PKC调控玉米大斑病菌致病性的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米大斑病是由玉米大斑病菌(Setosphaeria turcica)引起的一种真菌病害。病菌的致病过程受到cAMP、MAPK和Ca~(~(2+))信号途径的调控。蛋白激酶C(protein kinase C,PKC)是一种依赖磷脂和钙的蛋白激酶,是Ca~(~(2+))信号途径中的成员。本实验室成功克隆了玉米大斑病菌PKC基因,利用PKC特异性抑制剂研究发现,抑制剂(浓度10μmol/L)处理的分生孢子在玉米叶片表面虽也能正常萌发并形成附着胞,但不能直接穿透叶片表皮细胞,叶片上未出现病害症状。在此基础上,本研究构建了PKC基因的反义表达载体,利用PEG介导转化玉米大斑病菌原生质体,获得4个PKC基因反义表达突变体,对其培养性状、分生孢子萌发、附着胞形成、致病力等进行了研究,以明确蛋白激酶C在玉米大斑病菌致病过程中的作用。为全面深入了解玉米大斑病菌信号转导途径在调控病菌致病过程中的作用奠定基础。
     1.不同培养条件下PKC基因表达规律研究表明,培养基以蔗糖为碳源或以NaNO_3为氮源时利于玉米大斑病菌PKC基因表达。Mg~(~(2+))利于病菌PKC基因表达,但Mn~(2+)、Cu~(2+)、Zn~(2+)抑制病菌PKC基因表达。山梨醇造成的渗透胁迫抑制病菌PKC基因的表达,且抑制程度与培养基中山梨醇浓度呈正相关。NaCl造成渗透胁迫时,低浓度NaC(l0.3~0.5 mol/L)抑制了病菌PKC基因的表达,高浓度NaC(l0.7~0.9 mol/L)对病菌PKC基因表达没有影响。
     2.构建了PKC基因反义表达载体,利用PEG介导转化玉米大斑病菌原生质体,通过潮霉素B抗性筛选及PCR、半定量RT-PCR及Northern杂交鉴定获得了4个PKC基因反义表达突变体。研究发现,正常培养条件下,4个突变体的菌落生长速度与野生型无差异;当培养基中含有反义表达诱导物奎宁酸时,4个突变体的菌落生长速度明显小于野生型。经15 mmol/L奎宁酸溶液处理后,4个突变体的孢子萌发率仅为3%~5%,野生型孢子萌发率达90%;将萌发后的孢子用奎宁酸溶液处理后,野生型菌株可以形成附着胞,并穿透玻璃纸,突变体附着胞形成率显著下降(形成率3%~5%),且其附着胞不能穿透玻璃纸。4个突变体产生的HT-粗毒素对感病玉米叶片的致病能力没有明显改变。突变体接种经针刺伤表皮的感病寄主叶片,发现病斑面积明显比野生型小;直接接种感病寄主叶片则不致病。
     玉米大斑病菌PKC基因的表达规律及反义表达突变体的获得明确了基因的功能,丰富了植物病原真菌的生物信息学资源,为深入了解植物病原真菌信号转导途径奠定了基础。
Northern Corn Leaf Blight, caused by Setosphaeria turcica, is one of the important fungous diseases. The pathogenicity of S. turcica to maize is involved in cAMP、MAPK and Ca~(~(2+))signal pathway. Protein kinase C (PKC), a serine/threonine kinases, is depended on phospholip and Ca~(~(2+)). The protein kinase C gene of S. turcica, named as PKC, was cloned and analyzed in our Lab. After inoculating maize seedlings with the spore suspension containing PKC-specific inhibitor (chelerythrine), the spore could germinate and form normal appressorium on the leaf surface but invade maize seedlings from the stoma instead of penetrating directly leaf epidermis. There was no lesion appeared on the leaves three weeks after inoculation. The anti-sense vector was transformed into protoplasts of S. turcica by PEG-mediated transformation method and four PKC gene anti-sense mutants were obtained. Cultural characteristic, conidial germination, appressorium formation and pathogenicity of the mutants were studied in this paper to analyze function of protein kinase C. The results will be beneficial to understand how pathogenicity of S. turcica to maize is involved in cAMP、MAPK and Ca~(~(2+)) signal pathway.
     1. The expression of PKC in S. turcica was increased on PDA media containing saccharose or NaNO_3 or Mg~(~(2+)) ,the expression of PKC was decreased on PDA media containing Mn~(2+)or Cu~(2+)or Zn~(2+).The expression level of PKC was lower on PDA media containing sorbitol and the more concentration sorbitol, the less expression level. The expression of PKC was increased on PDA media containing NaCl(0.3~0.5 mol/L), the expression of PKC was not changed on PDA media containing NaCl(0.7~0.9 mol/L).
