PTEN在铝毒性实验性阿尔茨海默病小鼠模型发生发展中的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在铝毒性拟阿尔茨海默病(Alzheimer’s disease, AD)小鼠模型上,以小鼠学习记忆障碍以及脑组织出现老年斑(SP)及神经原纤维缠结(NFT)等AD特征性病理变化为指标反映AD样进展程度,从小鼠海马等脑组织中PTEN蛋白以及磷酸化PTEN蛋白水平、PTEN mRNA水平、PTEN样免疫阳性反应物表达与分布等研究层次,探索PTEN在AD样诱导发生发展过程中的动态变化及其与AD的关联,以深化理解AD发病机制,为AD的防治提供新的途径,为抗AD新药研发提供新的药物作用靶点。
     方法:①采用小鼠侧脑室注射0.5% AlCl3溶液2μl,每天1次,连续5 d诱导出实验性AD模型,对照组注射等量的人工脑脊液;②末次侧脑室注射后第2天、第7天采用避暗试验,第23~30天采用Morris水迷宫试验检测模型小鼠学习记忆能力;③上述3个时间点行为学试验结束后,随即采用改良的硫磺素染色技术(Modified thioflavine S techniques,MTST)检测小鼠海马等脑组织内SP和NFT等形成情况,RT-PCR测定小鼠海马组织内PTEN mRNA水平,Western blotting法测定其PTEN蛋白和磷酸化PTEN蛋白水平;④同上方案制作另一批铝毒性拟AD小鼠模型,分别于末次侧脑室注射后第7、14、21、28、35天,以免疫组织化学法观测PTEN样免疫阳性反应物在小鼠海马等脑组织内的表达与分布。
     结果:
     1.铝毒性实验性AD小鼠模型的建立:①上述末次侧脑室注射后第2天,模型组小鼠相比对照组逃避潜伏期和错误次数未见明显差异;②侧脑室注射后第7天,对照组小鼠逃避潜伏期较第2天显著延长(P<0.001),错误次数减少;而模型组小鼠潜伏期未见明显变化,错误次数增加,双因素统计分析显示模型组小鼠逃避记忆能力随时间进行受铝毒的影响显著下降(铝毒处理和时间交互作用,P<0.05);③侧脑室注射后第23~30天,在Morris水迷宫试验中,模型组小鼠定向航行平均成绩显著低于对照组(P<0.001),空间探索目标象限滞留时间显著低于对照组(P<0.05),表明模型组小鼠空间学习记忆能力显著受损;④在上述3个时间点行为学试验结束后,每组立即取2~3只小鼠断头取脑,MTST染色可见于侧脑室注射后第30天模型组小鼠大脑颞区皮质有老年斑和神经原纤维缠结类似结构。
     2.铝毒性拟AD小鼠海马组织中PTEN mRNA水平的变化:在上述3个时间点行为学试验结束后,每组立即取4~5只小鼠断头取脑,分离全海马并提取总RNA,行RT-PCR测定海马组织中PTEN mRNA水平,结果显示第2、7天模型组与对照组无明显差异,第30天模型组mRNA水平显著低于对照组(P<0.05,1-tailed)。
     3.铝毒性拟AD小鼠海马组织中PTEN蛋白和磷酸化PTEN蛋白水平的变化:在上述3个时间点行为学试验结束后,每组立即取4~5只小鼠断头取脑,分离全海马行①Western blotting测定海马组织PTEN蛋白水平,结果见上述3个时间点模型组均略高于对照组,但无显著差异;②Western blotting测定海马组织中磷酸化PTEN-Ser380蛋白水平,侧脑室注射后第2、7天模型组与对照组未见明显差异,第30天模型组磷酸化PTEN-Ser380蛋白水平显著低于对照组(P<0.05)。
     4.铝毒性拟AD小鼠发生发展过程中脑组织PTEN样免疫阳性反应物表达与分布的变化状况:①海马组织:镜下观察可见,PTEN样免疫阳性反应物在小鼠海马CA1、CA2、CA3锥体层细胞及齿状回颗粒细胞存在高丰度表达;上述侧脑室末次注射后第7、14、21、28、35天,模型组小鼠海马CA1区锥体层神经元内PTEN样免疫阳性反应强度相比对照组存在变化,而在CA2、CA3区锥体层细胞及齿状回颗粒细胞未见明显变化。以免疫组化专用分析软件选择测定CA1区锥体层灰度值,结果表明,侧脑室末次注射后第7天模型组小鼠海马CA1区锥体神经元PTEN样免疫阳性反应强度显著高于对照组(**P<0.01);第14天仍高于对照组(*P<0.05);第21、28天与对照组相比无显著差异;第35天显著低于对照组(*P<0.05)。②大脑皮质组织:镜下观察可见,PTEN样免疫阳性反应物在大脑皮质锥体神经元高丰度表达,颗粒层及多形细胞层弱阳性表达。上述侧脑室末次注射后第7、14、21、28、35天,模型组小鼠大脑皮质颞区第Ш层锥体神经元PTEN样免疫阳性反应强度相比对照组存在变化。以免疫组化专用分析软件选择测定大脑皮质颞区第Ш层锥体神经元灰度值,结果显示,模型组小鼠大脑皮质颞区第Ш层锥体神经元PTEN样免疫阳性反应强度呈阶段性变化,侧脑室末次注射后第7天模型组和对照组比较无显著差异;第14天模型组显著强于对照组(**P<0.01);第21、28和35天模型组均显著弱于对照组(*P<0.05)。
     结论:
     1.侧脑室注射AlCl3可致小鼠学习记忆能力显著受损,大脑颞区皮质在模型发展的后期可出现SPs和NFTs,提示铝毒性小鼠可作为拟AD动物研究模型,其发展呈进行性加重。
     2.铝毒性拟AD小鼠发生发展后期,其海马组织PTEN mRNA水平、磷酸化PTEN蛋白水平显著下降。
     3.在铝毒性拟AD小鼠发生发展过程中,PTEN在海马CA1区和大脑皮质颞区第Ш层锥体神经元内的表达呈现动态变化,发生期表达增强,而发展后期及形成期表达减弱。
