胆甾酸主链型高分子的合成及超分子体系构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆甾酸是一类来源于生物体的化合物,具有微凹的刚性骨架和面式两亲性,在高分子和超分子化学界引起了广泛的关注。到目前为止,关于胆甾酸主链型高分子的制备仍然具有极大的挑战性,胆甾酸刚性骨架及其独特的两亲性特征在超分子组装中的作用仍未被详细报道。本论文以胆甾酸分子为构筑基元,充分利用其独特的结构特征,设计合成了一系列胆甾酸主链型高分子,研究了它们的超分子组装、多级组装和褶皱现象,取得了以下研究成果:
     设计合成了一系列含末端炔基和叠氮反应基团的胆甾酸衍生物。利用胆甾酸刚性骨架和面式两亲性,通过结晶方法,得到三种化合物的单晶结构。在胆甾骨架预组织排列作用下,炔基和叠氮在晶体内部交错平行排列。利用拓扑化学聚合法,无金属催化剂和有机溶剂存在下,炔基和叠氮在晶体内部快速高效聚合,得到高分子量的胆甾酸主链型高分子,且单体转化率达到100%,产物无需进一步的后处理。与非晶体状态和溶液相反应的结果相比,分子量高1-2个数量级,反应效率也得到极大提高。在晶体结构的空间限域作用下,无催化剂条件下的1,4-位三唑的区域选择性也有一定的提高。
     对具有良好生物相容性的胆酸主链型高分子的超分子组装进行研究,探讨了胆酸独特骨架及面式两亲性在超分子组装中的作用及其赋予组装体的独特性质。发现胆酸骨架在超分子组装中起支撑作用,通过亲/疏水面的氢键作用和疏水骨架堆积形成单分散的稳定囊泡结构。依托胆酸两亲性特征,赋予高分子囊泡良好的自适应性,并具有可逆调节的特点。基于胆酸微凹刚性骨架,在囊泡壁中构筑一系列动态可调的亲/疏水微腔。在囊泡壁中引入了三唑基团,使囊泡壁的透过性具有酸碱可控和可逆调节的特性。
     合成区域选择性的1,4-三唑连接的胆酸主链型生物高分子,研究其多级组装过程以及褶皱现象。胆酸主链型高分子在极性溶剂诱导下,首先形成具有一维亲水空腔的折叠结构,通过疏水骨架堆积进一步组装产生层状薄膜。在胆酸骨架和面式两亲性调控的多级有序组装结构以及物理组装共同作用下,超分子薄膜自发形成大面积有序褶皱。首次通过化学的超分子多级组装和物理组装过程,得到生物高分子有序褶皱,同时加深了对胆甾骨架及面式两亲性在组装中作用的认识。
The natural occurring bile acids with the curved rigid steroidal skeleton anddistinctive facial amphiphilicity have attracted great attentions in polymer chemistry andsupramolecular chemistry. Until now, the preparation of high molecular weight mainchain bile acid polymers is still a great challenge. The supramolecular functionalmechanisms of bile aicd polymers, which are controlled by the unique steroidal skeletonand facially amphiphilic properties, is still in its infancy. In this dissertation, based onthe bile acid building blocks and their unique structures, we design and synthesis aseries of main chain bile acid polymers and focused on their supramolecular assembly,multi-level hierarchical assembly as well as the wrinkle phenomenon. The major workis as follow:
     A series of bile acid derivatives with terminal alkyne and azide reaction groupshave been synthesized. Due to their rigid steroidal skeleton and facial amphiphilicity,the single crystals of three compounds were obtained by crystallization. The alkyne andazide groups are paralleled to each other in the crystal lattice. By topochemicalpolymerization, the high molecular weight main chain bile acid polymers were obtainedin the absense of metal catalysts and the organic solvents. With the advantages of100%monomers conversion, the polymerization of the alkyne and azide groups occurred inthe crystal lattice and the resulted polymers don’t need further purification. Comparedwith the polymerization process in the amorphous solid state and solution phase, thereaction efficiency and the molecular weight as well as the selectivity of the1,4-triazolegroups were greatly improved.
