树木营养贮藏蛋白质的细胞学、生物化学和生物学功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是植物生长发育不可缺少的一种大量矿质元素,对植物氮代谢的研究一直受到高度重视。近年来,关于氮素吸收、同化、转运和种子氮贮藏的研究已取得较大进展,但是,营养器官中氮贮藏的研究仍然是植物氮代谢研究的一个薄弱环节。
     营养器官中的季节性氮贮藏是树木氮代谢的显著特征,在树木的生长发育及树木对逆境的反应方面起重要作用。因此,关于氮贮藏的知识也是果树和林木栽培技术发展的基础。
     二十世纪八十年代后期,树木氮贮藏研究获得了重大进展:在树木的营养器官中发现一类专门的贮藏蛋白质,称之为营养贮藏蛋白质。
     至今,对树木营养贮藏蛋白质的细胞学、生物化学性质和生物学功能了解得还很不够。对树木营养贮藏蛋白质的认识借鉴种子,往往把营养贮藏蛋白质的重要性与种子中的贮藏蛋白质相类比。一般认为,在根系当年从土壤中吸收和同化的氮不能满足树木当年生长发育的需要时,营养器官中贮藏的氮起着一种“缓冲作用”。这种认识严重制约着树木营养贮藏蛋白质的研究。
     本文首先综述了植物N代谢的差异、树木营养器官N贮藏的早期研究工作和植物营养贮藏蛋白质的研究进展。采用光镜和电镜技术、PAGE、SDS-PAGE和免疫印迹技术、电泳凝胶过碘酸—Schiff试剂染色、间接免疫荧光和电镜免疫细胞化学定位技术以及cDNA克隆技术,较深入地研究了大叶桃花心木和巴西橡胶树的营养贮藏蛋白质的细胞学、生物化学性质和生物学功能。在此基础上,较广泛地研究了营养贮藏蛋白质在18科64属70种热带树木和15科28属30种2变种温带落叶树木中的分布,较系统地研究了营养贮藏蛋白质在蔷薇科(12属17种3变种)、豆科(9属10种1变种)和楝科(12属16种2变种)中的分
    
     布、超微结构及其分离鉴定和糠科树木营养贮藏蛋白质的免疫相关性。
     在大叶桃花心木的皮层、次生韧皮部和木质部的普通薄壁细胞的
     中央大液泡里存在蛋白质内含物。这些细胞的周缘细胞质中通常含有
     淀粉粒。在接近落叶期和无叶期,液泡蛋白质在植株中大量积累,主
     要分布在次生韧皮部的射线薄壁组织细胞和韧皮薄壁细胞中,并且末
     端小枝的液泡蛋白质比树干和大根的丰富。末端小枝液泡蛋白质的消
     失与新梢生长过程是同步的,表明这些蛋白质被新梢生长所消耗。落
     叶前环剥一年生枝条基部,萌发的新梢生长被抑制,环剥伤口下方液
     泡蛋白质的消失受到阻碍。树干和根中液泡蛋白质的明显减少发生在
     新梢形成之后,这些蛋白质的完全消失发生在相应器官形成层活动最
     活跃的时期。在新梢叶片成熟后l个月,新梢茎的树皮组织就开始积
     累液泡蛋白质,此时正值高温和长日照时期。
     采用SDS干AGE技术,从大叶桃花心木末端小枝的树皮组织中分离
     到两种才对含量高的蛋白质,分子量约 18 kDa和 ZI kDa。用 21 kDa
     蛋白质的抗血清进行兔疫印迹分析表明,18 kDa蛋白质和 21 kDa蛋白
     质有相同的抗原决定簇。免疫荧光和电镜免疫细胞化学定位证明,它
     们是贮藏蛋白质细胞的液泡蛋白质内含物的主要成分。在树木年生长
     周期的后期,18 kDa和 ZI kDa蛋白质分布于枝条、树干、大根和小
     根,大量积累在这些器官的次生韧皮部和末端小枝及小根的次生木质
     部中。在树木新的年生长周期中,随着新梢的发育,积累在末端小枝
     中的贮藏蛋白质开始被消耗/新梢叶片成熟时,末端小枝中的 18 kDa
     和 21 kDa蛋白质己完全消失,而树干和大根中的这两种蛋白质的含量
     相对稳定,与落叶期相比几乎没有变化。树干和大根中的贮藏蛋白质
     的动用与各自的维管形成层活动密切相关,它们的大量消失发生在维
     管形成层活动的高峰期。到IC。月初,高部位树干的树皮中己开始积累
     贮藏蛋白质而低部位树干的树皮组织中的贮藏蛋白质己减少到低水
     平。新梢叶片成熟后的 1周,在新梢茎的树皮组织中就可检测到 18 kDa
     和 21 kDa两种蛋白质。新梢叶片成熟后的 2周,这两种蛋白质明显增
     多。此时,上一年形成的末端小枝的树皮组织中己检测不到 18 kDa和
     ZI kDa两种蛋白质,树干和根中的贮藏蛋白质正在消失。这些结果表
     明,营养贮藏蛋白质的积累是一种程序性合成,积累的蛋白质供下一
     个生长发育阶段利用。结果,当年的新梢生长和维管形成层的活动优
     先利用原来积累的贮藏蛋白质而不是当年新同化的N。这种机制为树木
     正常的生长发育提供了一个相对稳定的内环境。树木的茎干在整个年
     3
    
     生长周期中都存在相当数量的营养贮藏蛋白质,这对于树木抵抗偶然
     的N素胁迫具有重要的生
People always attach importance to the nitrogen metabolosm in plant for nitrogen, a major mineral element, is necessary for plant growth and development. However, we still have little knowledge of the nitrogen storage in vegetative organs although more progress in understanding the nitrogen absorption, assimilation, transportation and the nitrogen storage in seeds have been achieved in recent years.
    The nitrogen metabolism of woody plants is characterized by storing nitrogen compounds in their vegetative organs. The stored nitrogen compounds play an important role in the tree growth and in the resistance of tree to environmental stress. In addition, the knowledge of nitrogen storage is a basis of developing the cultivation techniques of woods and fruit trees.
    At the late of 1980s, available evidence indicated that there presented a kind of proteins specific for nitrogen storage in vegetative organs of woody plants, and ,thus, the proteins were defined as vegetative storage proteins.
    To date, little is known about the cytology, biochemical properties and biological roles of vegetative storage proteins in woody plants. As a result, people have to draw on the experience of seed storage proteins to understand the vegetative storage proteins and always equate their importance with that of seed storage proteins. It is commonly accepted that the nitrogen stored in vegetative organs buffers the nitrogen necessity if current supply of nitrogen is not available for the growth of woody plants. This understand of stored nitrogen compounds restricted seriously the progress in the investigation of vegetative storage proteins.
    In the dissertation, we studied more extensively the cytology, biochemical properties and biological roles of vegetative storage proteins in Swietenia macrophylla and in Hevea brasiliensis by light- and electron microscopy, SDS-PAGE, PAGE, immuno-blotting, indirect immunohistochemical localization and colloidal gold labelling and cDNA clone techniques. To examine the distribution of vegetative storage proteins in woody plants, we sampled at random 70 tree species of tropical hardwoods
    
