微米级Fe_3O_4磷吸附剂的制备和从污水中吸附回收磷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是一种不可再生资源,按照现在需求量,到2025年后我国对于磷的需求将难以得到满足而导致磷资源的匮乏。然而,大量的磷酸盐却随着生活污水、工业废水以及农药化肥的排放与流失进入水体,导致水环境生态平衡的破坏,引起水体富营养化。因而,寻求一种能将污水中的磷去除并加以回收的方法,既可以改善水质、减轻污染,又可以实现磷的循环,缓解磷资源短缺的状况,对于我国经济和社会的和谐发展具有十分重要的现实意义。本文采用酸处理方法对微米级Fe_3O_4粉末进行表面改性,制得一种磁性磷吸附剂。该吸附剂能够高效的吸附去除污水中的磷酸盐,吸附磷酸盐后的吸附剂在一定外加磁场条件下进行脱附,可方便的实现磷以及Fe_3O_4磁核的回收,回收后的磁核可重新用于磷吸附剂的制备。
     实验分别采用正交试验和单因素影响试验对磷吸附剂制备条件进行优化。模拟生活污水配制含磷水,以吸附过程完成后上清液剩余磷含量及百分吸附率作为衡量基准,进行静态磷吸附试验。优化后的制备方法如下:将盐酸(36wt%,AR)与丙酸(>99wt%,AR)按体积比1:1混合均匀,按照1ml混合酸对应1gFe3O4粉末的比例投加待改性的磁核,将其搅拌均匀后,将所得混合物于100℃恒温干燥7h,干燥后得到的黑色固体经机械粉碎便形成了粉末状的高效磷吸附剂。
     对该吸附剂吸附过程的最佳吸附条件进行了研究。在模拟含磷水含磷量(以磷计)为20mg/L条件下进行磷吸附试验,优化吸附参数,得到的最佳吸附条件如下:药品投加量为0.4g/L,pH值为9,吸附时间为9min。在此吸附条件下平衡吸附率为95%,废水中磷的去除率达95%以上,此时处理后出水的磷含量少于0.5g/L,达到了污水综合排放标准(GB 8978-1996)中一级排放标准的要求。
     根据磷吸附剂的特点,设计出污水除磷以及回收磷的一体化连续流处理装置。按其操作工艺的不同,将磷吸附剂的回收过程划分为不同的单元,主要包括磷吸附单元、泥水分离单元、含磷污泥脱核单元、磷浓缩单元以及磷纯化与回收单元。将各个处理单元的形式、作用以及改进方法进行了研究。对制备的磷吸附剂进行SEM和XRD表征分析。结果表明该磷吸附剂具有核壳式结构。在酸改性过程中Fe3O4粉末在表面形成活性点,此活性点能够有效的吸附污水中的磷酸盐。改性过程同时生成大量的羟基氧化铁,还有一些带正电的不稳定的羟基铁化合物。这些新的生成物在含磷污水中会发生水解产生具有较大表面积的水解产物,能对水体中的磷产生较强的吸附作用。吸附等温试验的结果表明,磷吸附剂吸附过程符合Langmuir吸附等温线。
Phosphorus, as one kind of non-renewable resources, is an important element. The demand of phosphorus in our country will not be met after 2025, and it will turn to be in extremely shortage. However, its release to surface waters in industrial wastewaters and agricultural runoff has led to destruction of the ecological balance of water environment, and cause eutrophication of surface waters. Thus, pursuing of technologies for phosphorus removal and recovery from wastewaters can not only improve the water quality and lighten the contamination, but also realize the phosphorus recycling and sustainability, relieve the deficit of phosphorus resources, thus will greatly contribute to the harmony development of our society and economies.
     Preparing of one kind of magnetic phosphates adsorbent by surface modification on micron Fe3O4 powder was investigated in this thesis. This adsorbent can efficiently remove the phosphates from wastewaters, and the used adsorbent can release phosphates in magnetic field. Thus the recovery of phosphorus and Fe3O4 nuclei was easily achieved, and these nuclei still can be reused in preparing of the adsorbent.