     2. We obtained four anti-sense mutants of S.turcica PKC gene which had been identified by hygromycin B resistance, PCR, semi-quantitative RT-PCR and Northern blot analysis. The growth rate of the mutants cultured on PDA media was same with wide type (WT), but mutants were much lower than WT on PDA media containing quinic acid (15 mmol/L). When conidia of WT and mutants were inoculated in 15 mmol/L quinic acid solution, the conidial germination ratio of WT was 90%, while that of the mutants were 3%~5%. In contrast, culturing the germinated conidial in 15 mmol/L quinic acid solution, appressorium formed in WT but not in mutant strains. Penetration experiments showed that appressorium coming from WT could penetrate the cellophane but could not from mutants. Virulence of HT-toxin of mutants on maize leavies were the same with that of WT.
     While the inoculation of mutant strains did not cause visible lesions on the intact maize leaves, the inoculation of mutant strains caused visible lesions on the scratched maize leaves, but the lesion area was significantly reduced compared with WT.
引文
[1]周永力, Tanaka C, Matsus H S,等.玉米大斑病菌(Exserohilum turcicum)原生质体的分离及转化[J].生物工程学报, 2003, 19(3): 364~367.
    [2] Degefu Y. Cloning and characterisation of xylanase genes from phytopathogenic fungi with aspecial reference to Helminthosporium turcicum, the cause of northern leaf blight of maize[D]. Finland: University of Helsinki, 2003.
    [3] Deising H B, Wnener S. The role of fungal appressoria in plant infection[J]. Microbes and Infection, 2000, 2(13): 1631~1641.
    [4]董金皋.农业植物病理学[M].北京:中国农业出版社, 2001, 5.
    [5]李洪连,徐敬友.农业植物病理学实验实习指导[M].北京:中国农业出版社, 2001, 12.
    [6]曹志艳,杨胜勇,董金皋.植物病原真菌黑色素与致病性关系的研究进展[J].微生物学通报, 2006, 33(1). 154~158.
    [7] Klaus B, Lengeler R C, Davidson C D, et al. Signal transduction cascades regulating fungal development and virulence[J]. Microbiology Molecular Biology Reviews, 2000, 64(4): 746~785.
    [8] Segmuller N, Ellendorf U, Tudzynski B, et al. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea [J]. Eukaryotic Cell, 2007, 2: 211~221.
    [9] Moriwaki A, Kubo E, Arase S, et al. Disruption of SRM1, a mitogen–activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae [J]. FEMS Microbiology Letters, 2006, 257: 253~261.
    [10] Eliahu N, Igbaria A, Rose M S, et al. Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinase, Chk1 and Mps1, and transcription factor Cmr1 [J]. Eukaryotic Cell, 2007, 6: 421~429.
    [11] Tsuji G, Fujii S, Tsuge S, et al. The Colletotrichum lagenariu Ste12-like gene CST1 is essential for appressorium penetration[J]. Molecular Plant-Microbe Interactions, 2003, 16: 315~325.
    [12] Brachmann A, Schirawski J, Müller P, et al. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis[J]. EMBO Journal, 2003, 22: 2199~2210.
    [13] Florian K, Philip M, Marc L, et al. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis[J]. EMBO Journal, 2003, 22: 5817~5826.
    [14] Rahim M, Gerth J K. Protein kinase A subunit of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification filamentation, melanization and osmosensing [J]. Molecular Plant Pathology, 2006, 6: 565~577.
    [15] Choi W, Dean R A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development [J]. Plant Cell, 1997, 9: 1973~1983.
    [16]范永山.玉米大斑病菌MAPK基因的克隆和功能分析[D].保定:河北农业大学博士学位论文, 2004.
    [17]谷守芹.调控玉米大斑病菌生长发育和致病性的STK基因的克隆与功能分析[D].保定:河北农业大学博士学位论文, 2007.
    [18] Hyde G. Calcium imaging: a primer for mycologists[J]. Fungal Genetics and Biology, 1998, 24: 14~23.
    [19]王立安. Ca~(~(2+))信号途径参与稻瘟病菌生长及致病性的调控[D].南京:南京农业大学博士学位论文, 2004.
    [20]李俊霞,陈颕,王立安.钙信号途径参与小斑病菌致病过程的调控[J].微生物通报, 2005, 4: 1~4.
    [21]王立安,王源超,李昌文,等. Ca~(~(2+))信号途径参与稻瘟病菌分生孢子萌发及附着胞形成的调控[J].菌物系统, 2003, 22(3): 457~465.
    [22] Kwang H U, Soonok K, Yong H L. Calcium/calmodulin-dependent signaling for prepenetration development in Colletotrichum gloeosporioides[J]. Phytopathology, 2003, 93: 82~87.