Objective:In order to investigate the alteration of PTEN at different stages of mimic Alzheimer’s disease(AD), and to further speculate its role in AD, We made aluminum toxic mice model, judged the damage degree of the model mice by impairment of learning and memory in behavioral tests and pathological staining with SPs and NFTs, and detect PTEN protein level, phospho-PTEN protein level, PTEN mRNA level, and PTEN immunoreactivity and distribution in the hippocampus and brain cortex. These will be beneficial to understand the etio-pathological mechanism of AD and to find new strategies and targets for AD drug therapy.
     Methods:①Infusion of 0.5% AlCl3 solution, 2μl/d,consecutively for 5 days, into the lateral cerebro-ventricles of the mice was used to produce the model, infusion of ACSF (artificial cerebrospinal fluid) for the control.②Passive avoidance response tests 2 and 7 days, and Morris water maze tasks 23~30 days after the last injection were used to identify the degrees of learning and memory impairment in the mice.③Immediately after the behavioral tests at the above three time points, MTST (Modified thioflavine S techniques) was used to detect the formation of SPs and NFTs in hippocampus and brain cortex, RT-PCR to detect PTEN mRNA expression and immunoblotting to detect protein levels of PTEN and pPTEN-Ser380 in hippocampus.④The same procedure was used to treat another crop of mice, and immunostaining to detect the distribution and intensity of PTEN in the hippocampus and brain cortex 7, 14, 21, 28, 35 days respectively after the last injection.
     Results:
     1.Aluminum toxic AD-like model:①The avoidance latencies and number errors had no significant difference between the model and the control 2 days post i.c.v..②The latencies of the control significantly prolonged at the 7th day post i.c.v. than that at the 2nd day post i.c.v. (P<0.001), and the error number decreased; the latencies of the model had no significant change but the error number increased; reflecting that the ability of passive avoidance of the model mice is deteriorating(interaction of treatment and time, P<0.05).③The mean performance record of the model was significantly worse than that of the control in place navigation test of Morris water maze task 23~30 days post i.c.v. (P<0.001); in spatial probe test, the lingering time of the model within the target quadrat was significantly shorter than that of the control(P<0.05), reflecting a severe impairment on learning and memory ability of the model mice.④2~3 mice of each group were decapitated immediately after the behavioral tests in the above three time points, and the brain sections of the model at the third time points (30 days post i.c.v.) stained by MTST showed SPs and NFT-like structures in regiones temporalis cortex.