     The supramolecular assembly behavior of main chain cholic acidbiopolymers was studied. Depending on the unique rigid skeleton and facialamphiphilicity, the supramolecular assemblies were characterized by thevesicles stability, adaptability and reversible adjustment as well as the uniquehydrophilic and hydrophobic binding pockets in the vesicle membranes. Due tothe presence of triazole groups in the polymer chains, the permeability of thevesicle membrane was response to the pH changes and this process is reversiblefor several cycles.
     The main chain cholic acid polymers with regioselective1,4-triazolegroups as linkages were synthesized and their multi-level hierarchical assemblyas well al wrinkling phenomenon were developed. Induced by the polar solvents,the folded structures with one-dimensional hydrophilic cavity were firstlyformed and then stacked together leading to the multi-lamellar membraneassemblies. Based on the multi-level ordered assembly structures, which werecontrolled by the rigid steroidal skeleton and their unique facial amphiphilicity,and the physical assembly process, the large scale ordered wrinkles wereobtained. By combination of supramolecular multi-level assembly and physicalassembly, the biopolymer wrinkels with the potential applications in the celladhesion were developed.
引文
[1] Roberts M S, Magnusson B M, Burczynski F J, et al. Enterohepaticcirculation-physiological, pharmacokinetic and clinical implications. ClinPharmacokinet,2002,41:751-790.
    [2] Enhsen A, Kramer W, Wess G. Bile acids in drug discovery. Drug DiscovToday,1998,3:409-418.
    [3] Mukhopadhyay S, Maitra U. Chemistry and biology of bile acids. Curr SciIndia,2004,87:1666-1683.
    [4] Virtanen E, Kolehmainen E. Use of bile acids in pharmacological andsupramolecular applications. Eur J Org Chem,2004,3385-3399.
    [5] Davis A P. Bile acid scaffolds in supramolecular chemistry: The interplay ofdesign and synthesis. Molecules,2007,12:2106-2122.
    [6] Tamminen J, Kolehmainen E. Bile acids as building blocks ofsupramolecular hosts. Molecules,2001,6:21-46.
    [7] Svobodova H, Noponen V, Kolehmainen E, et al. Recent advances insteroidal supramolecular gels. Rsc Advances,2012,2:4985-5007.
    [8] Banerjee S, Das R K, Maitra U. Supramolecular gels 'in action'. J MaterChem,2009,19:6649-6687.
    [9] Nonappa, Maitra U. Unlocking the potential of bile acids in synthesis,supramolecular/materials chemistry and nanoscience. Org Biomol Chem,2008,6:657-669.
    [10] Kramer W, Wess G, Schubert G, et al. Liver-specific drug targeting bycoupling to bile-acids. J Biol Chem,1992,267:18598-18604.
    [11] Zhu X X, Nichifor M. Polymeric materials containing bile acids. AccountsChem Res,2002,35:539-546.
    [12] Gautrot J E, Zhu X X. Biodegradable polymers based on bile acids andpotential biomedical applications. J Biomaterials Sci-polym E,2006,17:1123-1139.
    [13] Zhang Y H, Zhu X X. Polymers made from cholic acid derivatives: Selectedproperties. Macromol Chem Phys,1996,197:3473-3482.
    [14] Zhang X, Li Z Y, Zhu X X. Biomimetic mineralization induced by fibrils ofpolymers derived from a bile acid. Biomacromolecules,2008,9:2309-2314.
    [15] Hao J Q, Li H, Zhu X X. Preparation of a comb-shaped cholicacid-containing polymer by atom transfer radical polymerization.Biomacromolecules,2006,7:995-998.
    [16] Fu H L, Yu L, Zhang H, et al. Synthesis of novel cholic acid functionalizedbranched oligo/poly(epsilon-caprolactone)s for biomedical applications. JBiomed Mater Res A,2007,81A:186-194.
    [17] Wan T, Liu Y, Yu J Q, et al. Synthesis and characterization of staroligo/poly(2,2-dimethyltrimethylene carbonate)s containing cholic acidmoieties. J Polym Sci Polym Chem,2006,44:6688-6696.
    [18] Zou T, Li S L, Hu Z Y, et al. Synthesis and properties of staroligo/poly(trimethylene carbonate)s with cholic acid moieties as cores. JBiomaterials Sci-polym E,2007,18:519-530.
