量子点荧光探针的设计及检测应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于量子限域效应,纳米材料内在的物理或化学性质随粒子尺寸的改变而改变。半导体纳米晶(又称量子点)的量子限域效应最直观的表现就是材料的能带宽随粒子尺寸的变小而增大。因此可以通过合成不同大小的纳米晶来调节其能带宽度,从而实现用同一种纳米晶材料得到不同波长的发射荧光。相对于传统的有机染料,荧光量子点具有更好的光稳定性且呈现连续的吸收光谱。上述性质使得量子点相比于有机染料更适合于长时间的观测并具有更宽广的激发波长范围,从而使得单一光源可同时激发多种不同发光颜色的量子点进而实现多通道观测。此外,量子点还具有窄且对称的发射光谱,高的发光强度(单个粒子的发光强度约100倍强于单个有机染料分子)及比普通有机染料更长的荧光寿命。上述优越的荧光性质使得荧光量子点成为一种潜在的取代传统有机染料的理想荧光基团,并在分析检测和生物医学示踪成像等领域中受到研究者们越来越多的关注。基于量子点出色的光学性质,本论文以量子点作为发光材料来构建量子点荧光探针,并成功实现了对Hg2+、多巴胺以及生物硫醇的痕量快速检测。主要的研究内容如下:
     (1)利用量子点构筑比例荧光探针并用于Hg2+的检测
     毒性重金属离子的检测始终是环境监测领域中的一个重要课题。本论文中,我们设计并制备了一种可视化检测水溶液中Hg2+的量子点比例荧光探针。首先根据量子点荧光光谱随尺寸可调的性质,我们制备出分别发红光和绿光的CdTe/CdS量子点,然后将红色荧光的量子点包裹在二氧化硅纳米粒子内部,再把绿色荧光的量子点连接在氨基化的二氧化硅纳米粒子表面从而构筑出双波长发射的比例荧光探针。Hg2+与绿色荧光的量子点之间发生电子转移,导致绿光量子点荧光强度随Hg2+浓度的增大而逐渐猝灭;但包裹在二氧化硅内部的红色荧光量子点却由于有硅层的保护而不会受到Hg2+的影响,其荧光强度也基本不受环境中Hg2+的影响,因而基本保持不变。因此可根据两种量子点荧光强度比值的变化而引起的溶液发光颜色改变来实现对Hg2+的快速可视化检测。在紫外灯照射下,随着Hg2+浓度的增大,探针溶液从黄绿色逐渐变为红色。在我们的实验条件下,探针对Hg2+的检测限可以达到3.1nM。实验结果表明,该探针对Hg2+显示出较好的识别能力,常见金属离子基本不会对Hg2+的检测产生影响。此外,将该探针用于测定生物样品中Hg2+浓度也可以得到较为满意的结果。
     (2)腺苷包覆的量子点荧光探针检测多巴胺
     多巴胺是一种与神经传导有关的生物小分子,人体中多巴胺的缺失可能会导致一些神经性的疾病。多巴胺在水溶液中很容易发生氧化,生成多巴胺醌,而多巴胺醌则是一种良好的电子受体。基于多巴胺的这一性质,我们构筑了一种可有效检测多巴胺的量子点荧光探针。首先通过配体交换的方法,采用商用廉价的腺苷作为水溶性配体,从高质量的油溶性CdSe/CdS/ZnS量子点制得了腺苷配体包覆的水溶性量子点,然后利用腺苷与多巴胺醌之间的非共价相互作用将多巴胺醌吸附到量子点表面,在激发态的量子点与多巴胺醌之间发生电子转移,导致量子点的荧光猝灭,从而成功实现对多巴胺的高灵敏性检测。该探针对多巴胺具有优异的选择性,其它常见氨基酸的存在不会影响探针对多巴胺的检测,且该探针还可以将多巴胺与采用电化学方法检测时易对其产生干扰的抗坏血酸和尿酸区分。在我们的实验条件下,探针对多巴胺的检测限可以达到29.3nM。另外,该探针也可成功应用于对生物样品中多巴胺的检测。
     (3)利用水相合成的CdTe/CdS量子点检测生物硫醇
     生物硫醇(如谷胱甘肽、半胱氨酸、高半胱氨酸)参与了人体内许多重要的生命活动,人体中生物硫醇的异常变动会引起许多严重的疾病。因此,实现对生物硫醇的快速实时检测对于疾病的诊断及治疗都具有十分重要的意义。本论文中,我们直接采用水相合成的巯基丙酸包覆的CdTe/CdS量子点,利用量子点与TiO2纳米粒子之间的电子转移导致量子点荧光猝灭以及生物硫醇与量子点表面金属离子的强配位作用阻碍量子点与TiO2纳米粒子之间的电子转移从而使量子点荧光得以恢复的机理,设计了一种可以检测水环境中生物硫醇的量子点荧光探针。具体检测原理如下:当TiO2纳米粒子加入到量子点溶液中时,量子点表面的巯基丙酸配体与TiO2纳米粒子表面的Ti原子之间的形成的共价键,使得量子点被吸附到TiO2表面。由于TiO2的导带能位低于量子点的导带能位,故光生电子能够从量子点的激发态注入到TiO2纳米粒子的激发态,从而导致量子点的荧光猝灭。当生物硫醇加入到TiO2与量子点的混合体系中时,生物硫醇因具有比巯基丙酸更强的配位能力,取代了原来量子点表面的巯基丙酸配体,增大了TiO2纳米粒子与量子点之间的距离,从而阻碍了量子点与TiO2纳米粒子之间的电子转移,使量子点的荧光得以恢复,进而达到检测生物硫醇的目的。三种生物硫醇对量子点荧光恢复能力的大小依次为谷胱甘肽>高半胱氨酸>半胱氨酸。在最优化的实验条件下,CdTe/CdS量子点探针对谷胱甘肽、半胱氨酸和高半胱氨酸的检测限分别为0.17μM,0.28μM和0.15μM。探针对生物硫醇显示出良好的选择性和抗干扰能力,其它19种天然氨基酸的存在不会对生物硫醇的检测结果造成干扰。此外,将该探针用于对生物样品中谷胱甘肽的测定也得到令人满意的结果。另外,通过将量子点固定在普通的滤纸上,我们还成功地制得了一种可以快速方便的检测水溶液中谷胱甘肽的指示试纸,从而为生物硫醇的快速便捷检测提供了一个平台。
Due to quantum confinement effect, the inherent physical or chemical properties of nanoscaled materials could be tuned by changing their particle sizes. One of the intuitionistic performances of quantum confinement effect in semiconductor nanocrystal (also called quantum dots, QDs) is that the energy band gap of QDs increases upon the reduction of particle size. Therefore, different emission wavelengths can be achieved with use of the same kind of nanomaterial with different particle sizes. Compared to traditional organic dyes, QDs exhibit better photostability and continuous absorbance spectra. These properties make QDs more suitable in long-time investigation and bring forward a wider range of excitation wavelengths for QDs. Thus QDs with different emission colors can be excited by a single excitation wavelength, allowing multiplexed detection. Furthermore, QDs have narrow and symmetrical emission spectra, high emission intensity (the emission intensity of an individual particle is about100times stronger than a single dye molecular) and long fluorescence lifetime. These advantages make QDs alternative emitter for super-sensitive, multicolored, and long-time detection, tracing and imaging in biomedicine. In recent years, QDs have attracted more and more interests in the area of analysis and biological imaging. In this dissertation, QDs are used as the luminescence materials to build fluorescence probes for the selective and sensitive detection of Hg2+, dopamine and biothiols. The main research contents are as follows:
