多进制LDPC码及其与MIMO级联技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带无线通信系统的发展面临频谱资源有限、传输环境复杂等挑战,而MIMO和高性能信道编码等物理层关键技术可以有效应对宽带无线通信系统的传输速率与传输质量需求,因此该方面的研究工作十分必要和迫切。MIMO技术在不增加发射功率和信道带宽的前提下,可以显著提高无线通信系统的传输增益和传输速率,具有广泛的应用前景;而多进制LDPC码的抗随机错误能力和抗突发错误能力均优于二进制LDPC码,为当前信道编码领域性能最优的一种编码方案,具有非常高的理论研究意义和工程应用价值。
     本文以MIMO技术和多进制LDPC码为对象,研究了多进制LDPC码的构造算法,基于多进制LDPC码译码反馈的MIMO迭代检测技术以及MIMO与多进制LDPC码的级联系统设计方法。
     首先,介绍了MIMO技术和多进制LDPC码的基本原理。针对MIMO技术,介绍了其信道模型,分析了其信道容量,并详细阐述了MIMO的分集技术与复用技术。针对多进制LDPC码,介绍了其基本概念、矩阵描述与图模型描述,给出了具有快速编码特性的校验矩阵结构和相应的快速编码算法,并介绍了三种基本的译码算法。
     其次,研究了准循环(QC)多进制LDPC码的构造流程,重点研究了多进制LDPC码的最优度分布选取、QC多进制LDPC码的母矩阵扩展以及扩展后的二进制矩阵中多进制元素的替换。为了获得多进制LDPC码的最优度分布,本文提出了基于统计的多进制LDPC码的密度进化算法,用于指导SeIRA QC多进制LDPC码的构造。在QC多进制LDPC码的母矩阵扩展时,综合考虑了环长与环的连通性对于译码性能的影响。为了进一步降低误码平层,研究了多进制元素的替换,在前人研究基础上推导得到新的替换准则,从而与环的形成条件相统一。从构造结果可以看出,本文提出的QC多进制LDPC构造方法具有良好的效果。
     接着,研究了基于多进制LDPC码译码反馈的MIMO软判决迭代检测技术,重点研究了两种低复杂度的软判决迭代检测算法,分别为MMSE和JGA软判决迭代检测算法。为了进一步提升系统性能,本文研究了基于LLR排序的连续干扰消除(SIC)机制和迭代干扰消除(IIC)机制,并将IIC机制应用到MMSE和JGA软判决迭代检测算法中,提出了基于IIC机制的MMSE和JGA软判决迭代检测算法。针对检测算法中矩阵求逆运算复杂度过高的情况,本文研究并提出了IIC-MMSE和IIC-JGA软判决迭代检测算法的简化算法,系统性能具有一定损失,但是检测器矩阵求逆运算复杂度大大降低。本文还将IIC-MMSE和IIC-JGA软判决迭代检测算法推广至MIMO多径信道,将码间干扰消除引入到检测器的干扰消除中。多径信道下的IIC-MMSE和IIC-JGA软判决迭代检测算法具有更高的检测复杂度,因此本文研究并提出了这两种算法的简化算法,在损失一定系统性能的前提下,检测器中矩阵求逆运算部分的计算复杂度大大降低。通过选取合适的简化参数,可以得到性能与复杂度折衷的检测算法简化方案,用于MIMO迭代检测系统中。
     最后,研究了MIMO与多进制LDPC码的级联系统设计方法,重点研究了基于多进制LDPC码元符号解调的MIMO检测算法、低检测复杂度的映射策略以及检测算法的简化算法。检测算法采用MAP准则,检测器可直接输出多进制LDPC码元符号软信息,用于多进制LDPC码的迭代译码。针对多进制LDPC码有限域阶数与系统映射阶数不匹配且同一码元符号映射到不同MIMO发送向量中的情形,本文提出了两条低检测复杂度、高检测性能的映射策略。针对该映射策略,本文提出了检测算法的简化方案,大大降低了检测算法复杂度,同时系统性能几乎没有损失。
The development of broadband wireless communication systems faces the challenges such as limited bandwidth and complicated transmission environments. MIMO technology, excellent channel coding schemes and other key technologies of the physical layer can meet the demands of the spectral efficiency and the transmitting reliability of broadband wireless communication systems. Therefore, it is necessary and urgent to do research in this field. MIMO technology greatly improves the transmitting gain and increases the data rate without extra cost of the transmitting power and bandwidth, and hence can be widely applied. Non-binary LDPC code, the best channel code currently, shows better anti random and burst error performance than the binary LDPC code, and thus is worth studying.