    
    
    in 64 genera of 18 families and 30 tree species and 1 variety of temperate deciduous hardwoods in 28 genera of 15 families. We further investigated more systematically the distribution, ultrastructure of vegetative storage proteins in Rosaceae (17 species and 3 varieties in 12 genera), Leguminosae (10 species and 1 variety in 9 genera) and Meliaceae (16 species and 2 varieties in 12 genera), identified many vegetative storage proteins and tested their irnmuno-relatedness in Meliaceae and in other families.
    The protein-storing cells in Swietenia macrophylla were found to be Populus-type, i.e. ordinary parenchyma cells containing both vacuolar protein inclusions and starch grains. The protein inclusions in a granular appearance accumulated in the central vacuole and starch grains generally in the cytoplasm of ordinary parenchyma cells. The storage protein accumulated in large quantity in the vegetative organs of Swietenia macrophylla at the period near leaf fall and in the leaf-fall period with terminal branchlets much richer in the storge protein than trunks and roots. The protein accumulated mainly in secondary phloem parenchyma cells and secondary phloem ray cells. The degradation of storage protein in terminal branchlets of Swietenia macrophylla synchronized with new shoot growth after leaf-absent period, suggesting that the protein was utilized to support the growth of new shoots. When the diminishing of the storage protein below the girdled site was blocked, the new shoot growth was also restrained. The storage protein in the trunks and roots diminished dramatically after the new shoot had fully developed and the protein had disappeared completely when the cambia of these organs activated vigorously. In the annual growth cycle of Swietenia macrophylla, the storage protein accumulated firstly in the new shoot rather than in the other organs. The protein accumulation began one month after the leaves of new
引文
计巧灵,吕文渊,陈睦传,郭洁。绞股蓝茎尖和幼叶细胞蛋白体研究初探。植物学报,1990,32:916-921
    史自强,胡正海.植物含胶组织的制片方法。植物学报,1965,13(2):179-182
    庄伊美.龙眼、荔枝营养与施肥。福建热作科技,1989,49(4):27-35
    吴继林,郝秉中.巴西橡胶树茎次生韧皮部中贮藏蛋白质细胞。科学通报,1986,3:221-223
    吴继林,郝秉中.降香黄檀次生韧皮部液泡蛋白质形成和积累的超微结构研究。植物学通报,1994,11(增刊):35
    吴继林,谭海燕,曾日中,郝秉中.巴西橡胶树初生乳管分化和苗生长的关系。热带作物学报,2000,21(4):1-6
    陈邦余.楝科(Meliaceae)的地理分布。热带亚热带植物学报,1995,3(3):12-22
    陈锡沐,梁宝汉,李秉滔.广东楝科植物分类的初步研究。武汉植物学研究,1986,4(2):167-194
    杨日耀,唐锡华.用SDS溶解的蛋白质的Dot-ELISA和免疫双扩散技术。植物生理学通讯,1991,27(1):51-53
    侯宽昭,陈德昭.中国楝科志。植物分类学报,1955,4(1):1-45
    郝秉中,谭海燕,田维敏,吴继林,吴云昆.海南岛白格旱季休眠的解剖学研究。热带作物学报,1997,18(2);98-107
    曾骧。果树生理学。1992,北京:农业出版社,394-411
    Andrews M.The partitioning of nitrate assimilation between root and shoot of higher plants.Plant Cell Environ.,1986, 9:511-519
    Arora R,Wisniewski ME,Scorza R.Cold acclimation in genetically related(sibing)deciduous and evergreen peach [Prunus persica (L.)Batsch]. Ⅰ. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues.Plant Physiol.1992, 99:1562-1568
    Arora R, Wisniewski ME.Cold acclimation in genetically related (sibing)deciduous and evergreen peach[Prunus persica(L.) Batsch]. Ⅱ. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins.Plant Physiol.1994,105:95-101
    Atkins CA,Pate JS,Layzell DB.Assimilation and transport of nitrogen on non-nodulated(NO_3'-grown) Lupinus albus L.Plant Physiol.1979,64:1072-1082
    Audley BG.Studies of an organelle in Hevea latex containing helical protein microfibrils.Proceedings of the Natural Rubber Product's Research Association,Jubilee Conference Cambridge, ed. L.Mullins. Maclaren and Sons LTD. London,1964,67-79
    Ball EH.Quantitation of proteins by elution of coomassie brilliant blue R from stained bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Anal.Biochem.1986, 155:23-27
    Beevers L,Hageman RH.Nitrate reduction in higher plants.Annu. Rev.Plant Physiol.1969,20:495-522
    
    
    Bell, E, Mullet, JE.. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol. Gen. Genet. 1991,230,456-459
    Beardmore T, Wetzel S. Interactions of air-borne methyl jasmonate with vegetative storage protein genes and protein accumulation, ABA concentration and biomass partitioning in Populus. Abstracts of XVI International Botanical Congress, St. Louis, USA, 1999
    Bollard EG. Nitrogenous compounds in plant xylem sap. Nature, 1956,178: 1189-1190
    Bollard EG. Transport in the xylem. Annu. Rev. Plant Physiol. 1960,11: 141-166
    Bollard EG. Nitrogenous metabolism of apple trees. Nature, 1953,171: 571-572
    Bradford MM. A rapid and sensitive method for the qrantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976,72: 248-254
    Bray CM. Nitrogen metabolism in plants. Longman, London and New York, 1983, PP. 183-201
    Breteler H, Siegerist M. Effect of ammonium on nitrate utilization of dwarf bean. Plant Physiol. 1984,75: 1099-1103
    Breteler H, Arnozis PA. Effect of amino compounds on nitrate utilization by roots of dwarf bean. Phytochemistry, 1985, 24: 653-657
    Broekaert WF, Nsimba-Lubaki M, Peeters B, Permans WJ. A lectin from elder (Sambucus nigra L.) bark. Biochem. J. 1984, 221: 163-169
    Burnette WN. 'Western blotting': electrophoretic transfer of protein from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radio-iodinated protein A. Anal. Biochem. 1981,112: 195-203
    Chapin FS, Kedrowski RA. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 1983, 64: 376-391
    Coleman GD, Chen THH, Ernst SG, Fuchigami L. Photoperiod control of poplar bark storage protein accumulation. Plant Physiol. 1991, 96,686-692
    Cheng C-L, Acedo GN, Cristinsin M, Conkling MA. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA, 1992, 89: 1861-1864
    Chou K, Splittstoesser WE. Changes in amino acid content and the metabolism of γ-aminobutyric acid in Cucurbita mochata seedlings. Plant Physiol. 1972, 49: 550-554
    Clarkson DT. Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 1985,36:77-115
    Clausen S, Apel K. Seasonal changes in the concentration of the major storage protein and its mRNA in xylem ray cells of poplar trees. Plant Mol. Biol. 1991,17: 669-678
    Close TJ, Kortt AA, Chandler PM. A cDNA-based comparison of dehydration induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 1989,13: 95-108
    Close TJ, Fenton RD, Moonan F. A view of plant dehydrins using antibodies specific to the carboxy
    