     2.PTEN mRNA levels of the hippocampus: 4~5 mice of each group were decapitated immediately after the behavioral tests in the above three time points, the complete hippocampuses were stripped out, and the total RNA was extracted; the mRNAs were reversely transcripted and the cDNAs were amplificated by PCR; the PTEN mRNA level of the model at the third time point (30 days post i.c.v.) was found significantly lower than that of the control(P<0.05, 1-tailed), but no significant difference was found between the model and the control at the first two time points.
     3.Protein levels of PTEN and p-PTEN in the hippocampus: 4~5 mice of each group were decapitated immediately after the behavioral tests in the above three time points, the complete hippocampuses were stripped out and the protein levels of PTEN and pPTEN-Ser380 were detected by Western blotting.①No significant difference of PTEN protein level between the model and the control was found, but a slight increase of the model at the above three time points.②The protein level of pPTEN-Ser380 of the model at the third time point (30 days post i.c.v.) was found significantly lower than that of the control(P<0.05), but no significant difference between the model and the control at the first two time points.
     4.Immuno-histochemistry staining: The same procedure is used to treat another crop of mice, which were then divided into the model and the control. 5 mice of each group respectively at the 7th, 14th, 21st, 28th, 35th day post i.c.v. were perfusion-fixed with 4% formaldehyde. Coronal sections of the brain were made by Microtome Cryostat and immunostained with anti-PTEN as the primary antibody, and streptomycin-anti-biotin (SP) kite and 3’3’diaminobenzidine (DAB) was used to present the staining. The analysis results of immunoreactive intensities showed that①PTEN is abundantly expressed in the pyramidal neurons of the CA1, CA2, CA3 regions of the hippocampus and in the granule cells of the dentate gyrus; the pyramidal neurons of the CA1 region in the hippocampuses of the model showed significantly higher immunoreactive intensity than that of the control at the 7th day post i.c.v. (P<0.05); it was still higher than that of the control at the 14th day post i.c.v.(P<0.05); no significant difference was found at the 21st and 28th day post i.c.v.; but the immunoreactive intensity of the model was significantly lower than that of the control at the 35th day post i.c.v.(P<0.05);②PTEN is abundantly expressed in pyramidal neurons of brain cortex, and weak immunoreactivity was also seen in other brain cellular stratums; the immunoreactive intensity of the lamina pyramidalis in regiones temporalis of the model mice displayed a dynamic alteration; no significant differnence between the model and control at the 7th day post i.c.v., but a significantly higher immunoreactive intensity was seen of the model than that of matched control at the 14th day post i.c.v.(P<0.01); significantly lower intensities of the model than that of matched control were found at the 28, 35 days post i.c.v.(P<0.05).
     Conclusion:
     1. The experimental AD-like mice model with AlCl3 i.c.v. displayed a progressive decline in the ability of learning and memory, with SPs and NFTs-like structure appearing in the regiones temporalis cortex at the end stage. So the model successfully simulated the learning and memory impairment and pathological changes in AD, figuring out the initiative, development and formation of an AD-like process.
     2. In the anaphase of the aluminum toxic mice, the PTEN mRNA level and phospho-PTEN protein level significantly decreased.
     3. In the progression of the model induced, PTEN might have a dynamic alteration in stratum pyramidale neurons of the hippocampal CA1 regions and in layer of medium-sized pyramidal cells in regiones temporalis cortex, where it arised at the initiative stage and then descended in the developmental and formative stages until to a degree significantly lower than that of matched control at the end stage.
引文
1. Hyman BT. New neuropathological criteria for Alzheimer disease. Arch Neurol, 1998; 55(9): 1174-1176.
    2. Dickson DW. Neuropathological diagnosis of Alzheimer's disease: a perspective from longitudinal clinicopathological studies. Neurobiol Aging, 1997; 18(4 Suppl): S21-26.
    3. Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A, 1998; 95(11): 6448-6453.
    4. Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003; 300(5618): 486-489.
    5. Gotz J, Schild A, Hoerndli F, et al. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models. Int J Dev Neurosci, 2004; 22(7): 453-465.
    6. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet, 1997; 15(4): 356-362.