     (1) QDs-based ratiometric fluorescence probe for the detection of Hg2+
     The analysis of toxic heavy metal ions is always an important issue in environment monitoring. Ratiometric fluorescence probes that can significantly eliminate the external effects by self-calibration of two different emission bands are preferable for the detection of real samples. Here, we designed a dual-emission QDs nanocomposite as a ratiometric probe to visually detect Hg2+in aqueous solutions. The dual-emission QDs nanocomposite consists of two differently sized CdTe/CdS QDs. The red-emitting larger sized CdTe/CdS QDs were embedded in silica nanoparticles, while the green-emitting smaller sized ones were covalently conjugated onto the silica nanoparticles surface. The addition of Hg2+can only quench green fluorescence in the dual-emission QDs nanocomposites because of the electron transfer between green-emitting QDs and Hg2+. However, the red-emitting QDs were insensitive to Hg2+due to the protection of SiO2shell, and their fluorescence intensities were accordingly barely changed. The quenching of green fluorescence triggered the change of fluorescence intensity ratio of two different emission wavelengths and hence induced the evolution of fluorescence color of the probe solution with the variation of Hg2+concentration. Based on this feature, the dual-emission QDs nanocomposites can be used to develop a ratiometric fluorescence probe for visual detection of Hg2+. Under UV-light irridation, with the increasing of the Hg2+concentration, the emission color of the probe solution changed from yellow-green to red gradually, which could be directly observed by naked eye for visual detection of Hg2+. In our experimental conditions, the detection limit can reach up to3.1nM. The probe also displayed good selectivity to Hg2+under the existence of other common metal ions. In addition, it had been successfully used in the determination of Hg2+in biological samples.
     (2) Adenosine capped QDs based fluorescence probe for the detection of dopamine.
     Dopamine (DA) is a kind of neurotransmitter, its deficiency in human body may lead to some neurological diseases. DA is very susceptible to be oxidized in aqueous solution, generating dopamine quinone (DAQ), which is a good electron acceptor. According to this property of DA, a QDs based fluorescent probe was synthesized for highly sensitive and selective detection of DA. In this assay, adenosine served as a capping ligand or stabilizer for QDs to render initial oil-soluble QDs with high quality dispersed in water; and as a receptor for DA to attach DA onto the surface of adenosine capped QDs. DA molecules can bind to adenosine capped QDs via non-covalent bonding, resulting in the fluorescence quenching of QDs due to the electron transfer between QDs and DAQ, thus enabling the detection of DA. The A-QDs based fluorescence probe showed a limit of detection of ca.29.3nM for DA detection. This facile method exhibited high selectivity and anti-interference in the presence of amino acid, ascorbic acid (AA), uric acid (UA) and glucide with100-fold higher concentration. Moreover, it was successfully used in the detection of DA in the human urine samples with quantitative recoveries.