    [19] Fu H L, Cheng S X, Zhang X Z, et al. Dendrimer/DNA complexesencapsulated in a water soluble polymer and supported on fast degradingstar poly(DL-lactide) for localized gene delivery. J Controlled Release,2007,124:181-188.
    [20] Fu H L, Zou T, Cheng S X, et al. Cholic acid functionalized star poly(DL-lactide) for promoting cell adhesion and proliferation. J Tissue EngRegen M,2007,1:368-376.
    [21] Zhang H, Tong S Y, Zhang X Z, et al. Novel solvent-free methods forfabrication of nano-and microsphere drug delivery systems from functionalbiodegradable polymers. J Phys Chem C,2007,111:12681-12685.
    [22] Zou T, Cheng S X, Zhang X Z, et al. Novel cholic acid functionalized staroligo/poly(DL-lactide)s for biomedical applications. J Biomed Mater Res B,2007,82B:400-407.
    [23] Zou T, Li S L, Cheng S X, et al. Fabrication and in vitro drug release ofdrug-loaded star oligo/poly(DL-lactide) microspheres made by novelultrasonic-dispersion method. J Biomed Mater Res A,2007,83A:696-702.
    [24] Chen W Q, Wei H, Li S L, et al. Fabrication of star-shaped, thermo-sensitivepoly(N-isopropylacrylamide)-cholic acid-poly(epsilon-caprolactone)copolymers and their self-assembled micelles as drug carriers. Polymer,2008,49:3965-3972.
    [25] Giguene G, Zhu X X. Synthesis and aggregation properties of anionicstar-shaped polymers with cholic acid cores and polyacrylate arms. J PolymSci Polym Chem,2007,45:4173-4178.
    [26] Le Devedec F, Fuentealba D, Strandman S, et al. Aggregation Behavior ofPegylated Bile Acid Derivatives. Langmuir,2012,28:13431-13440.
    [27] Li C C, Lavigueur C, Zhu X X. Aggregation and thermoresponsiveproperties of new star block copolymers with a cholic acid core. Langmuir,2011,27:11174-11179.
    [28] Luo J T, Giguere G, Zhu X X. Asymmetric poly(ethylene glycol) starpolymers with a cholic acid core and their aggregation properties.Biomacromolecules,2009,10:900-906.
    [29] Giguere G, Zhu X X. Functional star polymers with a cholic acid core andtheir thermosensitive properties. Biomacromolecules,2010,11:201-206.
    [30] Bai G, Nichifor M, Bastos M. Association and phase behavior of cholicacid-modified dextran and phosphatidylcholine liposomes. J Phy Chem Lett,2010,1:932-936.
    [31] Nichifor M, Lopes A, Carpov A, et al. Aggregation in water of dextranhydrophobically modified with bile acids. Macromolecules,1999,32:7078-7085.
    [32] Xu Q G, Yuan X B, Chang J. Self-aggregates of cholic acidhydrazide-dextran conjugates as drug carriers. J Appl Polym Sci,2005,95:487-493.
    [33] Lee K Y, Jo W H, Kwon I C, et al. Physicochemical characteristics ofself-aggregates of hydrophobically modified chitosans. Langmuir,1998,14:2329-2332.
    [34] Park J H, Cho Y W, Son Y J, et al. Preparation and characterization ofself-assembled nanoparticles based on glycol chitosan bearing adriamycin.Colloid Polym Sci,2006,284:763-770.
    [35] Lee K Y, Jo W H, Kwon I C, et al. Structural determination and interiorpolarity of self-aggregates prepared from deoxycholic acid-modifiedchitosan in water. Macromolecules,1998,31:378-383.
    [36] Kwon S, Park J H, Chung H, et al. Physicochemical characteristics ofself-assembled nanoparticles based on glycol chitosan bearing5beta-cholanic acid. Langmuir,2003,19:10188-10193.
    [37] Park J H, Kwon S G, Nam J O, et al. Self-assembled nanoparticles based onglycol chitosan bearing5beta-cholanic acid for RGD peptide delivery. JControlled Release,2004,95:579-588.
    [38] Zhang Y H, Akram M, Liu H Y, et al. Characterization of new copolymersmade from methacrylate and methacrylamide derivatives of cholic acid.Macromol Chem Phys,1998,199:1399-1404.