     The dissertation focuses on the research of MIMO technology and non-binary LDPC codes. The construction of non-binary LDPC codes, the iterative MIMO detectors based on non-binary LDPC codes and the concatenated system design of MIMO and non-binary LDPC code have been researched in the dissertation.
     Firstly, the fundamental of MIMO technology and non-binary LDPC codes is introduced. For MIMO technology, the channel model is introduced, the channel capacity is analyzed and the diversity and multiplexing techniques are elaborated. As to non-binary LDPC codes, the basic concepts and the fundamental representations via parity-check matrices and Tanner graphs are introduced. The fast encoding parity-check matrix structure and the corresponding encoding algorithm are presented. Three basic decoding algorithms are introduced, too.
     Then, the construction of Quasi-cyclic (QC) non-binary LDPC codes is studied, mainly on the searching of optimized degree distributions, the mother matrix extension of QC non-binary LDPC codes and the replacement of the non-binary elements in the extended binary matrix. In order to optimize the degree distributions, a statistical-based density evolution algorithm is proposed and then applied to guide the construction of SeIRA QC non-binary LDPC codes. The girth and circle connectivity are taken into account in the extension of the mother matrix. The replacement of the non-binary elements is also studied to further lower the error floor. Based on others' work, a new framework is derived, which brings the formation condition of the circles and the replacement of non-binary elements together. Simulation results show that the construction method proposed is effective.
     Next, iterative MIMO detectors based on non-binary LDPC codes are studied, mainly on two low-complexity iterative detection algorithms, the MMSE algorithm and the JGA algorithm. In order to improve the system performance, the successive interference cancellation (SIC) technique and the iterative interference cancellation (IIC) technique based on LLR are also studied. The IIC technique is applied to the MMSE detector and the JGA detector. The MMSE algorithm and the JGA algorithm based on the IIC technique are proposed. To avoid the high complexity of matrix inversion in both the algorithms, simplified algorithms of the IIC-MMSE algorithm and the IIC-JGA algorithm are investigated. The matrix inversion complexity of the detectors is greatly reduced, with an acceptable system performance degradation. Then, the IIC-MMSE detector and the IIC-JGA detector in the multipath channel are researched. Both the detectors have a higher detection complexity than the detectors in the single path channel and need to be simplified. Simplified algorithms are proposed in the dissertation with a much lower complexity and an acceptable system performance degradation. Proper parameters can be chosen to balance the system performance and the detection complexity.
     Finally, the concatenated system design of MIMO and non-binary LDPC code is studied, mainly on the non-binary symbol based MIMO detection algorithm, mapping strategies with low detection complexity and the simplified detection algorithm. The output of the MAP-based detector is non-binary symbol level, and can be directly used by the LDPC decoder. For the situation that the order of the Galois field and that of the modulation is not equal and one code symbol is mapped into different MIMO transmitting vectors, two low-complexity high-performance mapping strategies are proposed. The simplified detection algorithm for the mapping strategies is given, with a much lower complexity and almost no loss on system performance.
引文
[1]P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valenzuela, "V-BLAST:An architecture for realizing very high data rates over the rich-scattering wireless channel", in Proceeding of URSI International Symposium on Signals, Systems, and Electronics, pp.295-300,1998.
    [2]C. Berrou and A. Glavieux, "Near optimum error correcting coding and decoding:Turbo-codes", IEEE Transactions on Communications, vol.44, no.10, pp.1261-1271,1996.
    [3]V. Tarokh, N. Seshadri and A.R. Calderbank, "Space-time codes for high data rate wireless communication:Performance criterion and code construction", IEEE Transactions on Information Theory, vol.44, no.2, pp.744-765,1998.
    [4]S.M. Alamouti, "A simple transmit diversity technique for wireless communications", IEEE Journal on Selected Areas in Communications, vol.16, no.8, pp.1451-1458,1998.
    [5]V. Tarokh, H. Jafarkhani and A.R. Calderbank, "Space-time block codes from orthogonal designs", IEEE Transactions on Information Theory, vol.45, no.5, pp.1456-1467,1999.
    [6]G.J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas", Bell labs technical journal, vol.1, no.2, pp.41-59, 1996.