     (3) CdTe/CdS QDs based fluorescence probe for the detection of biothiols
     Biothiols (glutathione (GSH), cysteine (Cys), homocysteine (Hcy)) involved in a great number of important vital activities in human body, and unnormal alternations in the level of cellular thiols will cause many serious diseases. Thus, achieving rapid and instant detection of biothiols shows great significance for the diagnosis and treatment of illness. In this dissertation, we directly used water phase synthesized mercaptopropionic acid (MPA) capped CdTe/CdS QDs to design a fluorescent probe for the detection of biothiols in water environment. The quenched fluorescence of QDs attached to TiO2nanoparticles (TiO2NPs) was selectively switched on by biothiols through ligand replacement, which makes it feasible for facilely sensing biothiols based on the fluorescence turn on mechanism. The detailed principle is as follows:when TiO2NPs were added into the QDs solution, QDs were absorbed on the surface of TiO2NPs through the covalent bond between the terminal carboxyl group of MPA ligands and the Ti atoms on the surface of TiO2NPs, leading to the fluorescence quenching of QDs due to the electron injection from QDs to TiO2NPs. When biothiols were introduced into the QD-TiO2system, the MPA ligands on the surface of QDs may be replaced by biothiols due to the stronger coordination capacity of biothiols with metal ions on the QDs surface, and the distance between QDs and TiO2NPs is consequently enlarged. As a result, the initially quenched fluorescence of QDs is effectively recovered by the interruption of the electron transfer pathway. Based on the above features, a facil probe with excellent selectivity and high sensitivity was construced for simply sensing biothiols including GSH, Cys and Hcy. Under the optimal conditions, the detection limits of GSH, Cys and Hcy are0.17μM,0.28μM and0.15μM, respectively. The probe exhibited excellent selectivity and anti-interference ability, the presence of other19kinds of essential amino acids will not interfere with the detection of biothiols. The determination of GSH in biological samples also received satisfactory results. In addition, a novel fluorescent indicating paper was constructed by immobilizing the probe on a piece of filter paper to visually detect GSH in which only a UV lamp was used. The indicating paper provided a simple platform for facial and visual detection of biothiols.
引文
[1]李群.纳米材料的制备与应用技术.化学工业出版社.北京.2008,2-4
    [2]唐元洪,裴立宅,赵新奇.纳米材料导论.湖南大学出版社.长沙.2011,4-7
    [3]施利毅.纳米材料.华东理工大学出版社.上海.2007,5-7
    [4]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantumn dots. Science.1996, 271 (5251):933-937
    [5]Pradhan N, Xu H, Peng X. Colloidal CdSe quantum wires by oriented attachment. Nano Letters.2006,6 (4):720-740
    [6]Xia Y N, Yang P D. Chemistry and physics of nanowires. Advanced Materials.2003, 15(5):351-352
    [7]Rajeshwar K, de Tacconi N R, Chenthamarakshan C R. Semiconductor-Based Composite Materials:Preparation, Properties, and Performance[J]. Chemistry of Materials.2001, 13(9):2765-2782
    [8]Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum Dots — Characterization, Preparation and Usage in Biological Systems[J]. International Journal of Molecular Sciences.2009,10(2):656-673
    [9]Trindade T, O'Brien P, Pickett N L. Nanocrystalline semiconductors:Synthesis, properties, and perspectives[J]. Chemistry of Materials.2001,13(11):3843-3858
    [10]Burda C, Chen X B, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews.2005,105(4):1025-1102
    [11]Reiss P, Protiere M, Li L. Core/Shell Semiconductor Nanocrystals[J]. Small.2011,5(2): 154-168
    [12]Hens Z, Capek R K. Size tuning at full yield in the synthesis of colloidal semiconductor nanocrystals, reaction simulations and experimental verification[J]. Coordination Chemistry Reviews.2014,263-264:217-228
    [13]Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels[J]. Science.1998,281(5385):2013-2016
    [14]Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science.1998,281(5385):2016-2018
    [15]Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials.2005,4(6):435-446
    [16]Nie S M, Xing Y, Kim G J, Simons J W. Nanotechnology Applications in Cancer[J]. Annual Review of Biomedicine Engineering.2007,9:257-288
    [17]Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science.2005,307(5709):538-544
    [18]Chan W C W, Maxwell D J, Gao X H, Bailey R E, Han M Y, Nie, S M. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current Opinion in Biotechnology.2002,13(1):40-46
    [19]Smith A M, Duan H W, Mohs A M, Nie S M. Bioconjugated quantum dots for in vivo molecular and cellular imaging[J]. Advaced Drug Delivery Reviews.2008,60(11): 1226-1240
    [20]Somers R C, Bawendi M G, Nocera D G. CdSe nanocrystal based chem-/bio-sensors[J]. Chemical Society Reviews.2007,36(4):579-591
    [21]Ma Q, Su X G. Recent advances and applications in QDs-based sensors[J]. Analyst.2011, 136(23):4883-4893
    [22]Li J J, Zhu J J. Quantum dots for fluorescent biosensing and bio-imaging applications [J]. Analyst.2013,138(9):2506-2515
    [23]Lou Y B, Zhao Y X, Chen J X, Zhu J J. Metal ions optical sensing by semiconductor quantum dots[J]. Journal of Materials Chemistry C.2014,2(4):595-613
    [24]Raymo F M, Yildiz I. Luminescent chemosensors based on semiconductor quantum dots[J]. Physical Chemistry Chemical Physics.2007,9(17):2036-2043
    [25]Mattoussi H, Palui G, Na H B. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes[J]. Advanced Drug Delivery Reviews.2012, 64(2):138-166
    [26]Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs)[J]. Chemical Society Reviews.2012,41(10):4067-4085
    [27]Wu P, Zhao T, Wang S L, Hou X D. Semicondutor quantum dots-based metal ion probes[J]. Nanoscale.2014,6(1):43-64
    [28]Tyrakowski C M, Snee P T. A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status[J]. Physical Chemistry Chemical Physics.2014,16(3):837-855