    terminal peptide. Plant Mol. Biol. 1993,23: 279-286
    Coleman GD, Chen THH, Ernst SG, Fuchigami L. Photoperiod control of poplar bark storage protein accumulation. Plant Physiol. 1991,96: 686-692
    Coleman GD, Chen THH, Fuchigami LH. Complementary DNA cloning of poplar bark storage protein and control of its expression by photoperiod. Plant Physiol. 1992,98: 687-693
    Coleman GD, Englert JM, Chen THH, Fuchigami LH. Physiological and environmental requirements for poplar (Populus deltoides) bark storage protein degradation. Plant Physiol. 1993,102:53-59
    Coleman GD,Chen THH. Sequence of a poplar bark storage protein gene. Plant Physiol. 1993,102:1347-1348
    Coleman GD, Banados MP, Chen THH. Poplar bark storage protein and a related wound-induced gene are differentially induced by nitrogen. Plant Physiol. 1994,106: 211-215
    Cooper HD, Clarkson DT. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals-a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. Exp.Bot. 1989, 40: 753-762
    Crafts-Brandner SJ, Salvucci ME. Rubisco complex protein: a protein induced by fruit removal that forms a complex with Rubisco. Planta, 1994,194: 110-116
    Crawford TW, Rending W, Broadbent FE. Sources, fluxes and sinks of nitrogen during early reproductive growth of maize (Zea mays L.). Plant Physiol. 1982,70: 1654-1660
    Cyr DR, Bewley JD. Seasonal variation in nitrogen storage reserves in the roots of leafy spurge (Euphorbia escula) and response to decapitation and defoliation. Physiol. Plant. 1990a, 78: 361-366
    Cyr DR, Bewley JD. Proteins in the roots of the perennial weeds chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Weber) are associated with overwintering. Planta, 1990b, 182: 370-374
    Dasberg S. Nitrogen fertilization in citrus orchards. Plant and Soil, 1987,100: 1-9
    d'Auzac J. Factors involved in the stoping of flow after tapping. In: Physiology of Rubber Tree Latex.d'Auzac J, Jacob JL, Crestin H. (eds.). Boca Raton, Frorida: CRC Press, 1989, 257-285
    d'Auzac J, Prevot J-C, Jacob J-L. What's new about lutoids? A vacuolar system model from Hevea latex. Plant Physiol. Biochem. 1995,33(6) : 765-777
    Davis JM, Egelkrout EE, Coleman GD, Chen THH, Haissig BE, Riemenschneider DE, Gordon MP. A family of wound-induced genes in Populus shares common features with genes encoding vegetative storage proteins. Plant Mol. Biol. 1993,23: 135-143
    Derbyshire E, Wright DJ, Boulter D. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry, 1976,15: 3-24
    Dewald DB, Mason GS, Mullet JE. The soybean vegetative storage proteins VSPalpha and VSPbeta are acid phosphatases active on polyphosphates. J. Biol. Chem. 1992,267: 15958-15964
    Dickson RE, Vogelmann TC, Larson PR. Glutamine transfer from xylem to phloem and
    
    translocation to developing leaves of Populus deltoides. Plant Physiol. 1985, 77: 412-417
    Doddema H, Otten H. Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake in uptake or reduction of nitrate. III. Regulation. Physiol. Plant. 1979, 45: 339-345
    Donovan GR, Lee JW. Effect of the nitrogen source on grain development in detached wheat heads in liquid culture. Aust. J. Plant Physiol. 1978, 5: 81-87
    Douglas GL, HM Farrell,Jr. Seasonal expression patterns and characterization of a Euphorbia esula root storage protein. Plant Physiol. Biochem. 1996,34: 111-118
    Drossopoulos JB, Nivis CA. Seasonal changes of metabolities in the leaves, bark and xylem tissues of olive tree (Olea europaea L.). I . Nitrogenous compounds. Ann. Bot. 1988, 62: 313-320
    Durkee LT. Protein-containing cells in the nectary phloem of Passiflora warmingii. Am. J. Bot. 1983, 70: 1011-1018
    Edwards JW, Coruzzi GM. Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase. Plant Cell, 1989, 1: 241-248
    Enestrom S, and Kniola B. Epon resin infiltration and immunogold labelling of pituitary secretory granules after cryofixation versus chemical fixation. Biotech.& Histochem. 1992,67(2) : 100-105.
    Fife DN, Nambiar EKS. Movement of nutrients in radiata pine needles in relation to the growth of shoots. Ann. Bot. 1984, 54: 303-314
    Fowden L. Aspects of amino acid metabolism in plants. Annu. Rev. Plant Physiol. 1967,18: 85-106
    Fowden L. The nitrogen metabolism of ground nut plants: The role of γ-methyleneglutamine and γ-methyleneglutamic acid. Ann. Bot. 1954,18: 417-440
    Franceschi VR, Wittenbach VA, Giaquinta RT. Paraveina mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. III. Immunohistochemical localization of specific glycopeptides in the vacuole after depodding. Plant Physiol. 1983,72: 586-589
    Goldberg RB, Barker SJ, Perez-Grau L. Regulation of gene expression during plant embryogenesis. Cell, 1989, 56: 149-160
    Greenwood JS, Stinissen HM, Peumans WJ, Chrispeels MJ. Sambucus nigra agglutinin is located in protein bodies in the phloem parenchyma of the bark. Planta, 1986,167: 275-278
    Greenwood JS, Demmers C, Wetzel S. Seasonally dependent formation of protein-storage vacuoles in the inner bark tissues of Salix microstachya. Can. J. Bot. 1990, 68:1747-1755
    Grigal DF, Ohmann LF, Brander RB. Seasonal dynamics of tall shrubs in northeastern minnesota: biomass and nutrient element changes. For. Sci. 1976,22: 195-208
    Guerrero MG, Vega JM, Losada M. The assimilatory nitrate-reducing system and its regulation. Annu. Rev. Plant Physiol. 1981,32: 169-204
    Guo W, Ward RW, Thomashow MF. Characterization of cold-regulated wheat gene related to Arabidopsis cor47. Plant Physiol. 1992,100: 915-922
    