     The optimum preparing conditions of the phosphates adsorbent was explored. Both orthogonal test and mono-factor analysis are employed in this discussion. Static adsorption test was performed with phosphate solutions which simulating the phosphorus content of domestic wastewaters and evaluated with both the amount of phosphates left in the supernatant fluid and the phosphates adsorption percentage as standards. The optimal preparing conditions is determined as follows: propionic acid (>99wt%, AR) and hydrochloric acid (36wt%, AR) mixed at cubage ratio 1:1, micron Fe3O4 powder added at the mixing rate of 1 ml mixed acid to 1g powder, smoothly intermix, then torrefy at 100℃for 7h, the highly efficient phosphates adsorbent is finally prepared after smashing the gotten black solid.
     The optimum adsorption conditions were also discussed. Adsorption test was executed at 20mg/L of which the phosphate concentration of simulating phosphate solutions is. The determined optimal adsorption conditions are as follows: the dosage of phosphate adsorbent is 0.4g/L, pH value is 9, and adsorption time is 9min. The equilibrium adsorption rate is 95% under the above conditions, and the removal of phosphates is up to 95% with the phosphate concentration of effluent less than 0.5g/L, which has met the first-level standard of Integrated wastewater discharge standard GB 8978-1996.
     According to features of the phosphate adsorbent, integrated continuous flow treatment device was designed and divided, following its difference operating technology, mainly into phosphate adsorption unit, sludge-water separation unit, phosphate-contained sludge off-nuclei unit, phosphates concentration unit and phosphates purify and recovery unit. The format, function and improvement of each unit were studied.
     Prepared phosphate adsorbent was characterized by SEM and XRD, the results show that it has a Fe3O4 nucleus which was covered with a hydrolyzate shell. The active sites which can adsorb phosphate come out when the adsorbent are preparing. At the same time, the Fe3O4 nucleus was covered with ferrous chloride, ferric oxyhydroxides and some unstable metal-hydroxide-complex, which can be hydrolyze and produce hydrolysate with high surface area, so, the adsorbent had excellent phosphate adsorption ability. Adsorption isotherm experiments show that the phosphate adsorbent adsorption is fit for the Langmuir adsorption isotherm.
引文
1 荆肇乾,吕锡武.污水处理中磷回收理论与技术.安全与环境工程, 2005, 12(1): 29~33
    2 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水检测分析方法. 中国环境科学出版社, 2002: 239
    3 王宝贞. 水污染控制工程. 高等教育出版社, 1990: 176~182
    4 郑兴灿, 李亚新. 污水除磷脱氮技术. 中国建筑工业出版社, 1998: 250~255
    5 郝晓地, 甘一萍. 排水研究新热点—从污水处理过程中回收磷. 给水排水. 2003, 29(1): 20~25