    [29]Kamat P V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters[J]. The Journal of Physical Chemistry C.2008,112(48):18737-18753
    [30]Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. Journal of the American Chemical Society.2008,13(12):4007-4015
    [31]Hillhouse H W, Beard M C. Solar cells from colloidal nanocrystals:Fundamentals, materials, devices, and economics[J]. Current Opinion in Colloid and Interface Science. 2009,14(4):245-259
    [32]Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells[J]. Chemical Reviews.2010, 110(11):6873-6890
    [33]Ruhle S, Shalom M, Zaban A. Quantum-Dot-Sensitized Solar Cells[J]. Chemphyschem. 2010,11(11):2290-2304
    [34]Kamat P V, Tvrdy K, Baker D R, Radich J G. Beyond Photovoltaics:Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells[J]. Chemical Reviews.2010,110(11), 6664-6688
    [35]Kamat P V. Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics[J]. The Journal of Physical Chemistry Letters.2013,4(6):908-918
    [36]Roelofs K E, Brennan T P, Bent S F. Interface Engineering in Inorganic-Absorber Nanostructured Solar Cells[J]. The Journal of Physical Chemistry Letters.2014,5(2): 348-360
    [37]Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature.1994,370(6488): 354-357
    [38]Li X L, Jia Y, Cao A Y. Tailored Single-Walled Carbon Nanotube-CdS Nanoparticle Hybrids for Tunable Optoelectronic Devices[J]. ACS Nano,2010,4(1):506-512
    [39]Bhattacharya P, Mi Z. Quantum dot Optoelectronic Devices [J]. Proceedings of the IEEE. 2007,95(9):1723-1740
    [40]Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications[J]. Chemical Reviews.2010, 110(1):389-458
    [41]唐爱伟,滕枫,王元敏,周庆成,王永生.Ⅱ-Ⅵ族半导体量子点的发光特性及其应用研究进展[J].2005,20(4):302-308
    [42]Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots[J]. Physical Review B.1993,47(8): 4569-4585
    [43]Steigerwald ML, Brus LE. Semiconductor crystallites-a class of large molecules[J]. Accounts of Chemical Research.1990,23(6):183-188
    [44]Michalet X, Pinaud F, Lacoste T D, Dahan M, Bruchez M P, Alivisatos A P, Weiss S. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling[J]. Single Molecules.2001,2(4):261-276
    [45]Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Shape control of CdSe nanocrystals[J]. Nature.2000,404(6773):59-61
    [46]Yin Y D, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature.2005,437(7059):664-670
    [47]Park J N, Joo J, Kwon S G, Jang Y J, Hyeon T W. Synthesis of Monodisperse Spherical Nanocrystals[J]. Angewandte Chemie International Edition.2007,46(25):4630-4660
    [48]Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles:syntheses, optical properties, and biological applications [J]. Analytical and Bioanalytical Chemistry.2008,391(7):2469-2495
    [49]Murray C B, Noms D J, Bawendi M G. synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. Journal of the American Chemical Society.1993,115(19):8706-8715
    [50]Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society.2001,123(1):183-184
    [51]Costa-Fernandez J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing[J]. TrAC-Trends in Analytical Chemistry.2006,25(3):207-218
    [52]Battaglia D, Peng X. Formation of High Quality InP and InAs Nanocrystals in a Non-Coordinating Solvent[J]. Nano Letters.2002,2(9):1027-1030
    [53]Yu W W, Falkner J C, Colvin V L et al. Preparation and characterization of monodisperse PbSe nanocrystals in a non-coordinating Solvent[J]. Chemistry of Materials.2004,16(17): 3318-3322
    [54]Li L S, Pradhan N, Wang Y J, Peng X. High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursor[J]. Nano Letters.2004,4(11):2261-2264.
    [55]Asokan S, Krueger K M, Alkhawaldeh A, Carreon A R, Mu Z, Colvin V L, Mantzaris N V, Wong M S. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods[J]. Nanotechnology.2005, 16(10):2000-2011
    [56]Wang J, Long Y T, Zhang Y L, Zhong X H, Zhu L Y. Preparation of Highly Luminescent CdTe/CdS Core/Shell Quantum Dots[J]. Chemphyschem.2009,10(4):680-685
    [57]Cirillo M, Aubert T, Gomes R, Deun R V, Emplit P, Biermann A, Lange H, Thomsen C, Brainis E, Hens Z. "Flash" Synthesis of CdSe/CdS Core-Shell Quantum Dots[J]. Chemistry of Materials.2014,26(2):1154-1160
    [58]CapekR K, Lambert K, Dorfs D, Smet P F, Poelman D, Eychmuller A, Hens Z. Synthesis of Extremely Small CdSe and Bright Blue Luminescent CdSe/ZnS Nanoparticles by a Prefocused Hot-Injection Approach[J]. Chemistry of Materials.2009,21(8):1743-1749
    [59]Pradhan N, Goorskey D, Thessing J, Peng X G. An Alternative of CdSe Nanocrystal Emitters:Pure and Tunable Impurity Emissions in ZnSe Nanocrystals[J]. Journal of the American Chemical Society.2005,127(50):17586-17587
    [60]Pradhan N, Peng X G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry[J]. Journal of the American Chemical Society.2007,129(11):3339-3347
    [61]Rogach A L, Katsikas L, Kornowski A, Su D S, Eychmuller A, Weller H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals[J]. Berichte der Bunsengesellschaft fur physikalische Chemie.1996,100(11):1772-1778
    [62]Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A and Weller H. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification[J]. The Journal of Physical Chemistry B.1998,102(43):8360-8363
    [63]Gaponik N, Kornowski A, Eychmuller A, Weller H. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes[J]. The Journal of Physical Chemistry B.2002,106(29):7177-7185
    [64]Rogach A L, Franzl T, Klar T, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich Y, Donegan J F. Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art[J]. The Journal of Physical Chemistry C.2007,111(40):14628-14637
    [65]Guo J, Yang W L, Wang C C. Systematic Study of the Photoluminescence Dependence of Thiol-Capped CdTe Nanocrystals on the Reaction Conditions[J]. The Journal of Physical Chemistry B.2005,109(37):17467-17473.