    7. Gericke A, Munson M, Ross AH. Regulation of the PTEN phosphatase. Gene, 2006; 374: 1-9.
    8. Yu CX, Li S, Whorton AR. Redox regulation of PTEN by S-nitrosothiols. Molecular pharmacology, 2005; 68(3): 847-854.
    9. Leslie NR, Downes CP. PTEN function: how normal cells control it and tumour cells lose it. The Biochemical journal, 2004; 382(Pt 1): 1-11.
    10. Gunther W, Skaftnesmo KO, Arnold H, et al. Molecular approaches to brain tumour invasion. Acta neurochirurgica, 2003; 145(12): 1029-1036.
    11. Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov, 2006; 5(4): 333-342.
    12. Backman SA, Stambolic V, Suzuki A, et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet, 2001; 29(4): 396-403.
    13. Zhang QG, Wu DN, Han D, et al. Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury. FEBS Lett, 2007; 581(3): 495-505.
    14. Gary DS, Mattson MP. PTEN regulates Akt kinase activity in hippocampal neurons and increases their sensitivity to glutamate and apoptosis. Neuromolecular Med, 2002; 2(3): 261-269.
    15. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci, 2001; 24: 1121-1159.
    16. 龚成新,王建枝. Tau 蛋白在老年性痴呆症神经原纤维退行性变中的作用. 医学分子生物学, 2006; 3(3): 163-169.
    17. Baki L, Shioi J, Wen P, et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. Embo J, 2004;23(13): 2586-2596.
    18. Wei W, Wang X, Kusiak JW. Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J Biol Chem, 2002; 277(20): 17649-17656.
    19. Stein TD, Johnson JA. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci, 2002; 22(17): 7380-7388.
    20. Zhang X, Li F, Bulloj A, et al. Tumor-suppressor PTEN affects tau phosphorylation, aggregation, and binding to microtubules. Faseb J, 2006; 20(8): 1272-1274.
    21. Kerr F, Rickle A, Nayeem N, et al. PTEN, a negative regulator of PI3 kinase signalling, alters tau phosphorylation in cells by mechanisms independent of GSK-3. FEBS Lett, 2006; 580(13): 3121-3128.
    22. Griffin RJ, Moloney A, Kelliher M, et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem, 2005; 93(1): 105-117.
    23. Rickle A, Bogdanovic N, Volkmann I, et al. PTEN levels in Alzheimer's disease medial temporal cortex. Neurochem Int, 2006; 48(2): 114-123.
    24. 许文芳,吴敏霞,韩静,许盈,俞昌喜. 冈田酸诱导 SH-SY5Y 细胞 tau蛋白的过度磷酸化. 福建医科大学学报, 2006; 40(4): 361-363.
    25. 刘荣芳,许文芳,许盈,俞昌喜. 冈田酸诱导 SH-SY5Y 细胞后 tau 蛋白磷酸化与 PTEN 蛋白水平的变化. 福建医科大学学报, 2006; 41(1): 17-20.
    26. Pendlebury WW, Beal MF, Kowall NW, et al. Neuropathologic, neurochemical and immunocytochemical characteristics of aluminum-induced neurofilamentous degeneration. Neurotoxicology, 1988; 9(3): 503-510.
    27. Nehru B, Bhalla P. Reversal of an aluminium induced alteration in redox status in different regions of rat brain by administration of centrophenoxine. Mol Cell Biochem, 2006; 290(1-2): 185-191.
    28. Galoyan AA, Shakhlamov VA, Aghajanov MI, et al. Hypothalamic proline-rich polypeptide protects brain neurons in aluminum neurotoxicosis. Neurochem Res, 2004; 29(7): 1349-1357.
    29. Kaneko N, Yasui H, Takada J, et al. Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem, 2004; 98(12): 2022-2031.
    30. Mundy WR, Freudenrich TM, Kodavanti PR. Aluminum potentiates glutamate-induced calcium accumulation and iron-induced oxygen free radical formation in primary neuronal cultures. Mol Chem Neuropathol, 1997; 32(1-3): 41-57.
    31. Kawahara M, Kato M, Kuroda Y. Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of beta-amyloid protein. Brain Res Bull, 2001; 55(2): 211-217.