    6 Jun-hong Yuan. Development and utilization status of china’s phosphorus resources and resources guarantee system. China Mineral. 2003, 12(4): 4~9
    7 袁俊宏. 我国磷资源现状及资源保障程度分析. 中国矿业. 2003, 12(4): 86~89
    8 G.. K. Morsc, S. W. Brett, J. A. Guy, et al. Review: Phosphorus Removal and Recovery Technologies. The Science of the Total Environment. 1998, (212): 69~81
    9 汪慧贞, 王绍贵. pH 值对污水处理厂磷回收的影响. 北京建筑工程学院学报. 2004, 20(4):5~8
    10 施汉昌,柯细勇,徐丽婕.用化学法强化生物除磷的优化控制.中国给水排水,2002,18(7): 35~38
    11 Hang-sik shin, Mi-joo kim, Se-yong nam, et al. Phosphorus Removal by Hydrotalcite-like Compounds(HTLcs). Water Science and Technology. 1996, 34(1-2): 161~168
    12 Hyok-bo kwon, Chan-won lee, Byung-sei junal. Recycling Waste Oyster Shells for Eutrophication Control. Resources, Conservation and Recycling. 2004, (41): 75~82
    13 邹联沛, 薛罡, 王宝贞. 膜生物反应器中化学除磷的研究. 中国给水排水. 2002, 18(11): 19~22
    14 张颖, 邓良伟. 废水中磷的去除研究进展. 中国沼气. 2005, 23(3): 11~15
    15 邱维, 张智. 城市污水化学除磷的探讨. 重庆环境科学, 2002, 24(2): 81~84
    16 Dietfried donnert, Manfred salecker. Elimination of Phosphorus from Municipaland Industrial Wastewater. Water Science and Technology. 1999, 40(4-5): 195~202
    17 K. Fytianos, E. Voudrias, N. Raikos. Modeling of Phosphorus Removal from Aqueous and Wastewater Samples Using Ferric Iron. Environmental Pollution. 1998, (101): 123~130
    18 丁文明, 黄霞, 张力平. 水合氧化镧吸附除磷的试验研究. 环境科学. 2003, 24(5): 109~113
    19 Don Keun Lee, Young Soo Kang. Preparation and Characterization of Magnetic Nano-particles by γ-irradiation. Materials science and Engineering C. 2004, 24: 107~111
    20 Nuray karapinar, Erhard hoffnann, Hermann H. Hahn. Magnetite Seeded Precipitation of Phosphate. Water Research. 2004, 30(38): 1677~1685
    21 M. Del bubba, C. A. Arias, H. Brix. Phosphorus Adsorption Maximum of Sands for Use as Media in Subsurface Flow Constructed Reed Beds as Measured by the Langmuir isotherm. Water Research. 2003, (37): 3390~3400
    22 熊鸿斌, 刘文清, 李鸿敬. 钙法处理高浓度含磷废水. 中国给水排水. 2003, 19(5): 91~92
    23 G. K. Morsc, S. W. Brett, J. A. Guy, et al. Review: Phosphorus Removal and Recovery Technologies. The Science of the Total Environment. 1998, (212): 69~81
    24 刘吉生, 黄自力, 肖松文等. 城市污水磁化絮凝-高梯度磁分离除磷研究. 矿冶工程, 2003, 23(5): 24~26
    25 P. Battistoni, G. Fava, P. Pavan, et al. Phosphate Removal in Anaerobic Liquors by Struvite Crystallization Without Addition of Chemicals: preliminary Results. Water Research, 1997, 31(11): 2925~2929
    26 王立明, 韦志仁, 吴峰. 水热条件下影响晶体生长的因素. 河北大学学报(自然科学版). 2002, 22(4): 345~350
    27 I. Stratfu, M. D. Scrimshaw, J. N. Lester. Conditions Influencing the Precipitation of Magnesium Ammonium Phosphate. Water Research. 2001, 35(17): 3059~3066
    28 M. M seckler, O. S .L. bruinama, G.M.van. rosmalen. Calcium Phosphate Precipitation in a Fluidized Bed in Relation to Process Conditions: A Black Box Approach. Water Research. 1996, 30(7): 1677~1685