    [66]Qian H F, Dong C Q, Wang J F, Ren J C. Facile one-pot synthesis of highly luminescent, water-soluble and bio—compatible glutathione coated CdTe quantum Dots in aqueous phase[J]. Small.2006,2(6):747-751
    [67]Gu Z Y, Zou L, Fang Z, Zhu W H, Zhong X H. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase[J]. Nanotechnology.2008,19(13): 135604
    [68]Zeng Q H, Kong X G, Sun Y J, Zhang Y L, Tu L P, Zhao J L, Zhang H. Synthesis and optical properties of type II CdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction[J]. Journal of Physical Chemistry C.2008, 112(23):8587-8593
    [69]Peng H, Zhang L J, Soeller C, Travas-Sejdic J. Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability[J]. Journal of Luminscence.2007, 127(2):721-726
    [70]Liu Y F, Yu J S. In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility[J]. Journal of Colloid and Interface Chemistry.2010, 351(1):1-9
    [71]Xu S H, Wang C L, Xu Q Y, Zhang H S, Li R Q, Shao H B, Lei W, Cui Y P. Key Roles of Solution pH and Ligands in the Synthesis of Aqueous ZnTe Nanoparticles[J]. Chemistry of Materials.2010,22(21):5838-5844
    [72]Fang Z, Li Y, Zhang H, Zhong X H, Zhu L Y. Facile Synthesis of Highly Luminescent UV-Blue-Emitting ZnSe/ZnS Core/Shell Nanocrystals in Aqueous Media[J]. Journal of Physical Chemistry C.2011,113(32):14145-14150
    [73]Zhu D, Jiang X X, Zhao C E, Sun X L, Zhang J R, Zhu J J. Green synthesis and potential application of low-toxic Mn:ZnSe/ZnS core/shell luminescent nanocrystals [J]. Chemical Communications.2010,46(29):5226-5228
    [74]Zhao D, He Z K, Chan W H, Choi, M M F, Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-L-cysteine Via Hydrothermal Method[J]. Journal of Physical Chemistry C. 2009,113(4):1293-1300
    [75]He Y, Lu H T, Sai L M, Su Y Y, Hu M, Fan C H, Huang W, Wang L H. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility[J]. Advanced Materials.2008,20(18):3416-3421
    [76]Shi J J, Wang S, He T T, Abdel-Halim E S, Zhu J J. Sonoelectrochemical synthesis of water-soluble CdTe quantum dots[J]. Ultrasonics Sonochemistry.2014,21(2):493-498
    [77]Yong K T, Ding H, Roy I, Law W C, Bergey E J, Maitra A, Prasad P N. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots[J]. ACS Nano.2009,3(3): 502-510
    [78]Liu W H, Choi, H S, Zimmer J P, Tanaka E, Frangioni J V, Bawendi M. Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for in Vivo Applications [J]. Journal of the American Chemical Society.2007,129(47):14530-14531
    [79]Zylstra J, Amey J, Miska N J, Pang L, Hine C R, Langer J, Doyle R P, Maye M M. A Modular Phase Transfer and Ligand Exchange Protocol for Quantum Dots[J]. Langmuir. 2011,27(8):4371-4379
    [80]Clapp A R, Goldman E R, Mattoussi H. Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins[J]. Nature Protocols.2006,1(3):1258-1266
    [81]Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach A L, Keller S, Radler J, Natile G, Parak W J. Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell:A General Route to Water Soluble Nanocrystals [J]. Nano Letters.2007,4(4): 703-707
    [82]Lin C A J, Sperling R A, Li J K, Yang T Y, Li P Y, Zanella M, Chang W H, Parak W J. Design of an amphiphilic polymer for nanoparticle coating and functionalization[J]. Small.2008,4(3):334-341
    [83]Yu W W, Chang E, Falkner J C, Zhang J Y, Al-Somali A M, Sayes C M, Johns J, Drezek R, Colvin V L. Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers[J]. Journal of the American Chemical Society.2007,129(10): 2871-2879
    [84]Duan H W, Nie S M. Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings [J]. Journal of the American Chemical Society. 2007,129(11):3333-3338
    [85]Zhang T R, Ge J P, Hu Y X, Yin Y D. A General Approach for Transferring Hydrophobic Nanocrystals into Water[J]. Nano Letters.2007,7(10):3203-3207
    [86]Guo W Z, Li J J, Wang Y A, Peng X G. Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging[J]. Chemistry of Materials.2003,15(16):3125-3133
    [87]Liu Y C, Kim M S, Wang Y J, Wang Y A, Peng X G. Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Core-Shell Dendron Nanocrystals with Carboxylate Anchoring Groups[J]. Langmuir.2006,22(14):6341-6345
    [88]Mulvaney P, Liz-Marzan L M, Giersig M, Ung T. Silica encapsulation of quantum dots and metal clusters[J]. Journal of Material Chemistry.2000,10(6):1259-1270
    [89]Li H B, Qu F G. Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides [J]. Chemistry of Materials.2007,19(17):4148-4154