    [23] Vitor W, Martin B D. Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii[J]. Applied and Environmental Microbiology, 1996, 62(1): 74~79.
    [24] Lee M H, Bostock R M. Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola [J]. Phytopathology, 2006, 96: 1072~1080.
    [25] Ahn I P, Suh S C. Calcium restores prepenetration morphogenesis abolished by methylglyoxal-bis- guanyl hydrazone in Cochliobolus miyabeanus infecting rice [J]. Phytopathology, 2007, 97: 331~337.
    [26] Vitor W, Shlomo O, Martin B D. Antisense expression of the calmodulin gene from Colletotrichum trifolii impairs prepenetration development [J]. FEMS Microbiology Letters, 2000, 191: 213~ 219.
    [27] Jayashree T, Praveen Rao J, Subramanyam C. Regulation of aflatoxin production by Ca~(~(2+))/ calmodulin-dependent protein phosphorylation and dephosphorylation [J]. FEMS Microbiology Letters, 2000, 183: 215~219.
    [28] Chung K R. Involvement of calcium/calmodulin signaling in Cercosporin toxin biosynthesis by Cercospora nicotianae [J]. Applied and Environmental Microbiology, 2003, 69(2): 1187~1196.
    [29]李德堡,金庆超,董海涛.稻瘟病菌附着胞发育相关信号传递研究进展[J].浙江大学学报(农业与生命科学版), 2006, 32(3): 257~264.
    [30]余刚,罗勇,彭国光. PKC同工酶研究进展.重庆医科大学学报[J]. 2001, 26(1): 103~109.
    [31] Argetsingr L S, Career S C. Mechanism of signaling by growth hormone receptor[J]. Physiological Reviews, 1996, 76(4): 1089~1108.
    [32]刘世英,将宇扬,曹健,等.蛋白激酶C的抑制剂[J].科学通报, 2005, 50(5): 405~415.
    [33] Oeser B. PKC1, encoding a protein kinase C, and FAT1, encoding a fatty acid transporter protein, are neighbors in Cochliobolus heterostrophus[J]. FEMS Microbiology Letters, 1998, 165: 273~280.
    [34] Dickman M B, Ha Y S, Yang Z, et al. A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formation[J]. Molecular Plant-Microbe Interactions, 2003, 16(5): 411~421.
    [35]师秀艳,付伟,赵咏梅,等.小鼠受精卵早期发育过程中PKC对cdc2和cdc25C活性的影响[J].植物生物化学与分子生物学报, 2002, 18(6): 746~749.
    [36] Munro C A, Selvaggini S, Bruijn I D. The PKC, HOG and Ca~(~(2+)) signalling pathways co-ordinately regulate chitin synthesis in Candida albicans[J]. Molecular Microbiology, 2007, 63(5): 1399~1413.
    [37] Paravicini G, Mendoza A, Antonsson B. The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism[J]. Yeast, 1996, 12: 741~756.
    [38] Franchi L, Fulci V, Macino G. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1[J]. Molecular Microbiology, 2005, 56(2): 334~345.
    [39] Loros J. A kinase for light and time[J]. Molecular Microbiology, 2005, 56(2): 299~302.
    [40] Mouchel N A P, Jenkins J R. The identification of a functional interaction between PKC and topoisomerase II [J]. FEBS letters, 2006, 580(1): 51~57.
    [41]刘丽华,限制性内切酶介导(REMI)玉米大斑病菌的遗传转化及其转化子表型分析[D].保定:河北农业大学, 2007.
    [42]谷守芹,调控玉米大斑病菌生长发育和致病性的STK基因的克隆与功能分析[J].保定:河北农业大学, 2007.
    [43]安鑫龙,董金皋,韩建民.玉米大斑病菌的RAPD分析I.应用CTAB法提取玉米大斑病菌DNA[J].河北农业大学学报, 2001, 24(1): 38~41.
    [44]张利辉,刘云惠,董金皋,等.玉米大斑病菌特异性毒素组分的分离与纯化[J].植物病理学报, 2003, 33(1): 67~71.
    [45]杨帆,刘瑞瑞,林俊芳,等.草菇gpd启动子的克隆及序列分析[J].热带作物学报, 2004, 25(4): 72~77.
    [46] Lev S, Hadar R, Amedeo P, et al. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals[J]. Eukaryotic Cell, 2005, 4(2): 443~454.
    [47] Basse C W, Farfsing J W. Promoters and their regulation in Ustilago maydis and other phytopathogenic fungi[J]. FEMS Microbiology Letters, 2006, 254: 208~216.
    [48]黄建生,王昌才,任大明.爱滋病的反义抑制治疗[J].生命的化学, 1995, 15(2): 45~48.