    [7]H. El Gamal and A.R. Hammons, "A new approach to layered space-time coding and signal processing", IEEE Transactions on Information Theory, vol.47, no.6, pp.2321-2334,2001.
    [8]G.J. Foschini, D. Chizhik, M.J. Gans, C. Papadias, and R.A. Valenzuela, "Analysis and performance of some basic space-time architectures", IEEE Journal on Selected Areas in Communications, vol.21, no.3, pp.303-320,2003.
    [9]U. Fincke and M. Pohst, "Improved methods for calculating vectors of short length in a lattice, including a complexity analysis", Mathematics of Computation, vol.44, no.170, pp.463-471,1985.
    [10]B. Hassibi and H. Vikalo, "On the sphere-decoding algorithm Ⅰ. Expected complexity", IEEE Transactions on Signal Processing, vol.53, no.8, pp.2806-2818,2005.
    [11]H. Yao and G.W. Wornell, "Lattice-reduction-aided detectors for MIMO communication systems", in Proceeding of IEEE Global Telecommunications Conference(GLOBECOM'02), pp.424-428,2002.
    [12]D. Wubben, R. Bohnke, V. Kuhn, and K. Kammeyer, "MMSE-based lattice-reduction for near-ML detection of MIMO systems", in Proceeding of ITG Workshop on Smart Antennas, pp. 106-113,2004.
    [13]D. Wubben, J. Rnas, R. Bohnke, V. Kuhn, and K.D. Kammeyer, "Efficient algorithm for detecting layered space-time codes", in Proceeding of ITG Conference on Source and Channel Coding, pp. 399-405,2002.
    [14]R. Fa and R.C. de Lamare, "Multi-branch successive interference cancellation for MIMO spatial multiplexing systems", IEEE Wireless Communications and Networking Conference(WCNC'09), pp. 1-6,2009.
    [15]X. Yuan, K. Wu and L. Ping, "The jointly Gaussian approach to iterative detection in MIMO systems", in Proceeding of IEEE International Conference on Communications(ICC06), pp. 2935-2940,2006.
    [16]B.M. Hochwald and S. Ten Brink, "Achieving near-capacity on a multiple-antenna channel", IEEE Transactions on Communications, vol.51, no.3, pp.389-399,2003.
    [17]R. Wang and G.B. Giannakis, "Approaching MIMO channel capacity with soft detection based on hard sphere decoding", IEEE Transactions on Communications, vol.54, no.4, pp.587-590,2006.
    [18]H. Vikalo, B. Hassibi and T. Kailath, "Iterative decoding for MIMO channels via modified sphere decoding", IEEE Transactions on Wireless Communications, vol.3, no.6, pp.2299-2311,2004.
    [19]C. Studer, A. Burg and H. Bolcskei, "Soft-output sphere decoding:Algorithms and VLSI implementation", IEEE Journal on Selected Areas in Communications, vol.26, no.2, pp.290-300, 2008.
    [20]J. Li, X. Liu, H. Cao, and N. Jin, "Efficient iterative ordering scheme based on successive interference cancelling for sphere detection in multiple input multiple output system", IET Communications, vol.6, no.6, pp.613-617,2012.
    [21]L. Bai, C. Chen and J. Choi, "Partial MAP-based lattice reduction-aided list MIMO detection", Electronics letters, vol.48, no.10, pp.598-600,2012.
    [22]J. Choi, "Approximate MAP detection with ordering and successive processing for iterative detection and decoding in MIMO systems", IEEE Journal of Selected Topics in Signal Processing, vol. 5, no.8, pp.1415-1425,2011.
    [23]X. Wang and H.V. Poor, "Iterative (turbo) soft interference cancellation and decoding for coded CDMA", IEEE Transactions on Communications, vol.47, no.7, pp.1046-1061,1999.
    [24]G. Caire, R.R. Muller and T. Tanaka, "Iterative multiuser joint decoding:Optimal power allocation and low-complexity implementation", IEEE Transactions on Information Theory, vol.50, no. 9, pp.1950-1973,2004.
    [25]Z. Shi and C. Schlegel, "Iterative multiuser detection and error control code decoding in random CDMA", IEEE Transactions on Signal Processing, vol.54, no.5, pp.1886-1895,2006.
    [26]P. Xiao, J. Wu and C.F. Cowan, "MIMO detection schemes with interference and noise estimation enhancement", IEEE Transactions on Communications, vol.59, no.1, pp.26-32,2011.