    [90]Bardi G, Malvindi M A, Gherardini L, Costa M, Pompa P P, Cingolani R, Pizzorusso T. The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance [J]. Biomaterials.2010,31(25):6555-6566
    [91]Yang P, Ando M, Murase N. Highly Luminescent CdSe/CdxZnl-xS Quantum Dots Coated with Thickness-Controlled SiO2 Shell through Silanization[J]. Langmuir.2011, 27(15):9535-9540
    [92]Yang Y H, Gao M Y. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method[J]. Advanced Materials.2005, 17(19):2354-2357
    [93]Koole R, van Schooneveld M M, Hilhorst J, Donega C de M,'t Hart D C, van Blaaderen A, Vanmaekelbergh D, Meijerink A. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method[J]. Chemistry of Materials.2008,20(7):2503-2512
    [94]Yiidiz I, Tomasulo M, Raymo F M. A mechanism to signal receptor-substrate interactions with luminescent quantum dots[J]. Proceedings of the National Academy of Science of the United States of America.2006,103(31):11457-11460
    [95]de Silva A P, Fox D B, Moody T S, Weir S M. The development of molecular fluorescent switches[J]. Trends in Biotechnology.2001,19(1):29-34
    [96]Beija M, Afonso C A M, Martinho J M G. Synthesis and applications of Rhodamine derivatives as fluorescent probes[J]. Chemical Society Reviews.2009,38(8):2410-2433
    [97]Cordes D B, Gamsey S, Singaram B. Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution[J]. Angewandte Chemie International Edition.2006,45(23):3829-3832
    [98]Liu J F, Bao C Y, Zhong X H, Zhao C C, Zhu L Y. Highly selective detection of glutathione using a quantum-dot-based OFF-ON fluorescent probe[J]. Chemical Communications.2010,46(17):2971-2973
    [99]Banerjee S, Kar S, Perez J M, Santra S. Quantum Dot-Based OFF/ON Probe for Detection of Glutathione [J]. The Journal of Physical Chemistry C.2009,113(22): 9659-9663
    [100]Yuan J P, Guo W W, Wang E K. Quantum dots-bienzyme hybrid system for the sensitive determination of glucose [J]. Biosensors and Bioelectronics.2008,23(10): 1567-1571
    [101]Gill R, Freeman R, Xu J P, Willner I, Winograd S, Shweky I, Banin U. Probing Biocatalytic Transformations with CdSe-ZnS QDs[J]. Journal of the American Chemical Society.2006,128(48):15376-15377
    [102]Dorokhin D, Tomczak N, Velders A H, Reinhoudt D N, Vancso G J. Photoluminescence Quenching of CdSe/ZnS Quantum Dots by Molecular Ferrocene and Ferrocenyl Thiol Ligands[J]. The Journal of Physical Chemistry C.2009,113(43): 18676-18680
    [103]Zhao D, Chan W H, He Z K, Qiu T. Quantum Dot-Ruthenium Complex Dyads: Recognition of Double-Strand DNA through Dual-Color Fluorescence Detection[J]. Analytical Chemistry.2009,81(9):3537-3543
    [104]Medintz I L, Farrell D, Susumu K, Trammell S A, Deschamps J R, Brunel F M, Dawson P E, Mattoussi H. Multiplex Charge-Transfer Interactions between Quantum Dots and Peptide-Bridged Ruthenium Complexes[J]. Analytical Chemistry.2009,81(12): 4831-4839
    [105]Gao D Y, Shen Z H, Han H Y. A novel method for the analysis of calf thymus DNA based on CdTe quantum dots-Ru(bpy)(3)(2+) photoinduced electron transfer system[J]. Microchimica Acta.2010,168(3-4):341-345
    [106]Freeman R, Finder T, Bahshi L, Gill R, Willner I. Functionalized CdSe/ZnS QDs for the Detection of Nitroaromatic or RDX Explosives[J]. Advanced Materials.2012,24(48): 6416-6421
    [107]Choi J H, Chen K H, Strano M S. Aptamer-Capped Nanocrystal Quantum Dots:A New Method for Label-Free Protein Detection[J]. Journal of the American Chemical Society. 2006,128(49):15584-15585
    [108]Newton M D. Quantum chemical probes of electron-transfer kinetics:the nature of donor-acceptor interactions[J]. Chemical Reviews.1991,91(5):767-792
    [109]Forster T. Zwischenmolekulare energiewanderung und fluoreszenz[J]. Annalen Der Physik,1948,2(1-2):55-75
    [110]Yuan L, Lin W Y, Zheng K B, Zhu S S. FRET-Based Small-Molecule Fluorescent Probes:Rational Design and Bioimaging Applications[J]. Accounts of Chemical Research.2013,46(7):1462-1473
    [111]Dong H F, Gao W C, Yan F, Ji H X, Ju H X. Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules[J]. Analytical Chemistry.2010,82(13):5511-5517
    [112]Algar W R, Krull U J. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET)[J]. Analytica Chimica Acta.2007,581(2):193-201
    [113]Geng Y, Li D J, Shao L J, Yan F, Ju H X. Cellular Delivery of Quantum Dot-Bound Hybridization Probe for Detection of Intracellular Pre-MicroRNA Using Chitosan/Poly(γ-Glutamic Acid) Complex as a Carrier[J]. PloS One.2013,8(6):e65540.