    
    Guy CL. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu.Rev. Plant Physiol. Plant Mol. Biol. 1990,41: 187-223
    Guyer D, Patton D, Ward E. Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc. Natl. Acad. Sci. USA, 1995, 92: 4997-5000
    Hao B-Z,Wu J-L. Vacuole proteins in parenchyma cells of secondary phloem and xylem of Dalbergia odorifera. Trees, 1993, 8:104-109
    Halliday J, Pate JS. Symbiotic nitrogen fixation by coralloid roots of the cycad, Macrozamia riedlei: physiological characteristics and ecological significance. Aust. J. Plant Physiol.1976,3: 349-358
    Harley CP, Regeimbal LO, Moon HH. The role of nitrogen reserves in new growth of apple and the transport of 32P from roots to leaves during early spring growth. Proc. Am. Soc. Hort. Sci. 1958, 72:57-63
    Harms U, Sauter JJ. Localization of a storage protein in the wood ray parenchyma cells of Taxodium distichum (L.) L. C. Rich, by immunogold labeling. Trees, 1992, 6: 37-40
    Harvey PJ, Boulter D. Isolation and characterization of the storage protein of yam tubers (Dioscorea rotundata). Phytochemistry, 1983,22: 1687-1693
    Hayakawa T, Kamachi R, Oikawa M, Ojima K, Yamaya T. Response of glutamine synthetase and glutamate synthase isoforms to nitrogen sources in rice cell cultures. Plant Cell Physiol. 1990, 31:1071-1077
    Hayakawa T, Yamaya T, Mae T, Ojima K. Changes in content of two glutamate synthase proteins in spikelets of rice (Oryza sativa) plants during ripening. Plant Physiol. 1993,101: 1257-1262
    Hendershot KL, Volenec JJ. Taproot nitrogen accumulation and use in overwintering alfalfa (Medicago sativa L.). J. Plant Physiol. 1992a, 141: 68-74
    Hendershot KL, Volenec JJ. Nitrogen pools in taproots of Medicago sativa L. after defoliation. J. Plant Physiol. 1992b, 141: 129-135
    Herman EM, Charles HN, Leland SM. Bark and leaf lectins of Sophora japonica are sequestered in protein-storage vacuoles. Plant Physiol. 1988,86: 1027-1031
    Higgins TVJ, Synthesis and regulation of major proteins in seeds. Annu. Rev. Plant Physiol. 1984, 35: 191-221
    Hill-Cottingham DG, Williams RR. Effect of time of application of fertilizer nitrogen on the growth, flower development and fruit set of maiden apple trees, van Lord Lambourne, and on the distribution of total nitrogen within the trees. J. Hort. Sci. 1967,42: 319-338
    Hill-Cottingham DG. The effect of climate and time of application of fertilizers on the development and crop performance of fruit trees. In: Recent Aspects of Nitrogen Metabolism in Plants, ed. Hewitt EJ & Cutting CV. New York, London: Acad. Press. 1968, pp.243-253
    Houde M, Danyluk J, Laliberte J-F, Rassart E, Dhindsa RS, Sarhan F. Cloning, Characterization, and
    
    expression of cDNA encoding a 50-kilodalton protein specially induced by cold acclimation in wheat. Plant Physiol. 1992, 99:1381-1387
    Hummel RL, Teets TM, Guy CL. Protein comparisions of non-and cold-acclimated Hibiscus syriacus and H. rosa-sinensis bark. Hort. Sci. 1990,25: 365-367
    Imsande J, Touraine B. N demand and the regulation of nitrate uptake. Plant Physiol.1994,105: 3-7
    Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physoil. Plant Mol. Biol. 1996,47: 377-403
    Junttila O. Effect of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiol. Plant. 1980,48: 347-352
    Junttila O. Effect of rootstock on photoperiodic control of elongation growth in grafted ecotypes of Salix. Physiol.Plant. 1988,74: 39-44
    Kang SM, Titus JS. Qualitative and quantitative changes in nitrogenous compounds in senescing leaf and bark tissue of apple. Physiol. Plant. 1980a, 50: 285-290
    Kang SM, Titus JS. Activity profiles of enzymes involved in glutamine and glutsmine metabolism in the apple during autumnal senescence. Physiol. Plant. 1980b, 50: 291-297
    Kang SM, Titus JS. Specific proteins may determine maximum cold resistance in apple shoots. J. Hort. Sci. 1987, 60(3) : 281-285
    Kato T. Major nitrogen compounds transported in xylem vessels from roots to top in citrus trees. Physiol. Plant. 1981, 52: 275-279
    Kato T. Nitrogen metabolism and utilization in Citrus. Hort. Rev. 1986, 8: 181-216
    Keltjens WG, Nieuwenhaus JW, Nelmans JA. Nitrogen translocation in plants of maize, lupin and cocklebur. Plant and Soil, 1986,91: 323-327
    Kenis JD, Silvente ST, Luna CM, Campbell WH. Induction of nitrate reductase in detached corn leaves: the effect of the age of the leaves. Physiol. Plant. 1992, 85: 49-56
    Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM, Miflin BJ. Photorespiratory nitrogen cycle. Nature, 1978, 275: 741-743
    Klauer SF, Franceschi VR, Ku MSB, Zhang DZ. Identification and localization of vegetative storage proteins in legume leaves. Am. J. Bot. 1996, 83: 1-10
    Kramer PJ, Kozlowski TT. Physiology of woody plant. Acad. Press, New York. 1979,pp.302-333
    Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR. Molecular evolution of the seed storage proteins of barley, rye, and wheat. J. Mol. Boil. 1985,183: 499-502
    Lacrotte R, Gidrol X, Vichitcholchai N, Pujade-Rrnaud V, Narangajavana J, Chrestin H. Hevea: protein markers of tapping panel dryness. Plantations, recherche, developpement, 1995,2(4) : 40-45
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685
    