    [27]P. Xiao, W. Yin, C. Cowan, and V. Fusco, "VBLAST detection algorithms utilizing soft symbol estimate and noncircular CAI", IEEE Transactions on Signal Processing, vol.59, no.5, pp.2441-2447. 2011.
    [28]M. Sellathurai and S. Haykin, "Turbo-BLAST for wireless communications:theory and experiments", IEEE Transactions on Signal Processing, vol.50, no.10, pp.2538-2546,2002.
    [29]M. Jar and C. Schlegel, "Extended jointly Gaussian approach for MIMO multipath channels", in Proceeding of IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC'10), pp.404-408,2010.
    [30]R. Gallager, "Low-density parity-check codes", IRE Transactions on Information Theory, vol.8, no.1, pp.21-28,1962.
    [31]R. Tanner, "A recursive approach to low complexity codes", IEEE Transactions on Information Theory, vol.27, no.5, pp.533-547,1981.
    [32]D.J. MacKay and R.M. Neal, "Near Shannon limit performance of low density parity check codes", Electronics Letters, vol.32, no.18, pp.1645,1996.
    [33]M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman, "Improved low-density parity-check codes using irregular graphs", IEEE Transactions on Information Theory, vol.47, no.2, pp.585-598,2001.
    [34]T.J. Richardson and R.L. Urbanke, "The capacity of low-density parity-check codes under message-passing decoding", IEEE Transactions on Information Theory, vol.47, no.2, pp.599-618, 2001.
    [35]S. Chung, G.D. Forney Jr, T.J. Richardson, and R. Urbanke, "On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit", IEEE Communications Letters, vol.5, no. 2, pp.58-60,2001.
    [36]S. Ten Brink, "Convergence behavior of iteratively decoded parallel concatenated codes", IEEE Transactions on Communications, vol.49, no.10, pp.1727-1737,2001.
    [37]X. Hu, E. Eleftheriou and D.M. Arnold, "Regular and irregular progressive edge-growth tanner graphs", IEEE Transactions on Information Theory, vol.51, no.1, pp.386-398,2005.
    [38]Y. Kou, S. Lin and M.P.C. Fossorier, "Low-density parity-check codes based on finite geometries: a rediscovery and new results", IEEE Transactions on Information Theory, vol.47, no.7, pp. 2711-2736,2001.
    [39]D. Divsalar, H. Jin and R.J. McEliece, "Coding theorems for" turbo-like" codes", in Proceedings of the Annual Allerton Conference on Communication Control and Computing, pp.201-210,1998.
    [40]R.M. Tanner, "On quasi-cyclic repeat-accumulate codes", in Proceedings of the Annual Allerton Conference on Communication Control and Computing, pp.249-259,1999.
    [41]H. Jin, A. Khandekar and R. McEliece, "Irregular repeat-accumulate codes", in Proceeding of 2nd International Symposium on Turbo codes and related topics, pp.1-8,2000.
    [42]Y. Zhang, W.E. Ryan and Y. Li, "Structured eIRA codes with low floors", in Proceeding of International Symposium on Information Theory(ISIT'05), pp.174-178,2005.
    [43]Y. Zhang and W.E. Ryan, "Structured IRA codes:Performance analysis and construction", IEEE Transactions on Communications, vol.55, no.5, pp.837-844,2007.
    [44]J. Fan, "Array Codes as Low-Density Parity Check Codes", in Proceeding of 2nd International Symposium on Turbo codes and related topics, pp.543-546,2000.
    [45]M.P.C. Fossorier, "Quasicyclic low-density parity-check codes from circulant permutation matrices", IEEE Transactions on Information Theory, vol.50, no.8, pp.1788-1793,2004.
    [46]S. Myung, K. Yang and J. Kim, "Quasi-cyclic LDPC codes for fast encoding", IEEE Transactions on Information Theory, vol.51, no.8, pp.2894-2901,2005.
    [47]T. Tian, C.R. Jones, J.D. Villasenor, and R.D. Wesel, "Selective avoidance of cycles in irregular LDPC code construction", IEEE Transactions on Communications, vol.52, no.8, pp.1242-1247, 2004.
    [48]X. Wei and A.N. Akansu, "Density evolution for low-density parity-check codes under Max-Log-MAP decoding", Electronics Letters, vol.37, no.18, pp.1125-1126,2001.