    [114]Zhang C Y, Johnson L W. Quantum-Dot-Based Nanosensor for RRE IIB RNA-Rev Peptide Interaction Assay [J]. Journal of the American Chemical Society.2006,128(16): 5324-5325
    [115]Woolhead C A, McCormick P J, Johnson A E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins[J]. Cell.2004,116(6):725-736
    [116]Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots[J]. Journal of the American Chemical Society.2003,125(46):13918-13919
    [117]Bakalova R, Zhelev Z, Ohba H, Baba Y. Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences [J]. Journal of the American Chemical Society.2005,127(32):11328-11335
    [118]Randriamampita C, Trautmann A. Ca2+signals and T lymphocytes; New mechanisms and functions in Ca2+signaling[J]. Biology of the Cell.2004,96(1):69-78
    [119]Snee P T, Somers R C, Nair G, Zimmer J P, Bawendi M G, Nocera D G. A Ratiometric CdSe/ZnS Nanocrystal pH Sensor [J]. Journal of the American Chemical Society.2006, 128(41):113320-13321
    [120]Somers R C, Lanning R M, Snee P T, Greytak A B, Jain R K, Bawendi M G, Nocera D G. A nanocrystal-based ratiometric pH sensor for natural pH ranges[J]. Chemical Science. 2012,3(10):2980-2985
    [121]Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B, Mauro J M. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature Materials.2003,2(9):630-638
    [122]Goldman E R, Medintz I L, Whitley J L, Hayhurst A, Clapp A R, Uyeda H T, Deschamps J R, Lassman M E, Mattoussi H. A Hybrid Quantum Dot-Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor [J]. Journal of the American Chemical Society.2005,127(18):6744-6751
    [123]Puente X S, Sanchez L M, Overall C M, Lopez-Otin C. Human and mouse proteases:a comparative genomic approach[J]. Nature Reviews Genetics.2003,4(7):544-558
    [124]Puente X S, Lopez-Otin C. A Genomic Analysis of Rat Proteases and Protease Inhibitors[J]. Genome Research.2004,14(4):609-622
    [125]Shi L F, De Paoli V, Rosenzweig N, Rosenzweig Z. Synthesis and Application of Quantum Dots FRET-Based Protease Sensors [J]. Journal of the American Chemical Society.2006,128(32):10378-10379
    [126]Kim Y P, Oh Y H, Oh E, Ko S, Han M K, Kim H S. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface[J]. Analytical Chemistry.2008,80(12):4634-4641.
    [127]Lowe S B, G. Dick J A, Cohen B E, Stevens M M. Multiplex Sensing of Protease and Kinase Enzyme Activity via Orthogonal Coupling of Quantum DotPeptide Conjugates[J]. ACS Nano.2012,6(1):851-857
    [128]Dennis A M, Bao G. Quantum Dot-Fluorescent Protein Pairs as Novel Fluorescence Resonance Energy Transfer Probes[J]. Nano Letters.2008,8(5):1439-1445
    [129]Dennis A M, Rhee W J, Sotto D, Dublin S N, Bao G. Quantum Dot_Fluorescent Protein FRET Probes for Sensing Intracellular pH. ACS Nano.2012,6(4):2917-2924
    [130]Gueroui Z, Libchaber A. Single-molecule measurements of gold-quenched quantum dots[J]. PhysIcal Review Letters.2004,93(16):166108
    [131]Pons T, Medintz I L, Sapsford K E, Higashiya S, Grimes A F, English D S, Mattoussi H. On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles[J]. Nano Letters.2007,7(10):3157-3164
    [132]Daniel M C, Astruc D. Gold Nanoparticles:□Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews.2004,104(1):293-346
    [133]Yun C S, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich N O, Strouse G F. Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier[J]. Journal of the American Chemical Society.2005,127(9):3115-3119
    [134]Oh E, Lee D, Kim Y P, Cha S Y, Oh D B, Kang H A, Kim J, Kim H S. Nanoparticle-Based Energy Transfer for Rapid and Simple Detection of Protein Glycosylation[J]. Angewandte Chemie International Edition.2006,45(47):7959-7963
    [135]Li M, Wang Q Y, Shi X D, Hornak L A, Wu N Q. Detection of Mercury(II) by Quantum Dot/DNA/Gold Nanoparticle Ensemble Based Nanosensor Via Nanometal Surface Energy Transfer[J]. Analytical Chemistry.2011,83(18):7061-7065
    [136]Xue M, Wang X, Duan L L, Gao W, Ji L F, Tang B. A new nanoprobe based on FRET between functional quantum dots and gold nanoparticles for fluoride anion and its applications for biological imaging[J]. Biosensors and Bioelectronics.2012,36(1): 168-173
    [137]Medintz I L, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology [J]. Physical Chemistry Chemical Physics.2009,11(1): 17-45
    [138]Clapp A R, Medintz I L, Fisher B R, Anderson G P, Mattoussi H. Can Luminescent Quantum Dots Be Efficient Energy Acceptors with Organic Dye Donors?[J]. Journal of the American Chemical Society.2005,127(4):1242-1250
    [139]Charbonniere L J, Hildebrandt N, Ziessel R F, Lohmannsroben H. Lanthanides to Quantum Dots Resonance Energy Transfer in Time-Resolved Fluoro-Immunoassays and Luminescence Microscopy [J]. Journal of the American Chemical Society.2006,128(39): 12800-12809