    32. Ricchelli F, Drago D, Filippi B, et al. Aluminum-triggered structuralmodifications and aggregation of beta-amyloids. Cell Mol Life Sci, 2005; 62(15): 1724-1733.
    33. Pratico D, Uryu K, Sung S, et al. Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. Faseb J, 2002; 16(9): 1138-1140.
    34. Bernstein HG, Schwarzberg H, Poeggel G, et al. Intracerebroventricular but not intraperitoneal administration of aluminum attenuates vasopressin-enhanced retrieval of a passive avoidance task in rats. Pharmacol Biochem Behav, 1994; 47(3): 587-590.
    35. Kaneko N, Takada J, Yasui H, et al. Memory deficit in mice administered aluminum-maltolate complex. Biometals, 2006; 19(1): 83-89.
    36. 张章,俞昌喜. 褪黑素对侧脑室注射氯化铝致小鼠学习记忆障碍的改善作用及其机制. 药学学报, 2002; 37(9): 682-686.
    37. 李玲,陈汝筑. 脑室埋管注射氯化铝对小鼠被动回避条件反应的影响. 中国药理学与毒理学杂志, 1999; 14(4): 260-263.
    38. Coccurello R, Castellano C, Paggi P, et al. Genetically dystrophic mdx/mdx mice exhibit decreased response to nicotine in passive avoidance. Neuroreport, 2002; 13(9): 1219-1222.
    39. Guntern R, Bouras C, Hof PR, et al. An improved thioflavine S method for staining neurofibrillary tangles and senile plaques in Alzheimer's disease. Experientia, 1992; 48(1): 8-10.
    40. McGaugh JL, Landfield PW. Delayed development of amnesia following electroconvulsive shock. Physiology & behavior, 1970; 5(10): 1109-1113.
    41. Uemura E. Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes. Exp Neurol, 1984; 85(1): 10-18.
    42. Pendlebury WW, Perl DP, Schwentker A, et al. Aluminum-induced neurofibrillary degeneration disrupts acquisition of the rabbit's classically conditioned nictitating membrane response. Behav Neurosci, 1988; 102(5): 615-620.
    43. Vallet PG, Guntern R, Hof PR, et al. A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer's disease. Acta Neuropathol (Berl), 1992; 83(2): 170-178.
    44. Cho J, Lee SH, Seo JH, et al. Increased expression of phosphatase and tensin homolog in reactive astrogliosis following intracerebroventricular kainic acid injection in mouse hippocampus. Neuroscience letters, 2002; 334(2): 131-134.
    45. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem, 1998; 273(22): 13375-13378.
    46. Han B, Dong Z, Liu Y, et al. Regulation of constitutive expression of mouse PTEN by the 5'-untranslated region. Oncogene, 2003; 22(34): 5325-5337.
    47. Pei JJ, Braak E, Braak H, et al. Distribution of active glycogen synthasekinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. Journal of neuropathology and experimental neurology, 1999; 58(9): 1010-1019.
    48. Zhu Y, Hoell P, Ahlemeyer B, et al. PTEN: a crucial mediator of mitochondria-dependent apoptosis. Apoptosis, 2006; 11(2): 197-207.
    49. 王建枝. Tau 蛋白在阿尔茨海默病神经细胞退行性变性中的作用. 生命的化学, 2004; 24(5): 426-428.
    50. Al-Khouri AM, Ma Y, Togo SH, et al. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem, 2005; 280(42): 35195-35202.
    51. 刘伦华,楼丽广. PTEN 功能调节的研究进展. 中国药理学通报, 2005; 21(7): 778-781.
    52. Jovanovic MD, Ninkovic M, Malicevic Z, et al. Cytochrome C oxidase activity and total glutathione content in experimental model of intracerebral aluminum overload. Vojnosanit Pregl, 2000; 57(3): 265-270.
    53. Zheng-Fischhofer Q, Biernat J, Mandelkow EM, et al. Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur J Biochem, 1998; 252(3): 542-552.
    1. Hyman BT. New neuropathological criteria for Alzheimer disease. Arch Neurol, 1998;55(9):1174-1176.
    2. Dickson DW. Neuropathological diagnosis of Alzheimer's disease: a perspective from longitudinal clinicopathological studies. Neurobiol Aging, 1997;18(4 Suppl):S21-26.