    
    Lam H-M, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47: 569-593
    Lam H-M, Peng SS-Y, Coruzzi GM. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 1994,106: 1347-1357
    Lambers H, Simpson RJ, Beilharz VC, Calling MJ. Growth and translocation of C and N in wheat (Tritcum aestivum) growth with a split root system. Physiol. Plant. 1982, 56: 421-429
    Langheinrich U, Tischner R. Vegetative storage proteins in poplar. Induction and characterization of a 32-and a 36-kilodalton polypeptide. Plant Physiol. 1991,97: 1017-1025
    Larsson CM, Larsson M, Purves JV, Clarkson DT. Translocation and cycling through roots of recently absorbed nitrogen and sulfur in wheat (Triticum aestivum) during vegetative and generative growth. Physiol. Plant. 1991, 82: 345-352
    Leckstein PM, Liewellyn M. Quantitative analysis of seasonal variation in the amino acids in phloem sap of Salix alba L. Planta, 1975,124: 89-91
    Li H-S, Oba K. Major soluble proteins of sweet potato and changes in proteins after cutting, infection, or storage. Agric. Biol. Chem. 1985, 49: 737-744
    Ligrone R, Lopes C. Ultrastructure, development and cytochemistry of storage cells in the 'tuber' of Phaeoceros laevis Prosk. (Anthocerotophyta). New Phytol. 1989,112: 317-325
    Lin C, Thomashow MF. A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem. Biophys. Res. Commun. 1992,183: 1103-1108
    Luster DG, Farrell,Jr HM. Seasonal expression patterns and characterization of a Euphoubia esula root storage protein. Plant Physiol. Biochem. 1996:34: 111-118
    Marschner H. Mineral nutrition in higher plants. Acad. Press, 1986, pp. 190-220
    Mason AC, Whitfield AB. Seasonal changes in the uptake and distribution of mineral elements in apple trees. J. Hortic. Sci. 1960,35: 34-55
    Matteis JP, Ketchie DO. Changes in parameters of the plasmalemma ATPase during cold acclimtion of apple (Malus domestica) bark tissues. Physiol. Plant. 1990, 78: 616-622
    McClure PR, Israel DW. Transport of nitrogen in the xylem of soybean plants. Plant Physiol. 1979, 64:411-416
    Menzel CM, Haydon GF, Doogan VJ, Simpson DR. Time of nitrogen application and yield of Bengal lychee on a sandy loam soil in subtropical Queensland. Austr. J. Exp. Agri. 1994,34(6) : 803-811
    Mertz ET, Bates LS, Nelson OE. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964,145: 279-280
    Meyer MM, Splittstoesser WE. The utilization of carbonhydrate and nitrogen reserves by Taxus during its spring growth period. Physiol. Plant. 1971,24: 306-314 102
    
    
    Miettinen JK, Virtanen AI. The free amino acids in the leaves, roots, and root nodules of alder (Alnus). Physiol. Plant. 1952, 5: 540-557
    Miflin BJ, Lea PJ. Amino acid metabolism. Annu. Rev. Plant Physiol. 1977,28: 299-329
    Millard P, Neilsen GH. The influence of nitrogen supply on the uptake and remobilization of stored N for the seasonal growth of apple trees. Ann. Bot. 1989, 63: 301-309
    Millerd A. Biochemistry of legume seed proteins. Annu. Rev. Plant Physiol. 1975,26: 53-72
    Mishkind ML, Plumley FG, Raikhel NV. Immunochemical analysis of plant tissue. In: Handbook of plant cytochemistry. Vol. II other cytochemical staining procedures.Edited by Vaughn, K.C., CRC Press, Boca Raton, Florida. 1987, pp.65-119
    Moore PJ, Staehelin LA. Immunogold localization of the cell-wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytodinesis in Trifolium pratense L.; implication for secretory pathways. Planta, 1988,174: 433-445.
    Moudale DM, Mousdale SA, Hennerty MJ. Physiology and biochemistry of the regulation of protein accumulation and mobilization in apple shoot bark. Plant Nutritrion Proceedings of the Ninth Intemation Plant Nutrition Colloquium (Formerly Plant Analysis and Fertilizer Problems). Ed. Scaife A, 1982,Vol. 2
    Muller B, Touraine B. Inhibition of NO3-uptake by various phloem-translocated amino acids in soybean seedling. J. Exp. Bot. 1992, 43: 617-623
    Mussigmann C, Ledoiggt G. Major storage proteins in Jerusalem artichoke tubers. Plant Physiol. Biochem. 1989,27:81-86
    Nakagawara S, Sagisaka S. Increase in enzyme activities related to ascorbate metabolism during cold acclimation in poplar twigs. Plant Cell Physiol. 1984,25: 899-906
    Nataraja, KN, Krshnakumar, R, Jacob, J, Sethurag, MR.. Analysis of the protein profiles of healthy and TPD affected Hevea brasiliensis bark tissues. IRRDB Workshop on TPD of Hevea, Hainan China, Apri 29-30,1997
    Neilsen D, Millard P, Neilsen GH, Hogue EJ. Nitrate uptake, efficiency of use, and partitioning for growth in young apple trees. J. AM. Soc. Hort. Sci. 2001,126: 144-150
    Neven LG, Haskell DW, Hofig A, Li Q-B, Guy CL. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol. Biol. 1993,21: 291-305
    Nsimba-Lubaki M, Peumans WJ. Seasonal fluctuation of lectins in barks of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia). Plant Physiol. 1986, 80: 747-751
    Oaks A, Hirel B. Nitrogen metabolism in roots. Annu. Rev. Plant Physiol. 1985,36: 345-365
    Oaks A. Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot. 1994,72: 739-750
    O' Kennedy BT, Hennerty MJ, Titus JS. Changes in the nitrogen reserves of apple shoots during the dormant season. J. Hort. Sci. 1975, 50: 321-329
    