    [49] Cheng A M, Byrom M W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic Acids Research, 2005, 33(4): 1290~1297.
    [50]李明亮,韩一凡,李玲,等. ACC氧化酶cDNA克隆及其对杨树体内乙烯产生的反义抑制[J].林业科学研究[J]. 1999, 12(3): 223~229.
    [51]刘传银,田颖川,沈全光,等.番茄ACC合成酶cDNA克隆及其对果实成熟的反义抑制[J].生物工程学报, 1998, 14(2): 139~146.
    [52]鞠戎,田颖川,沈全光,等.番茄多聚半乳糖醛酸酶cDNA的克隆及其对番茄中PG表达的反义抑制[J].生物工程学报, 1994, 10(2): 96~102.
    [53] Oda A, Fujiwara S, Kamada H, et al. Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression[J]. FEBS Letters, 2004, 557(1-3): 259~264.
    [54] Michaela Z, Anna P C, Oliver K, et al. Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants[J]. Plant Physiology, 2001, 127 (3): 792~802.
    [55] Wang T H, Zhong Y H, Huang W, et al. Antisense inhibition of xylitol dehydrogenase gene, xdh1from Trichoderma reesei[J]. Letters in Applied Microbiology, 2005, 40(6): 424~429.
    [56] Noriyuki K, Shoko Y, Kunio O, et al. Sequence analysis, overexpression, and antisense inhibition of aβ-Xylosidase gene, xylA, from Aspergillus oryzae KBN616[J]. Applied and Environmental Microbiology, 1999, 65(1): 20~24.
    [57] Mendgen K, Hahn M, Deising H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi [J]. Annual Reviews of Phytopathology, 1996, 34: 367~386.
    [58] Lengeler K B, Davidson R C, D’Souza C, et al. Signal transduction cascades regulating fungal development and virulence [J]. Microbiology and Molecular Biology Reviews, 2000, 64(4): 746~785.
    [59]姜俏,林琳,汪天虹.丝状真菌细胞凋亡研究进展[J].微生物学报, 2008, 48(4): 551~555.
    [60] Talbot N J, Dean R A, Ebbole D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434: 980~986.
    [61]王葵娣,王文华,郑服从.炭疽菌附着胞的研究进展[J].植物保护学报, 2007, 23(1): 256~270.
    [62] Yang Z, Dickman M B. Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic[J]. Molecular Plant-Microbe Interactions, 1999, 12(5): 430~439.
    [63] Yang Z H, Dickman M B. Molecular cloning and characterization of Ct-PKAR, a gene encoding the regulatory subunit of cAMP-dependent protein kinase in Colletotrichum trifolii[J]. Archives of Microbiology, 1999, 171(4): 249~256.
    [64] Yamauchi J, Takayanagi N, Komeda K, et al. cAMP-PKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium[J]. Molecular Plant-Microbe Interactions, 2004, 17(12): 1355~1365.
    [65] Takano Y, Kikuchi T, Kubo Y, et al. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis[J]. Molecular Plant-Microbe Interactions, 2000, 13(4): 374~383.
    [66] Kojima K, Kikuchi T, Takano Y, et al. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium[J]. Molecular Plant-Microbe Interactions, 2002, 15(12): 1268~1276.
    [67] Buhr T L, Oved S, Truesdell G M, et al. A kinase-encoding gene from Colletotrichum trifolii complements a colonial growth mutant of Neurospora crassa[J]. Molecular Genetics and Genomics, 1996, 251(5): 565~572.
    [68] Kim Y K, Li D, Kolattukudy P E. Induction of Ca~(~(2+))-calmodulin signaling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria[J]. Journal of Bacteriology, 1998, 180(19): 5144~5150.
    [69] Quoc B N, Naoki K, Seiji K, et al. Systematic functional analysis of calcium-signalling proteinsin the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system[J]. Molecular Microbiology 2008, 68(6): 1348~1365.
    [70] Veneault F C, Barooah M, Egan M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus[J]. Science, 2006, 312: 580~583.
    [71] Liu XH, Lu JP, Zhang L, Dong B, et al. Involvement of a Magnaporthe grisea Serine/Threonine kinase gene, Mg ATG1, in appressorium turgor and pathogenesis[J]. Eukaryotic Cell, 2007, 6: 997~1005.
    [72] Dufresne M, Bailey J A, Dron M, et al. clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean[J]. Molecular Plant-Microbe Interactions, 1998, 11: 99~108.
    [73] Revital R, Haim S, Emma L, et al. The Aspergillus nidulans pkcA gene is involved in polarized growth, morphogenesis and maintenance of cell wall integrity[J]. Current Genetics, 2007, 51: 321~329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700