    [49]J. Chen, A. Dholakia, E. Eleftheriou, M.P. Fossorier, and X. Hu, "Reduced-complexity decoding of LDPC codes", IEEE Transactions on Communications, vol.53, no.8, pp.1288-1299,2005.
    [50]J. Zhang and M. Fossorier, "Shuffled belief propagation decoding", the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, pp.8-15,2002.
    [51]M.C. Davey and D.J. MacKay, "Low density parity check codes over GF (q)", Information Theory Workshop, pp.70-71,1998.
    [52]G. Li, I.J. Fair and W.A. Krzymien, "Density evolution for nonbinary LDPC codes under Gaussian approximation", IEEE Transactions on Information Theory, vol.55, no.3, pp.997-1015,2009.
    [53]G.J. Byers and F. Takawira, "EXIT charts for non-binary LDPC codes", in Proceeding of IEEE International Conference on Communications(ICC'05), pp.652-657,2005.
    [54]H. Song and J.R. Cruz, "Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording", IEEE Transactions on Magnetics, vol.39, no.2, pp.1081-1087,2003.
    [55]C. Poulliat, M. Fossorier and D. Declercq, "Design of regular (2, dc)-LDPC codes over GF (q) using their binary images", IEEE Transactions on Communications, vol.56, no.10, pp.1626-1635, 2008.
    [56]L. Sassatelli, D. Declercq and C. Poulliat, "Low-rate non-binary hybrid LDPC codes", in Proceeding of 5th International Symposium on Turbo Codes and Related Topics, pp.225-230,2008.
    [57]H. Wymeersch, H. Steendam and M. Moeneclaey, "Log-domain decoding of LDPC codes over GF (q)", in Proceeding of IEEE International Conference on Communications(ICC'04), pp.772-776,2004.
    [58]L. Barnault and D. Declercq, "Fast decoding algorithm for LDPC over GF (2^q)", in Proceeding of IEEE Information Theory Workshop, pp.70-73,2003.
    [59]V. Savin, "Min-Max decoding for non binary LDPC codes", in Proceeding of IEEE International Symposium on Information Theory(ISIT'08), pp.960-964,2008.
    [60]D. Declercq and M. Fossorier, "Extended minsum algorithm for decoding LDPC codes over GF (q)", in Proceeding of International Symposium on Information Theory(ISIT'05), pp.464-468,2005.
    [61]D. Declercq and M. Fossorier, "Decoding Algorithms for Nonbinary LDPC Codes Over GF(q)", IEEE Transactions on Communications, vol.55, no.4, pp.633-643,2007.
    [62]A. Voicila, D. Declereq, F. Verdier, M. Fossorier, and P. Urard, "Low-complexity, low-memory EMS algorithm for non-binary LDPC codes", in Proceeding of IEEE International Conference on Communications(ICC'07), pp.671-676,2007.
    [63]A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, "Low-complexity decoding for non-binary LDPC codes in high order fields", IEEE Transactions on Communications, vol.58, no.5, pp.1365-1375,2010.
    [64]E. Boutillon and L. Conde-Canencia, "Bubble check:a simplified algorithm for elementary check node processing in extended min-sum non-binary LDPC decoders", Electronics Letters, vol.46, no.9, pp.633-634,2010.
    [65]X. Zhang and F. Cai, "Partial-parallel decoder architecture for quasi-cyclic non-binary LDPC codes", in Proceeding of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP'10), pp.1506-1509,2010.
    [66]X. Zhang and F. Cai, "Reduced-complexity extended Min-sum check node processing for non-binary LDPC decoding", in Proceeding of 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS'10), pp.737-740,2010.
    [67]IEEE P802.16e-2005, "IEEE 802.16e WiMax Standard",2005.
    [68]IEEE 11-04-0886-00-00n, "IEEE 802.11 Wireless LANs WWiSE Proposal:High Throughput extension to the 802.11 Standard",2007.
    [69]ETSI EN 302307 Vl.1.2, "Digital Video Broadcasting(DVB):Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications",2006.
    [70]CCSDS 131.1-O-l.la, "Low density parity check codes for use in near-earth and deep space applications",2007.
    [71]1NFSCO-1CT-216203 FP7 DAVINCI project, http://www.ict-davinci-codes.eu.
    [72]J. Hagenauer, "The turbo principle:Tutorial introduction and state of the art", in Proceeding of International Symposium on Turbo Codes and Related Topics, pp.1-11,1997.