    
    O' Kennedy BT, Titus JS. Isolation and mobilization of stored proteins from apple shoot bark. Physiol. Plant. 1979, 45: 419-424
    Oland K. Nitrogenous constituents of apple maidens grown under different nitrogen treatments. Physiol. Plant. 1954, 7: 463-474
    Oland K, Yemm EW. Nitrogenous reserves of apple trees. Nature, 1956,178: 219
    Oland K. Nitrogeneous reserves of apple trees. Physiol. Plant. 1959,12: 594-648
    Oland K. Changes in the content of dry matter and major nutrient elements of apple foliage during senescence and abscission. Physiol. Plant. 1963,16: 682-694
    Olday FS, Barker AV, Maynard DN. A physiological basis for different patterns of nitrate accumulation in cucumber and pea. J. Am. Soc. Hort. Sci. 1976,101: 219-221
    Padgett PE, Leonard RT. Regulation of nitrate uptake by amino acids in maize cell suspension culture and intact roots. Plant and Soil, 1993,155/156: 159-161
    Paiva E, Lister RM, Park WD. Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiol. 1983, 71: 161-168
    Parsons R, Baker A. Cycling of amino compounds in symbiotic lupin. J. Exp. Bot. 1996: 47: 421-429
    Pate JS, Wallace W. Movement of assimilated nitrogen from the root system of the field pea (Pisum arvense L.). Ann. Bot. 1964, 28: 80-99
    Pate JS, Sharkey PJ, Lewis OAM. Xylem to phloem transfer of solutes in fruiting shoots of a Legume, studied by a phloem bleeding technique. Planta, 1975,122: 11-26
    Pate JS. Transport and partitioning of nitrogeneous solutes. Ann. Rev. Plant Physiol., 1980,31: 313-340
    Pearse AGE. Histochemistry: Theoretical and applied. J. &A. Churchill, LTD. London, 1960
    Perez-Soba M, Van Der Eerden LJM. Nitrogen uptake in needles of Scots pine (Pinus sylvestris L.) when exposed to gaseous ammonia and ammonium fertilizer in the ssoil. Plant and Soil, 1993, 153:231-242
    Peterman TK, Goodman HM. The glutamine synthetase gene family of Arabidopsis thaliana: Light-regulation and differential expression in leaves, roots, and seeds. Mol. Gen. Genet. 1991, 230:145-154
    Piatkowski D, Schneider K, Salamini F, Bartels D. Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerance plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 1990,94: 1682-1688
    Plassard C, Bonafos B, Touraine B. Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporanum, on growth and N utilization in Pinus pinaster. Plant Cell Environ. 2000, 23: 1195-1205
    Pomeroy MK, Siminovitch D, Wightman F. Seasonal biochemical changes in the living bark and needles of red pine (Pinus resinosa) in relation to adaption to freezing. Can. J. Bot 1970,48:953-967
    
    
    Pomeroy MK, Siminovitch D. Seasonal cytological changes in secondary phloem parenchyma cells in Robinia pseudoacacia in relation to cold hardiness. Can. J. Bot. 1971, 49: 787-795
    Rabe E, Lovatt CJ. De novo arginine biosynthesis in leaves of phosphorus-deficient Citrus and Poncirus species. Plant Physiol. 1984, 76: 747-752
    Rabe E, Lovatt CJ. Increased arginine biosynthesis during phosphorus deficiency: a response to the increased ammonia content of leaves. Plant Physiol. 1986a, 81: 774-779
    Rabe E, Lovatt CJ. Relative phosphorus dependency of Citrus rootstocks is reflected in leaf nitrogen metabolism. J. Am. Soc. Hort. Sci. 1986b, 111: 922-926
    Rabe E. Stress physiology: The functional significance of the accumulation of nitrogen-containing compounds. J. Hort. Sci. 1990, 65: 231-243
    Radin JW, Sell CR, Jordan WR. Physiological significance of the in vivo assay for nitrate reductase in cotton seedlings. Crop Sci. 1975,15: 710-713
    Reed AJ, Below FE, Hageman RH. Grain protein accumulation and the relationship between leaf nitrate reductase and protease activities during grain development in maize (Zea mays L.). Plant Physiol. 1980, 66: 164-170
    Riding RT, Little CHA. Anatomy and histochemistry of Abies balsamea cambial zone cells during the onset and breaking of dormancy. Can. J. Bot. 1984, 62: 2570-2579
    Roberts LS, Toivonen P, McInnis SM. Discrete proteins associated with overwintering of interior spruce and douglas-fir seedlings. Can. J. Bot. 1991, 69: 437-441
    Rossato L, Laine P, Ourry A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J. Exp. Bot. 2001, 52: 1655-1663
    Rowland FJ. Nitrogen uptake, assimilation and transport in barley in the presence of atmospheric nitrogen dioxide. Plant and Soil, 1986, 91: 353-356
    Ruamrungsri S, Ohtake N, Kuni S, Suwanthade C, Apavatjrut P, Ohyama T. Changes in nitrogenous compounds, carbohydrates and abscisic acid in Curuma alismatifolia Gagnep. during dormancy. J. Hort. Sci. Biotech. 2001, 76: 48-51
    Sagisaka S. Effect of low temperature on amino acid metabolism in wintering poplar. Plant Physiol. 1974,53:319-322
    Saigo RH, Peterson DM, Holy J. Development of protein bodies in oat starchy endosperm. Can. J. Bot. 1983,61: 1206-1215
    Sakakibara H, Matanabe M, Hase T, Sugiyama T. Molecular cloning and characterization of complementary DNA encoding for ferredoxin dependent glutamate synthase in maize leaf. J. Biol. Chem. 1991, 266: 2028-2035
    Sakakibara H, Kawabata S, Takahashi H, Hase T, Sugiyama T. Molecular cloning of the family of
    
    glutamine synthetase genes from maize: expression of genes for glutamine synthetase and ferredoxin-dependent glutamate synthase in photosynthetic and non-photosynthetic tissues. Plant Cell Physiol. 1992a, 33: 49-58
    Sakakibara H, Kawabata S, Hase T, Sugiyama T. Differential effects of nitrate and light on the expression of glutamine synthetase and ferredoxin-dependent glutamate synthase in maize. Plant Cell Physiol. 1992b,33: 1193-1198
    Sauter JJ, Kloth S. Changes in carbohydrates and ultrastructure in xylem ray cells of Populus in response to chilling. Protoplasma, 1987,137: 45-55
    Sauter JJ, Wellenkamp S. Protein storing vacuoles in ray cells of willow wood(Salix caprea L.) IAWA Bull. 1988, 9: 59-65
    Sautre JJ, van Cleve B, Apel K Protein bodies in ray cells of Populus x canadensis Moench 'robusta' .Planta, 1988,173: 31-34
    Sauter JJ,van Cleve B. Immunochemical localization of a willow storage protein with a poplar storage protein antibody. Protoplasma, 1989,149: 175-177
    Sauter JJ, van Cleve B. Biochemical, immunochemical and ultrastructural studies of protein storage in poplar (Populus x canadensis 'robusta' ) wood.Planta, 1990,183: 92-100
    Sauter JJ, van Cleve B. Seasonal variation of amino acids in the xylem sap of "Populus x canadensis" and its relation to protein body mobilozation. Trees, 1992, 7: 26-32
    Schenk MK. Regulation of nitrogen uptake of the whole plant level. Plant and Soil, 181: 131-137
    Schmidt S, Stewart GR. Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia. Tree Physiol. 1998,18: 403-410
    Sennerby-Forsse L. Seasonal variation in the ultrastructure of the cambium in young stems of willow (Salix viminalis) in relation to phenology. Physiol. Plant. 1986, 67: 529-537
    Sharon N, Lis H. Lectins as cell recognition molecules. Science, 1989,246: 227-234
    Shibuya S, Tazaki K, Song Z, Tarr GE, Goldstein IJ, Peumans WJ. A comparative study of bark lectins from the elderberry (Sambucus) species. J. Biochem. 1989,106: 1098-1103
    Shim KK, Titus JS. Accumulation and mobilization of storage proteins in gingko shoot bark. J. Kor. Soc. Hortic. Sci. 1985, 26: 350-360
    Shumway LK, Rancour JM, Ryan CA. Vacuolar protein bodies in tomato leaf cells and their relationship to storage of chymotrypsin inhibitor I protein. Planta, 1970, 93: 1-14
    Shumway LK, Cheng V, Ryan CA. Vacuolar protein in apical and flower-petal cells. Planta, 1972, 106: 279-290
    Siminovitch D, Briggs DR. The chemistry of the living bark of the black locust tree in relation to frost hardiness. I. Seasonal changes in protein content. Archives of Biochemistry, 1949,23: 8-17
    Simpson RJ, Lamers H, Dalling MJ. Translocation of nitrogen in a vegetative wheat plant (Triticum
    