    [39] Avoce D, Liu H Y, Zhu X X. N-Alkylacrylamide copolymers with(meth)acrylamide derivatives of cholic acid: synthesis and thermosensitivity.Polymer,2003,44:1081-1087.
    [40] Liu H Y, Avoce D, Song Z J, et al. N-isopropylacrylamide copolymers withacrylamide and methacrylamide derivatives of cholic acid: Synthesis andcharacterization. Macromol Rapid Commun,2001,22:675-680.
    [41] Shao Y, Lavigueur C, Zhu X X. Multishape memory effect ofnorbornene-based copolymers with cholic acid pendant groups.Macromolecules,2012,45:1924-1930.
    [42] Ghosh S, Maitra U. Adaptive dendron: A bile acid oligomer behaving asboth normal and inverse micellar mimic. Org Lett,2006,8:399-402.
    [43] Vijayalakshmi N, Maitra U. Hydroxyl-terminated dendritic oligomers frombile acids: Synthesis and properties. J Org Chem,2006,71:768-774.
    [44] Vijayakshmi N, Maitra U. A simple construction of a bile acid baseddendritic light harvesting system. Org Lett,2005,7:2727-2730.
    [45] Li Y P, Xiao K, Luo J T, et al. A novel size-tunable nanocarrier system fortargeted anticancer drug delivery. J Controlled Release,2010,144:314-323.
    [46] Li Y P, Xiao K, Luo J T, et al. Well-defined, reversible disulfidecross-linked micelles for on-demand paclitaxel delivery. Biomaterials,2011,32:6633-6645.
    [47] Markus Ahlheirn, Hallensleben M L. Kondensationspolymerisation vonGallensauren. Makromol Chem Rapid Commun,1988,9:299-302.
    [48] Zuluaga F, Valderruten N E, Wagener K B. The ambient temperaturesynthesis and characterization of bile acid polymers. Polym Bull,1999,42:41-46.
    [49] Gouin S, Zhu X X, Lehnert S. New polyanhydrides made from a bile aciddimer and sebacic acid: Synthesis, characterization, and degradation.Macromolecules,2000,33:5379-5383.
    [50] Gautrot J E, Zhu X X. High molecular weight bile acid and ricinoleicacid-based copolyesters via entropy-driven ring-opening metathesispolymerisation. Chem Commun,2008,1674-1676.
    [51] Gautrot J E, Zhu X X. Shape memory polymers based on naturally-occurringbile acids. Macromolecules,2009,42:7324-7331.
    [52] Therien-Aubin H, Gautrot J E, Shao Y, et al. Shape memory properties ofmain chain bile acids polymers. Polymer,2010,51:22-25.
    [53] Li Y, Li G T, Wang X Y, et al. Poly(p-phenylene ethynylene)s with faciallyamphiphilic pendant groups: solvatochromism and supramolecularassemblies. Chem-Eur J,2008,14:10331-10339.
    [54] Rinco O, Kleinman M H, Bohne C. Reactivity of benzophones in thedifferent binding sites of sodium cholate aggregates. Langmuir,2001,17:5781-5790.
    [55] Yihwa C, Quina F H, Bohne C. Modulation with acetonitrile of thedynamics of guest binding to the two distinct binding sites of cholateaggregates. Langmuir,2004,20:9983-9991.
    [56] Miyata M, Tohnai N, Hisaki I. Crystalline host-guest assemblies of steroidaland related molecules: Diversity, hierarchy, and supramolecular chirality.Acc Chem Res,2007,40:694-702.
    [57] Cuquerella M C, Rohacova J, Marin M L, et al. Stereodifferentiation influorescence quenching within cholic acid aggregates. Chem Commun,2010,46:4965-4967.
    [58] Li R, Santos C S, Norsten T B, et al. Aqueous solubilization ofphotochromic compounds by bile salt aggregates. Chem Commun,2010,46:1941-1943.
    [59] Rohacova J, Marin M L, Miranda M A. Complexes between FluorescentCholic Acid Derivatives and Human Serum Albumin. A PhotophysicalApproach To Investigate the Binding Behavior. J Phys Chem B,2010,114:4710-4716.
    [60] Fuentealba D, Thurber K, Bovero E, et al. Effect of sodium chloride on thebinding of polyaromatic hydrocarbon guests with sodium cholate aggregates.Photoch Photobio Sci,2011,10:1420-1430.