    29 龙毅, 张正义, 李守卫. 新功能磁性材料及其应用. 机械工业出版社, 1996: 1~5
    30 罗漫, 陆柱. 磁场水处理的杀菌性能影响研究. 水处理技术. 2001, 27(3): 164~166
    31 马伟, 萧锦, 崔蕴霞.磁场与高分子絮凝剂协同强化混凝降铝效能研究. 大连铁道学院学报. 1998,19(2): 5~7
    32 马伟, 萧锦, 郭丽燕. 磁场效应在水处理中的作用与研究. 工业水处理, 1997, 17(6): 1~5
    33 黄自立, 胡岳华. “磁种-高梯度磁分离”污水除磷技术的研究. 环境污染治理技术与设备. 2003, 4(5): 70~73
    34 吴克宏, 都的箭, 唐志坚等.磁分离技术在水处理中的物理作用分析. 给水排水. 2001, 27(9): 27~30
    35 王敬尊, 瞿慧生著. 复杂样品的综合分析-剖析技术概论. 化学工业出版社. 2000: 127~131
    36 汤鸿霄. 混浊水铝钒絮凝机理的胶体化学观. 土木工程学报. 1965, (1): 45~55
    37 汤鸿霄, 钱易. 水体颗粒物核难降解有机物的特性与控制技术原理(上册). 中国环境科学出版社, 2000: 138~173
    38 Roger L. P, Roger J. A, The mechanism of phosphate fixation by iron oxides, Soil Sci Soc Amer Proc. 1975, 39: 837~841
    39 Tatsuo Ishikawa, Yoshinori Kondo, et al. Formation of Magnetite in the Presence of Ferric Oxyhydroxides. Corrosion Science. 1998, 40(7): 1239~1251
    40 王萍, 牛晓君, 赵保卫. 海绵铁吸附除磷机理研究. 中国给水排水. 2003, 19(3): 11~13
    41 Song Y., Hermann H. Hann. Effects of Solution Conditions on the Precipitation of Phosphate for Recovery A Thermodynamic Evaluation. Chemosphere. 2002(48): 1029~1034
    42 李伯骥. 化学化工实验师手册. 大连理工大学出版社, 1996: 41~50
    43 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水检测分析方法.中国环境科学出版社, 2002: 243~250
    44 席永慧, 赵红, 胡中雄. 粉煤灰、粘土、膨润土等对Zn2+的吸附试验研究.岩土力学. 2005, 26(8): 1269~1274
    45 邢伟, 黄文敏, 李敦海等. 铁盐除磷技术机理及铁盐混凝剂的研究进展. 给水排水. 2006, 132(2): 88~91
    46 Elisabeth Galarneau, Ronald Gehr. Phosphorus Removal from Wastewaters: Experimental and Theoretical Support for Alternative mechanisms. Water Research. 1997, 31(2): 328~338
    47 毕学军, 王振江, 于澎学等. 各污泥处理单元废液的磷含量控制问题. 中国给水排水. 2003, 19(1): 98~99
    48 黄清辉, 王东红, 王春霞等. 沉积物中磷形态与湖泊富营养化的关系. 中国环境科学. 2003, 23(6): 583~586
    49 S. A. Ravishankar, Pradip, N. K. Khosla. Selective Flocculation of Iron Oxide from Its Synthetic Mixtures with Clays: A Comparison of Polyacrylic Acid and Starch Polymers. Int. J. Miner. Process. 1995, (43): 235~247
    50 Stratful, M. D. Scrimshaw, J. N. Lester. Conditions Influencing the Precipitation of Magnesium Ammonium Phosphate. Water Research. 2001, 35(17): 3059~3066
    51 P. Battistoni, G. Fava, P. Pavan, et al. Phosphate Removal in Anaerobic Liquors by Struvite Crystallization Without Addition of Chemicals: Preliminary Results. Water Research.1997, 31(11): 2925~2929
    52 耿震, 张林生, 吴海锁等. 污水吹脱结晶法除磷机理及应用. 污染防治技术. 2003, 16(4): 10~12
    53 亚非群, 马伟, 王刃等. 天然材料改性吸附剂的制备和除氟研究. 施工、材料与设备, 给水排水. 2003, 29(12): 72~75
    54 席永慧, 赵红, 胡中雄. 粉煤灰粘土粉质粘土膨润土对镍离子吸附试验研究. 岩土工程学报. 2005, 27(1): 59~63
    55 M. Del Bubba, C. A. Arias, H. Brix. Phosphorus Adsorption Maximum of Sands for Use as Media in Subsurface Flow Constructed Reed Beds as Measured by the Langmuir isotherm. Water Research. 2003, (37): 3390~3400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700