    aestivum). Physiol. Plant. 1982, 56: 11-17
    Simpson RJ, Lambers H, Bailing MJ. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). IV. Development of a quantitative modes of the translocation of nitrogen to the grain. Plant Physiol. 1983,71: 1-14
    Smirnoff N, Todd P, Stewart GR. The occurrence of nitrate reduction in the leaves of woody plants. Ann. Hot. 1984, 54: 363-374
    Smirnoff N, Stewart GR. Nitrate assimilation and translocation by higher plants: Comparative physiology and ecological consequences. Physiol. Plant. 1985, 64: 133-140
    Spencer PW, Titus JS. Biochemical and enzymatic changes in apple leaf tissue during autumnal senescence. Plant Physiol. 1972,49: 746-750
    Srivastava LM. Anatony, chemistry, and physiology of bark. In: International Review of Forestry Research, ed. Romberger JA & Mikola P. New York, London: Acad. Press, 1964, Vol. I:203-277
    Srivastava HS, Oaks A, Bakyta IL. The effect of nitrate on early seeding growth of Zea mays. Can. J. Bot. 1976, 54: 923-929
    Staswick PE. Developmental regulation and the influence of plant sinks on vegetative storage protein gene expression on soybean leaves. Plant Physiol. 1989,89: 309-315
    Staswick PE. Novel regulation of vegetative storage protein genes. Plant Cell, 1990,2:1-6
    Staswick PE. Storage proteins of vegetative plant tissues. Annu. Rev. Plant Physiol. Plant Mol. Biol.1994, 45: 303-322
    Staswick P. The occurrence and gene expression of vegetative storage proteins and a Rubisco complex protein in several perennial soybean species. J. Exp. Bot. 1997,48: 2031-2036
    Stepien V, Martin F. Purification, characterization and localization of the bark storage proteins of poplar. Plant Physiol. Biochem. 1992,30:399-407
    Stepien V, Sauter JJ, Martin F. Vegetative storage proteins in woody plants. Plant Physiol. Biochem. 1994,32: 185-192
    Steward FC, Thompson JF. The nitrogenous constituents of plants with special reference to chromatographic methods. Annu. Rev. Plant Physiol. 1950,1: 233-264
    Streeter JG. Allantoin and allantoic acid in tissues and stem exusate from field grown soybean plants. Plant Physiol. 1979, 63: 478-480
    Stoerner H, Seith B, Hanemann U, George E, Rennenberh H. Nitrogen destribution in young Nouway spruce (Picea abies) trees as affected by pedospheric nitrogen supply. Physiol. Plant. 1997,101: 764-769
    Suzuki T, Kohno K. Changes in the nitrogen compounds of xylem sap of mulberry (Mortis alba L.) during regrowth after pruning. Ann. Bot. 1983,51: 441-448
    Suzuki T. Total nitrogen and free amino acids in Morns alba stem from autumn through spring.
    
    Physiol. Plant. 1984, 60: 473-478
    Tan KT. Seasonal changes in the concentration of nutrients in mature Hevea. Proceedings of the International Rubber Conference, Kuala Lumpur, Malaysia, 1975, pp. 73-83
    Taylor BK. The nitrogen nutrition of the peach tree. I . Seasonal changes in nitrogenous constituents in mature trees. Aust. J. Biol. Sci. 1967,20: 379-87
    Taylor BK, May LH. The nitrigen nutrition of the peach tree. II. Storage and mobilization of nitrogen in young trees. AustJ. Biol. Sci. 1967, 20: 389-411
    Thibodeau PS, Jaworski EG. Patterns of nitrogen utilization in the soybean. Planta, 1975,127: 133-147
    Thomas W. The seat of formation of amino acid metabolism in Pyrus malus L. Science, 1927,66:115-116
    Tian W-M, Han Y-Q, Wu J-L, Hao B-Z. Characteristics of protein-storing cells associated with a 67 kDa protein in Hevea brasiliensis. Trees, 1998,12: 153-159
    Tingey SV, Tsai F-Y, Edwards JW, Walker EL, Coruzzi GM. Chloroplast and cytosolic glutamine synthetase are encoded by homologous nuclear genes which are differentially expressed in vivo. J. Biol. Chem. 1988, 263: 9651-9657
    Titus JS, Kang S-M. Nitrogen metabolism, tranlocation, and recycling in apple trees. Hort. Rev. 1982, 4: 204-246
    Touraine B, Grignon N, Grignon C. Charge balance in NO3-fed soybean. Estimation of K+ and carboxylate recirculation. Plant Physiol. 1988, 88: 605-612
    Touraine B, Muller B, Grignon C. Effect of phloem-translocated malate on NO3-uptake by roots if intact soybean plants. Plant Physiol. 1992,93: 1118-1123
    Towbin, H, Staehelin, T, Gordon, J. 1979. Elecrophoretic transder of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76:4350-4354
    Tranbarger TJ, Franceschi VR, Hildebrand DF, Grimes HD. The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles. Plant Cell, 1991,3:973-987
    Tromp J. Storage and mobilization of nitrogeneous compounds in apple trees with special reference to arginine. In: Physiology of Tree Crops, ed. Lukwill LC & Cutting CV, London and New York: Acad. Press, 1970, pp. 143-158
    Tromp J, Ovaa JC. Spring mobilization of storage nitrogen in isolated shoot sections of apple. Physiol. Plant. 1971, 25: 16-22
    Tromp J, Ovaa JC. Spring mobilization of storage nitrogen in apple bark. Physiol. Plant 1973,29: 1-5
    Tsai F-Y, Coruzzi GM. Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum. EMBO J. 1990, 9: 323-332
    Tsay Y-F, Schroeder JI, Feldmann KA, Crawford MM. The herbicide sensitivety gene CHL1 of Arabidopsis encodes a nitrate-induciable nitrate transporter. Cell, 1993, 72: 705-713
    Van Bel AJE. Xylem-phloem exchange via the rays: the undervalued route of transport. J. Exp. Bot.
    
