluidized bed[J]. International Communications in Heat and Mass Transfer,2011,38(1):100-109.
    [85]Yuegui Zhou, Jun Peng, Xian Zhu,et al. Hydrodynamics of gas-solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization[J]. Powder Technology,2011,205(1-3):208-216.
    [86]Zhang Man, Bie Rushan, Yu Zezhong, et al. Heat flux profile of the furnace wall of a 300MWe CFB boiler[J]. Powder Technology,2010,203(3):548-554.
    [87]Duan Feng, Bao-Sheng Jin, Ya-Ji Huang,et al. Reasearch on the main factors for changes in pressure based on turbulent circulating fluidized bed coal gasification technology[J]. Korean Journal of Chemical Engineering,2010,27(6):1707-1714.
    [88]杨沛浩,刘宁昌.旋风预热器热效率的研究分析[J].四川建材,2010,4:16-19
    [89]杨若仪,千正宁,金明芳.煤气化竖炉生产直接还原铁在节能减排与低碳上的优势[J].钢铁技术,2010,5:1-4
    [90]张礼华,陈延信,徐德龙.高固气比旋风预热器提升管内物料分散的试验研究[J].水泥,2006,2:19-21
    [91]Mehran Andalib, George Nakhla, Jesse Zhu. Benjapon Chalermsinsuwan Dynamic testing of the twin circulating fluidized bed bioreactor (TCFBBR) for nutrient removal from municipal wastewater[J]. Chemical Engineering Journal,2010,162(2):616-625
    [92]嵇鹰,李兆锋,程富安,等.二级高固气比悬浮预热器的工业化实验[J].新世纪水泥导报,2005,3:16-18
    [93]嵇鹰,徐德龙.旋风预热器粗糙内壁对其性能的影响试验[J].西安建筑科技大学学报,2009,10:730-734
    [94]邵剑华,张虎成,方觉,等.流化床和竖炉对熔融还原流程煤耗的影响[J].钢铁研究学报,2008,3:5-8
    [95]王国军,王智化,杨丽,等.某鲕状赤铁矿循环流化床焙烧一磁选试验研究[J].金属矿山,2010,2:57-61
    [96]王成行,童雄,孙吉鹏.某鲕状赤铁矿磁化焙烧一磁选试验研究[J].金属矿山,2009,5:57-59
    [97]罗小苟,廖薇,杨学方.江西某赤铁矿选矿试验研究[J].矿业工程,2009,2:28-30
    [98]M. Pazos, G.M. Kirkelund, L.M. Ottosen. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion[J]. Journal of Hazardous Materials,2010,176(1-3):1073-1079.
    [99]V. Shemyakin, A. Karapetov. Experience of oil shale burning in low-temperature fluidized-bed boilers[J]. Oil Shale,2003,20(3):383-387
    [100]W.D. Wang, C.Y. Zhou. Retorting of pulverized oil shale in fluidized-bed pilot plant[J]. Oil Shale,2009,26(2):108-113.
    [101]Fabio Montagnaro, Piero Salatino, Fabrizio Scala. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions [J]. Experimental Thermal and Fluid Science,2010,34(3):352-358.
    [102]Dennis Y. Lu, Robin W. Hughes, Edward J. Anthony, et al. Sintering and reactivity of CaCO3-based sorbents for in situ CO2 capture in fluidized beds under realistic calcination [J]. Journal of Environmental Engineering,2009,135(6):404-410.
    [103]黄希祜.钢铁冶金原理.北京:冶金工业出版社,1981,12.
    [104]孙玉波.重力选矿[M].(修订版)北京:冶金工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700