    3. Hutton M, Perez-Tur J, Hardy J. Genetics of Alzheimer's disease. Essays Biochem, 1998;33:117-131.
    4. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002;297(5580):353-356.
    5. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci, 2001;24:1121-1159.
    6. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways toneurodegeneration. Nat Med, 2004;10 Suppl:S2-9.
    7. Moran PM, Higgins LS, Cordell B et al. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proc Natl Acad Sci U S A, 1995;92(12):5341-5345.
    8. Games D, Adams D, Alessandrini R et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 1995;373(6514):523-527.
    9. Hsiao K, Chapman P, Nilsen S et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 1996;274(5284):99-102.
    10. Miao J, Xu F, Davis J, et al. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein. Am J Pathol, 2005;167(2):505-515.
    11. Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 1999;400(6740): 173-177.
    12. Postina R, Schroeder A, Dewachter I, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest, 2004;113(10):1456-1464.
    13. Gotz J, Schild A, Hoerndli F et al. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models. Int J Dev Neurosci, 2004;22(7):453-465.
    14. Gotz J, Probst A, Spillantini MG et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. Embo J, 1995;14(7):1304-1313.
    15. Lewis J, McGowan E, Rockwood J et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet, 2000;25(4):402-405.
    16. Scheuner D, Eckman C, Jensen M et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med, 1996;2(8):864-870.
    17. Haass C, Lemere CA, Capell A et al. The Swedish mutation causes early-onset Alzheimer's disease by beta-secretase cleavage within the secretory pathway. Nat Med, 1995;1(12):1291-1296.
    18. Borchelt DR. Metabolism of presenilin 1: influence of presenilin 1 on amyloid precursor protein processing. Neurobiol Aging, 1998;19(1 Suppl):S15-18.
    19. Janus C, D'Amelio S, Amitay O et al. Spatial learning in transgenic miceexpressing human presenilin 1 (PS1) transgenes. Neurobiol Aging, 2000;21(4):541-549.
    20. Zhang TS, Wang HQ, Wang WY et al. Relationship between apolipoprotein E, D10S1225 polymorphisms and late-onset Alzheimer's disease. Chin Med J (Engl), 2006;119(4):294-299.
    21. Chen Y, Lomnitski L, Michaelson DM et al. Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience, 1997;80(4):1255-1262.
    22. Ezra Y, Oron L, Moskovich L et al. Apolipoprotein E4 decreases whereas apolipoprotein E3 increases the level of secreted amyloid precursor protein after closed head injury. Neuroscience, 2003;121(2):315-325.
    23. Xu PT, Li YJ, Qin XJ et al. Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Neurobiol Dis, 2006;21(2):256-275.
    24. Bell KF, Claudio Cuello A. Altered synaptic function in Alzheimer's disease. Eur J Pharmacol, 2006;545(1):11-21.
    25. Noble W, Olm V, Takata K et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron, 2003;38(4):555-565.
    26. Oddo S, Caccamo A, Kitazawa M et al. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiol Aging, 2003;24(8):1063-1070
    27. Lambert MP, Barlow AK, Chromy BA et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A, 1998;95(11):6448-6453.
    28. Kayed R, Head E, Thompson JL et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003;300(5618):486-489.
    29. Nabeshima T. Trial to produce animal model of Alzheimer's disease by continuous infusion of beta-amyloid protein into the rat cerebral ventricle. Nihon Shinkei Seishin Yakurigaku Zasshi, 1995;15(5):411-418.
    30. Alvarez XA, Miguel-Hidalgo JJ, Fernandez-Novoa L et al. Intrahippocampal injections of the beta-amyloid 1-28 fragment induces behavioral deficits in rats. Methods Find Exp Clin Pharmacol, 1997;19(7):471-479.
    31. Richardson RL, Kim EM, Shephard RA et al. Behavioural and histopathological analyses of ibuprofen treatment on the effect of aggregated Abeta(1-42) injections in the rat. Brain Res, 2002;954(1):1-10.
    32. Wang JZ, Wang, Q.B et al. Study on Alzheimer's disease model. Chinese Pathophysiology Journal, 2001;17(8):790-794.
    33. Nelson PT, Saper CB. Injections of okadaic acid, but not beta-amyloid peptide, induce Alz-50 immunoreactive dystrophic neurites in the cerebral cortex of sheep. Neurosci Lett, 1996;208(2):77-80.