    [61] Rohacova J, Sastre G, Marin M L, et al. Dansyl labeling to modulate therelative affinity of bile acids for the binding sites of human serum albumin.J Phys Chem B,2011,115:10518-10524.
    [62] Jiang L X, Wang K, Deng M L, et al. Bile salt-induced vesicle-to-micelletransition in catanionic surfactant systems: Steric and electrostaticinteractions. Langmuir,2008,24:4600-4606.
    [63] Ju C, Bohne C. Dynamics of probe complexation to bile salt aggregates. JPhys Chem,1996,100:3847-3854.
    [64] Li Y, Holzwarth J F, Bohne C. Aggregation dynamics of sodiumtaurodeoxycholate and sodium deoxycholate. Langmuir,2000,16:2038-2041.
    [65] Bohne C. Supramolecular dynamics studied using photophysics. Langmuir,2006,22:9100-9111.
    [66] Tellini V H S, Jover A, Meijide F, et al. Supramolecular structuresgenerated by a p-tert-butylphenyl-amide derivative of cholic acid: Fromvesicles to molecular tubes. Adv Mater,2007,19:1752-1756.
    [67] Meijide F, Antelo A, Alcalde M A, et al. Supramolecular structuresgenerated by a p-tert-butylphenylamide derivative of deoxycholic acid. fromplanar sheets to tubular structures through helical ribbons. Langmuir,2010,26:7768-7773.
    [68] Meijide F, Trillo J V, de Frutos S, et al. Formation of tubules byp-tert-butylphenylamide derivatives of chenodeoxycholic andursodeoxycholic acids in aqueous solution. Steroids,2012,77:1205-1211.
    [69] Tellini V H S, Jover A, Galantini L, et al. New lamellar structure formed byan adamantyl derivative of cholic acid. J Phys Chem B,2006,110:13679-13681.
    [70] Wang X D, Lu Y, Duan Y Q, et al. Helical crystals with a sixfold screw axis.Adv Mater,2008,20:462-465.
    [71] Li Y, Li G T, Wang X Y, et al. Unique twisted ribbons generated byself-assembly of oligo(p-phenylene ethylene) bearing dimeric bile acidpendant groups. Chem-Eur J,2009,15:6399-6407.
    [72] Qiao Y, Lin Y Y, Wang Y J, et al. Metal-driven hierarchical self-assembledone-dimensional nanohelices. Nano Lett,2009,9:4500-4504.
    [73] Subramanian G, Hjelm R P, Deming T J, et al. Structure of complexes ofcationic lipids and poly(glutamic acid) polypeptides: A pinched lamellarphase. J Am Chem Soc,2000,122:26-34.
    [74] You L C, Schlaad H. An easy way to sugar-containing polymer vesicles orglycosomes. J Am Chem Soc,2006,128:13336-13337.
    [75] Schatz C, Lecommandoux S. Polysaccharide-containing block copolymers:synthesis, properties and applications of an emerging family ofglycoconjugates. Macromol Rapid Commun,2010,31:1664-1684.
    [76] Gangwal J J, Kulkarni M G. Synthesis and Characterization of bileacid-based poly beta amino esters for paclitaxel delivery. J Appl Polym Sci,2011,122:220-232.
    [77] Zhang J W, Zhu X X. Biomaterials made of bile acids. Sci China Ser B,2009,52:849-861.
    [78] Matsumoto A, Sada K, Tashiro K, et al. Reaction principles and crystalstructure design for the topochemical polymerization of1,3-dienes. AngewChem Int Ed,2002,41:2502-12401.
    [79] Xi O Y, Fowler F W, Lauher J W. Single-crystal-to-single-crystaltopochemical polymerizations of a terminal diacetylene: Two remarkabletransformations give the same conjugated polymer. J Am Chem Soc,2003,125:12400-12401.
    [80] Lauher J W, Fowler F W, Goroff N S. Single-crystal-to-single-crystaltopochemical polymerizations by design. Acc Chem Res,2008,41:1215-1229.
    [81] Itoh T, Suzuki T, Uno T, et al. Cis-Specific Topochemical polymerization:alternating copolymerization of7,7,8,8-tetrakis(methoxycarbonyl)quinodimethane with7,7,8,8-tetracyanoquinodimethane in the solid state.Angew Chem Int Ed,2011,50:2253-2256.