    [73]S. Ten Brink, "Convergence of iterative decoding", Electronics Letters, vol.35, no.10, pp. 806-808,1999.
    [74]S. Ten Brink, "Designing iterative decoding schemes with the extrinsic information transfer chart", AEU International Journal of Electronic Commununications, vol.54, no.6, pp.389-398,2000.
    [75]A. Ashikhmin, G. Kramer and S. Ten Brink, "Extrinsic information transfer functions:model and erasure channel properties", IEEE Transactions on Information Theory, vol.50, no.11, pp.2657-2673, 2004.
    [76]Y.L. de Jong and T.J. Willink, "Iterative tree search detection for MIMO wireless systems", IEEE Transactions on Communications, vol.53, no.6, pp.930-935,2005.
    [77]S. Ten Brink, G. Kramer and A. Ashikhmin, "Design of low-density parity-check codes for modulation and detection", IEEE Transactions on Communications, vol.52, no.4, pp.670-678,2004.
    [78]S. Ten Brink and B.M. Hochwald, "Detection thresholds of iterative MIMO processing", in Proceeding of IEEE International Symposium on Information Theory, pp.22,2002.
    [79]G. Yue and X. Wang, "Optimization of irregular repeat accumulate codes for MIMO systems with iterative receivers", IEEE Transactions on Wireless Communications, vol.4, no.6, pp.2843-2855, 2005.
    [80]J. Zheng and B.D. Rao, "LDPC-coded MIMO systems with unknown block fading channels:soft MIMO detector design, channel estimation, and code optimization", IEEE Transactions on Signal Processing, vol.54, no.4, pp.1504-1518,2006.
    [81]F. Guo and L. Hanzo, "Low complexity non-binary LDPC and modulation schemes communicating over MIMO channels", in Proceeding of IEEE Vehicular Technology Conference(VTC04 Fall), pp.1294-1298,2004.
    [82]S. Pfletschinger and D. Declercq, "Getting closer to MIMO capacity with non-binary codes and spatial multiplexing", IEEE Global Telecommunications Conference (GLOBECOM'10), pp.1-5,2010.
    [83]B. Vucetic and J. Yuan, Space-time coding:John Wiley & Sons, Inc.2003.
    [84]A. Naguib and R. Calderbank, "Space-time coding and signal processing for high data rate wireless communications", Wireless Communication Technologies:New Multimedia Systems, vol.no.pp.23-59,2002.
    [85]. Lin, S. 与D.J. Costello,差错控制编码:北京:机械工业出版社.2007.
    [86]F.R. Kschischang, B.J. Frey and H. Loeliger, "Factor graphs and the sum-product algorithm", IEEE Transactions on Information Theory, vol.47, no.2, pp.498-519,2001.
    [87]X. Hu, E. Eleftheriou and D.M. Arnold, "Regular and irregular progressive edge-growth tanner graphs", IEEE Transactions on Information Theory, vol.51, no.1, pp.386-398,2005.
    [88]C. Di, D. Proietti, I.E. Telatar, T.J. Richardson, and R.L. Urbanke, "Finite-length analysis of low-density parity-check codes on the binary erasure channel", IEEE Transactions on Information Theory, vol.48, no.6, pp.1570-1579,2002.
    [89]A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, "Stopping sets and the girth of Tanner graphs", in Proceeding of IEEE International Symposium on Information Theory, pp.2,2002.
    [90]S.K. Chilappagari, S. Sankaranarayanan and B. Vasic, "Error floors of LDPC codes on the binary symmetric channel", in Proceeding of IEEE International Conference on Communications(lCC'06), pp. 1089-1094,2006.
    [91]M. Tuchler and J. Hagenauer, "Linear time and frequency domain turbo equalization", in Proceeding of IEEE Vehicular Technology Conference(VTC'01 Spring), pp.1449-1453,2001.
    [92]G.H. Golub and C.F. Van Loan, Matrix computations, vol.3:Johns Hopkins University Press. 1996.
    [93]C.K. Koc and G. Chen, "Authors' reply [Computational complexity of matrix inversion]", IEEE Transactions on Aerospace and Electronic Systems, vol.30, no.4, pp.1115,1994.
    [94]T. Yang, J. Yuan and Z. Shi, "Jointly Gaussian approximation and multi-stage LLR combining in the iterative receiver for MIMO-BICM systems", IEEE Transactions on Wireless Communications, vol. 7, no.12, pp.5250-5256,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700