    34. Lee J, Hong H, Im J et al. The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett, 2000;282(1-2):49-52.
    35. Chen B, Cheng M, Hong DJ et al. Okadaic acid induced cyclin B1 expression and mitotic catastrophe in rat cortex. Neurosci Lett, 2006;406(3):178-182.
    36. Hefti F, Dravid A, Hartikka J. Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res, 1984;293(2):305-311.
    37. Miyamoto M, Shintani M, Nagaoka A et al. Lesioning of the rat basal forebrain leads to memory impairments in passive and active avoidance tasks. Brain Res, 1985;328(1):97-104.
    38. Ahmed MM, Hoshino H, Chikuma T et al. Effect of memantine on the levels of glial cells, neuropeptides, and peptide-degrading enzymes in rat brain regions of ibotenic acid-treated alzheimer's disease model. Neuroscience, 2004;126(3):639-649.
    39. Fisher A, Hanin I. Potential animal models for senile dementia of Alzheimer's type, with emphasis on AF64A-induced cholinotoxicity. Annu Rev Pharmacol Toxicol, 1986;26:161-181.
    40. Kudo Y, Shiosaka S, Matsuda M et al. An attempt to cause the selective loss of the cholinergic neurons in the basal forebrain of the rat: a new animal model of Alzheimer's disease. Neurosci Lett, 1989;102(2-3):125-130.
    41. Bennett MC, Rose GM. Chronic sodium azide treatment impairs learning of the Morris water maze task. Behav Neural Biol, 1992;58(1):72-75.
    42. Cui X, Zuo P, Zhang Q et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res, 2006;84(3):647-654.
    43. Martinez JL, Jr., Jensen RA et al. Acquisition deficits induced by sodium nitrite in rats and mice. Psychopharmacology (Berl), 1979;60(3):221-228.
    44. Zhang D, Zhang JJ. Effect of Coeloglossum. viride var. bracteatum extract on oxidation injury in sub-acute senescent model mice. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2005;27(6):729-733.
    45. Ward RJ, Zhang Y, Crichton RR. Aluminium toxicity and iron homeostasis. J Inorg Biochem, 2001;87(1-2):9-14.
    46. Uemura E. Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes. Exp Neurol, 1984;85(1):10-18.
    47. Perl DP, Brody AR. Alzheimer's disease: X-ray spectrometric evidence ofaluminum accumulation in neurofibrillary tangle-bearing neurons. Science, 1980;208(4441):297-299.
    48. Pendlebury WW, Beal MF, Kowall NW et al. Neuropathologic, neurochemical and immunocytochemical characteristics of aluminum-induced neurofilamentous degeneration. Neurotoxicology, 1988;9(3):503-510.
    49. Florence AL, Gauthier A, Ponsar C et al. An experimental animal model of aluminium overload. Neurodegeneration, 1994;3(4):315-323.
    50. 张章,俞昌喜. 褪黑素对侧脑室注射氯化铝致小鼠学习记忆障碍的改善作用及其机制. 药学学报, 2002;37:682-686.
    51. Eilam D, Szechtman H, Faigon M et al. Disintegration of the spatial organization of behavior in experimental autoimmune dementia. Neuroscience, 1993;56(1):83-91.
    52. Sakic B, Szechtman H, Stead RH et al. Joint pathology and behavioral performance in autoimmune MRL-lpr Mice. Physiol Behav, 1996;60(3):901-905.
    53. Wiley RG, Berbos TG, Deckwerth TL et al. Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer's disease. J Neurol Sci, 1995;128(2):157-166.
    54. Dhenain M, Michot JL, Volk A et al. T2-weighted MRI studies of mouse lemurs: a primate model of brain aging. Neurobiol Aging, 1997;18(5):517-521.
    55. Poon HF, Farr SA, Thongboonkerd V et al. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochem Int, 2005;46(2):159-168.
    56. Kuo H, Ingram DK, Walker LC et al. Similarities in the age-related hippocampal deposition of periodic acid-schiff-positive granules in the senescence-accelerated mouse P8 and C57BL/6 mouse strains. Neuroscience, 1996;74(3):733-740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700