    [82] Ni B B, Wang C, Wu H X, et al. Copper-free cycloaddition of azide andalkyne in crystalline state facilitated by arene-perfluoroarene interactions.Chem Commun,2010,46:782-784.
    [83] Pathigoolla A, Gonnade R G, Sureshan K M. Topochemical click reaction:spontaneous self-stitching of a monosaccharide to linear oligomers throughlattice-controlled azide-alkyne cycloaddition. Angew Chem Int Ed,2012,51:4362-4366.
    [84] Nakano K, Aburaya K, Hisaki I, et al. Flexible host frameworks with diversecavities in inclusion crystals of bile acids and their derivatives. Chem Rec,2009,9:124-135.
    [85] Miki K, Masui A, Kasai N, et al. New Channel-type inclusion compound ofsteroidal bile-acid-structure of a1-1complex between cholic-acid andacetophenone. J Am Chem Soc,1988,110:6594-6596.
    [86] Sada K, Sugahara M, Kato K, et al. Controlled expansion of a molecularcavity in a steroid host compound. J Am Chem Soc,2001,123:4386-4392.
    [87] Joannopoulos J D. Self-assembly lights up. Nature,2001,414:257-258.
    [88] Miyata M, Tohnai N, Hisaki I. Supramolecular chirality in crystallineassemblies of bile acids and their derivatives; Three-axial, tilt, helical, andbundle chirality. Molecules,2007,12:1973-2000.
    [89] Aburaya K, Hisaki I, Tohnai N, et al. Dependence of the enantioselectivityon reversion of layer directions in cholamide inclusion compounds. ChemCommun,2007,4257-4259.
    [90] Hu X Z, Zhang Z, Zhang X, et al. Selective acylation of cholic acidderivatives with multiple methacrylate groups. Steroids,2005,70:531-537.
    [91] Himo F, Lovell T, Hilgraf R, et al. Copper(I)-catalyzed synthesis of azoles.DFT study predicts unprecedented reactivity and intermediates. J Am ChemSoc,2005,127:210-216.
    [92] Hoang T, Lauher J W, Fowler F W. The topochemical1,16-polymerizationof a triene. J Am Chem Soc,2002,124:10656-10657.
    [93] Huisgen R.1,3-Dipolar cycloadditions. past and future. Angew Chem Int Ed,1963,2:565-598.
    [94] Kumar A, Chhatra R K, Pandey P S. Synthesis of click bile acid polymersand their application in stabilization of silver nanoparticles showing iodidesensing property. Org Lett,2010,12:24-27.
    [95] Rosemeyer H. Nucleolipids: Natural occurrence, synthesis, molecularrecognition, and supramolecular assemblies as potential precursors of lifeand bioorganic materials. Chemistry&Biodiversity,2005,2:977-1062.
    [96] Janout V, Regen S L. Bioconjugate-based molecular umbrellas.Bioconjugate Chem,2009,20:183-192.
    [97] Mehiri M, Chen W H, Janout V, et al. Molecular umbrella transport:exceptions to the classic size/lipophilicity rule. J Am Chem Soc,2009,131:1338-1339.
    [98] Zhao Y, Zhong Z Q. Oligomeric cholates: amphiphilic foldamers withnanometer-sized hydrophilic cavities. J Am Chem Soc,2005,127:17894-17901.
    [99] Zhao Y, Zhong Z Q. Tuning the sensitivity of a foldamer-based mercurysensor by its folding energy. J Am Chem Soc,2006,128:9988-9989.
    [100] Zhao Y. Spacer-dependent folding and aggregation of oligocholates in sdsmicelles. J Org Chem,2009,74:7470-7480.
    [101] Weissman J M, Sunkara H B, Tse A S, et al. Thermally switchableperiodicities and diffraction from mesoscopically ordered materials. Science,1996,274:959-960.
    [102] Marlow F, Muldarisnur, Sharifi P, et al. Opals: status and prospects. AngewChem Int Ed,2009,48:6212-6233.
    [103] Li H, Wang J X, Lin H, et al. Amplification of fluorescent contrast byphotonic crystals in optical storage. Adv Mater,2010,22:1237-1241.