    1990,41:631-644
    Van Cleve B, Clausen S, Sauter JJ. Immunochemical localization of a storage protein in poplar wood. J. Plant Physiol. 1989,133: 371-374
    Van Cleve B, Apel K. Induction by nitrogen and low temperature of storage-protein synthesis in poplar trees exposed to long days. Planta, 1993,189: 157-160
    Van den Driessche R. Nutrient storage, retranslocation and relationship of stress to nutrition. In: Nutrition of Plantation Forests, ed. Bowen GD & Nambiar EKS. London: Acad. Press, 1984, pp. 181-208
    Vessey JK, Layzell DB. Regulation of assimilate partitioning in soybean. Initial effects following change in nitrate supply. Plant Physiol. 1987: 83: 341-348
    Vessey JK. Raper CD, Henry LT. Cylic variations in nitrogen uptake rate in soybean plants. Uptake during reproductive growth. J. Exp. Bot. 1990,41: 1579-1584
    Vezina L-P, Langlois JR. Tissue and cellular distribution of glutamine synthesis in roots of pea (Pisum sativum) seedlings. Plant Physiol. 1989, 90: 1129-1133
    Vogelmann TC, Dickson RE, Larson PR. Comparative distribution and metabolism of xylem-borne amino compounds and sucrose in shoot of PopuIus deltoides. Plant Physiol. 1985, 77: 418-428
    Volenec JJ, Ourry A, Joern BC. A role for nitrogen reserves in forage regrowth and stress tolerance. Physiol. Plant. 1996, 97: 185-193
    Wallace W, Pate JS. Nitrate assimilation in higher plants with special reference to the cocklebur (Xanthium pennsylvanicum Wallr.). Ann. Bot. 1967,31: 213-228
    Waters SP, Peoples MB, Simpson RJ, Dalling MJ. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). I .Peptide hydrolade activity and protein breakdown in the flag leaf, glumes and stem. Planta, 1980,148: 442-448
    Weinbaum SA, Merwin ML, Muraoka TT. Seasonal variation in nitrate uptake efficiency and distriution of absord nitrogen in nin-bearing prune trees. J. Am. Soc. Hout. Sci. 1978,103:516-519
    Weinbaum SA, Klein I, Broadbent FE, Micke WC, Muraoka TT. Effects of time of nitrogen application and soil texture on the availability of isotopically labeled fertilizer nitrogen to reproductive and vegetative tissue of mature almond trees. J. Am. Soc. Hort. Sci. 1984,109:339-343
    Weinbaum SA, Muraoka TT. Nitrogen redistribution from almond foliage and pericarp to the almond embryo. J Am. Soc. Hort. Sci. 1986, 111: 224-228
    Weinbaum SA, Klein I, Muraoka TT. Use of nitrogen isotopes and a light-textured soil to assess annual contribution of nitrogen from soil and storage pools in mature almond trees. J. Am. Soc. Hort. Sci. 1987,112: 526-529
    Wetzel S, Demmers C, Greenwood JS. Spherical organelles, analogous to seed protein bodies, fluctuate seasonally in parenchymatous cells of hardwoods. Can. J. Bot. 1989a, 67: 3439-3445
    Wetzel S, Demmers C, Greenwood JS. Seasonally Fluctuating bark protein are a potential form of nitrogen storage in three temperate hardwoods. Planta, 1989b, 178: 275-281
    Wetzel S, Greenwood JS. Proteins as a potential storage compound in bark and leaves of several
    
    softwoods. Trees, 1989,3:149-153
    Wetzel S, Greenwood JS. The 32-kilodalton vegetative storage protein of Salix microstachya Turz. Characterization and immuno-localization. Plant Physiol. 1991, 97: 771-777
    Wetzel S, Demmers C, Greenwood JS. Protein-storing vacuoles in inner bark and leaves of softwoods. Trees, 1991,5: 196-202
    Williams LE. Transporters responsible for the uptake and partitioning of nitrogenous. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52: 659-688
    Wisniewski M, Close TJ, Artlip T, Arora R. Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiol. Plant. 1996, 96: 496-505
    Withers LA, King PJ. Proline: a novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L.. Plant Physiol. 1979, 64: 675-678
    Wu J-L, Hao B-Z. Infrastructure and differentiation of protein-storing cells in secondary phloem of Hevea brasiliensis stem. Ann. Bot. 1987, 60: 505-515
    Wu J-L, Hao B-Z. Vacuole protein in secondary phloem parenchyma cells of the Meliaceae species. IAWA Bull. 1991,12:51-56
    Yeang HY. Characteriztion of rubber particles destabiliztion by B-serum and bark sap of Hevea brasiliensis. J. Nat. Rubb. Res. 1989, 4: 47-55
    Yemm EW, Folkes BF. The regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochem. J. 1954, 57: 495-508
    Yip, E, Gomez, JB. Characterization of cell sap of Hevea and its influence of cessation of latex flow. J. Rubb Res. Inst. Malaysia, 1984,32,1-6
    Youssefi F, Brown PH, Weinbaum SA. Relationship between tree nitrogen status, xylem and phloem sap amino acid concentrations, and apparent soil nitrogen uptake by almond trees (Prunus dulcis). J. Hort. Sci. Biotech. 2000,75: 62-68
    Zehnacker C, Becker TW, Suauki A, Carrayol E, Caboche M, Hirel B. Purification and properties of tobacco ferredoxin-dependent glutamate synthase, and isolation of corresponding cDNA clones. Planta, 1992,187: 266-274
    Zhu BL, Coleman GD. The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germination seeds of transgenic tobaccon. Plant Mol. Biol. 2001a, 46: 383-394
    Zhu BL, Coleman GD. Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphoralation influence the activity of the poplar hybrid storage protein gene promoter (bspA). Plant Physiol. 2000b, 126: 342-351
    Ziegler H. Storage, mobilization and distribution of reserve material in trees. In: The Formation of Wood in Forest Trees(edited by M.H. Zimmermann), Academic Press, New York, London, 1964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700