    [104] Bellomo E G, Wyrsta M D, Pakstis L, et al. Stimuli-responsive polypeptidevesicles by conformation-specific assembly. Nature Mater,2004,3:244-248.
    [105] Holowka E P, Pochan D J, Deming T J. Charged polypeptide vesicles withcontrollable diameter. J Am Chem Soc,2005,127:12423-12428.
    [106] Schatz C, Louguet S, Le Meins J F, et al. Polysaccharide-block-polypeptidecopolymer vesicles: towards synthetic viral capsids. Angew Chem Int Ed,2009,48:2572-2575.
    [107] Shibakami M, Tamura M, Sekiya A. Topological and nontopologicalrearrangement in crystal-lattice of cholic-acid inclusion complex-induced byguest exchange. J Am Chem Soc,1995,117:4499-4505.
    [108] Wahle M C, Byrn S R.3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oic acid methyl ester ethanolate (methyl cholate ethanolate).Acta Crystallogr Commm,1996,52:2500-2502.
    [109] Liu J Y, Huang W, Pang Y, et al. Molecular self-assembly of ahomopolymer: an alternative to fabricate drug-delivery platforms for cancertherapy. Angew Chem Int Ed,2011,50:9162-9166.
    [110] Jiang L X, Peng Y, Yan Y, et al. Aqueous self-assembly of SDS@2beta-CDcomplexes: lamellae and vesicles. Soft Matter,2011,7:1726-1731.
    [111] Kaneko T, Ichikawa A, Gong J P, et al. Formation of giant needle-likepolycation-bile acid complexes. Macromol Rapid Commun,2003,24:789-792.
    [112] Sada K, Shiomi N, Miyata M. Nanocavities with fine adjustment inchannel-type inclusion crystals of alkylammonium deoxycholates. Controlof molecular cavities by partial filling of molecular channels. J Am ChemSoc,1998,120:10543-10544.
    [113] Ryu E H, Yan J, Zhong Z, et al. Solvent-induced amphiphilic molecularbaskets: Unimolecular reversed micelles with different size, shape, andflexibility. J Org Chem,2006,71:7205-7213.
    [114] Olszewska T, Nowak E, Gdaniec M, et al. Helicity discrimination in diaryldichalcogenides generated by inclusion complexation with chiral hosts. OrgLett,2012,14:2568-2571.
    [115] Satyanarayana T B N, Maitra U. Tuning the efficiency of dendriticnanocarriers using conformational constraints. Chem-Asian J,2012,7:321-329.
    [116] Chen Y L, Luo J T, Zhu X X. Fluorescence study of inclusion complexesbetween star-shaped cholic acid derivatives and polycyclic aromaticfluorescent probes and the size effects of host and guest molecules. J PhysChem B,2008,112:3402-3409.
    [117] Luo J T, Chen Y L, Zhu X X. Invertible amphiphilic molecular pocketsmade of cholic acid. Langmuir,2009,25:10913-10917.
    [118] Bhasikuttan A C, Pal H, Mohanty J. Cucurbit[n]uril based supramolecularassemblies: tunable physico-chemical properties and their prospects. ChemCommun,2011,47:9959-9971.
    [119] Burakowska E, Quinn J R, Zimmerman S C, et al. Cross-linkedhyperbranched polyglycerols as hosts for selective binding of guestmolecules. J Am Chem Soc,2009,131:10574-10580.
    [120] Kaanumalle L S, Nithyanandhan J, Pattabiraman M, et al. Water-solubledendrimers as photochemical reaction media: Chemical behavior of singletand triplet radical pairs inside dendritic reaction cavities. J Am Chem Soc,2004,126:8999-9006.
    [121] Savic R, Luo L B, Eisenberg A, et al. Micellar nanocontainers distribute todefined cytoplasmic organelles. Science,2003,300:615-618.
    [122] Stadler B, Chandrawati R, Price A D, et al. A Microreactor with thousandsof subcompartments: enzyme-loaded liposomes within polymer capsules.Angew Chem Int Ed,2009,48:4359-4362.
    [123] Zeng F W, Zimmerman S C. Dendrimers in supramolecular chemistry: Frommolecular recognition to self-assembly. Chem Rev,1997,97:1681-1712.
    [124] Baldridge A, Samanta S R, Jayaraj N, et al. Activation of fluorescent proteinchromophores by encapsulation. J Am Chem Soc,2010,132:1498-1499.
    [125] Aher N G, Pore V S, Patil S P. Design, synthesis, and micellar properties ofbile acid dimers and oligomers linked with a1,2,3-triazole ring. Tetrahedron,2007,63:12927-12934.
    [126] Ghoroghchian P P, Frail P R, Susumu K, et al. Broad spectral domainfluorescence wavelength modulation of visible and near-infrared emissivepolymersomes. J Am Chem Soc,2005,127:15388-15390.
    [127] Gust D, Moore T A, Moore A L. Solar fuels via artificial photosynthesis.Acc Chem Res,2009,42:1890-1898.
    [128] Zhao Y, Zhong Z Q, Ryu E H. Preferential solvation within hydrophilicnanocavities and its effect on the folding of cholate foldamers. J Am ChemSoc,2007,129:218-225.
    [129] Bock V D, Hiemstra H, van Maarseveen J H. Cu-I-catalyzed alkyne-azide"click" cycloadditions from a mechanistic and synthetic perspective. Eur JOrg Chem,2006,51-68.
    [130] Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemicalfunction from a few good reactions. Angew Chem Int Ed,2001,40:2004-2021.
    [131] Chow H F, Lau K N, Ke Z H, et al. Conformational and supramolecularproperties of main chain and cyclic click oligotriazoles and polytriazoles.Chem Commun,2010,46:3437-3453.
    [132] El-Hachemi Z, Mancini G, Ribo J M, et al. Role of the hydrophobic effect inthe transfer of chirality from molecules to complex systems: from chiralsurfactants to porphyrin/surfactant aggregates. J Am Chem Soc,2008,130:15176-15184.
    [133] Iwaura R, Hoeben F J M, Masuda M, et al. Molecular-level helical stack of anucleotide-appended oligo(p-phenylenevinylene) directed bysupramolecular self-assembly with a complementary oligonucleotide as atemplate. J Am Chem Soc,2006,128:13298-13304.
    [134] Seo S H, Chang J Y, Tew G N. Self-assembled vesicles from an amphiphilicortho-phenylene ethynylene macrocycle. Angew Chem Int Ed,2006,45:7526-7530.
    [135] Yoo P J, Suh K Y, Park S Y, et al. Physical self-assembly of microstructuresby anisotropic buckling. Adv Mater,2002,14:1383-1387.
    [136] Bowden N, Brittain S, Evans A G, et al. Spontaneous formation of orderedstructures in thin films of metals supported on an elastomeric polymer.Nature,1998,393:146-149.
    [137] Kwon S J, Yoo P J, Lee H H. Wave interactions in buckling:Self-organization of a metal surface on a structured polymer layer. ApplPhys Lett,2004,84:4487-4489.
    [138] Ohzono T, Matsushita S I, Shimomura M. Coupling of wrinkle patterns tomicrosphere-array lithographic patterns. Soft Matter,2005,1:227-230.
    [139] Efimenko K, Rackaitis M, Manias E, et al. Nested self-similar wrinklingpatterns in skins. Nature Mater,2005,4:293-297.
    [140] Harrison C, Stafford C M, Zhang W H, et al. Sinusoidal phase gratingcreated by a tunably buckled surface. Appl Phys Lett,2004,85:4016-4018.
    [141] Muller-Wiegand M, Georgiev G, Oesterschulz E, et al. Spinodal patterningin organic-inorganic hybrid layer systems. Appl Phys Lett,2002,81:4940-4942.
    [142] Lin P C, Yang S. Spontaneous formation of one-dimensional ripples intransit to highly ordered two-dimensional herringbone structures throughsequential and unequal biaxial mechanical stretching. Appl Phys Lett,2007,90.
    [143] Guo C F, Nayyar V, Zhang Z W, et al. Path-guided wrinkling of nanoscalemetal films. Adv Mater,2012,24:3010-3014.
    [144] Yin J, Bar-Kochba E, Chen X. Mechanical self-assembly fabrication ofgears. Soft Matter,2009,5:3469-3474.
    [145] Thornton J A, Hoffman D W. Stress-related effects in thin films. Thin SolidFilms,1989,171:5-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700