    [140]Harma H, Pihlasalo S, Cywinski P J, Mikkonen P, Hammann T, Lohmannsroben H, P Hanninen. Protein Quantification Using Resonance Energy Transfer between Donor Nanoparticles and Acceptor Quantum Dots[J]. Analytical Chemistry.2013,85(5): 2921-2926
    [141]Li J, Zhao X W, Zhao Y J, Gu Z Z. Quantum-dot-coated encoded silica colloidal crystals beads for multiplex Coding[J]. Chemical Communications.2009,45(17): 2329-2331
    [142]Sukhanova A, Nabiev I. Fluorescent nanocrystal-encoded microbeads for multiplexed cancer imaging and diagnosis[J]. Critical Reviews in Oncology/Hematology.2008,68(1): 39-59
    [143]Han M Y, Gao X H, Su J K, Nie S M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature biotechnology.2001,19(7):631-635
    [144]Hu J, Wen C Y, Zhang Z L, Xie M, Hu J, Wu M, Pang D W. Optically Encoded Multifunctional Nanospheres for One-Pot Separation and Detection of Multiplex DNA Sequences[J]. Analytical Chemistry.2013,85(24):11929-11935
    [145]Wilson R, Spiller D G, Prior I A, Veltkamp K J, Hutchinson A. A Simple Method for Preparing Spectrally Encoded Magnetic Beads for Multiplexed Detection [J]. ACS Nano. 2007,1(5):487-493
    [146]Walling M A, Wang S C, Shi H, Shepard J R E. Quantum dots for positional registration in live cell-based arrays[J]. Analytical and Bioanalytical Chemistry.2010, 398(3):1263-1271
    [147]D Geiβler, Charbonniere L J, F Ziessel R, Butlin N G, Lohmannsroben H, Hildebrandt N. Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics[J]. Angewandte Chemie International Edition.2010,49(8):49,1396-1401
    [148]Gao Y L, Stanford W L, Chan W C W. Quantum-Dot-Encoded Microbeads for Multiplexed Genetic Detection of Non-amplifi ed DNA Samples[J]. Small.2011,7(1): 137-146
    [149]Tang B C, Zhao X W, Zhao Y J, Zhang W D, Wang Q R, Kong L F, Gu Z Z. Binary Optical Encoding Strategy for Multiplex Assay [J]. Langmuir.2012,27(18): 11722-11728
    [150]Nolan E M, Lippard S J. Tools and Tactics for the Optical Detection of Mercuric Ion[J]. Chemical Reviews.2008,108(9):3442-3480
    [151]Grandjean P, Weihe P, White R F, Debes F. Cognitive Performance of Children Prenatally Exposed to "Safe" Levels of Methylmercury[J]. Environmental Research. 1998,77(2):165-172
    [152]Sanchez-Rodas D, Corns W T, Chen B, Stockwell P B. Atomic Fluorescence Spectrometry:a suitable detection technology in speciation studies for arsenic, selenium, antimony and mercury[J]. Journal of Analytical Atomic Spectrometry.2010,25(7): 933-946
    [153]Leopold K, Foulkes M, Worsfold P. Methods for the determination and speciation of mercury in natural waters-A review[J]. Analytica Chimica Acta.2010,663(2):127-138
    [154]Kim H N, Ren W X, Kim J S, Yoon J Y. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chemical Society Reviews.2012,41(8): 3210-3244
    [155]Culzoni M J, de la Pena A M, Machuca A, Goicoechea H C, Babiano R. Rhodomine and BODIPY chemdosimeters and chemsensors for the detection of Hg2+, based on fluorescence enhancement effect[J]. Analytical Methods.2013,5(1):30-49
    [156]Ni J K, Li Q Y, Li B, Zhang L M. A novel fluorescent probe based on rhodamine B derivative for highly selective and sensitive detection of mercury (II) ion in aqueous solution[J]. Sensors and Actuators B:Chemical.2013,186:278-285
    [157]Gong Y J, Zhang X B, Chen Z, Yuan Y, Jin Z, Mei L, Zhang J, Tan W H, Shen G L, Yu R Q. An efficient rhodamine thiospirolactam-based fluorescent probe for detection of Hg2+in aqueous samples[J]. Analyst.2012,137(4):932-938
    [158]Chen Y Q, Bai H, Hong W J, Shi G Q. Fluorescence detection of mercury ions in aqueous media with the complex of a cationic oligopyrene derivative and oligothymine[J]. Analyst.2009,134(10):2081-2086
    [159]Yang Y, Gou X J, Blecha J, Cao H S. A highly selective pyrene based fluorescent sensor toward Hg2+detection[J]. Tetrahedron Letters.2009,51(26):3422-3425
    [160]Kumar M, Kumar N, Bhalla V. Rhodamine appended thiacalix[4]arene of 1,3-alternate conformation for nanomolar detection of Hg2+ions[J]. Sensors and Actuators B: Chemical.2012,161(1):311-316
    [161]Costa-Fernandez J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing[J]. Trends in Analytical Chemistry.2006,25(3):207-218
    [162]Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chemical Reviews.2005,105(4):1025-1102
    [163]Frasco M F, Chaniotakis N. Semiconductor Quantum Dots in Chemical Sensors and Biosensors[J]. Sensors.2009,9(9):7266-7286
    [164]Wang C, Ma Q, Dou W C, Kanwal S, Wang G N, Yuan P F, Su X G. Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes[J]. Talanta.2009,77(4) 1358-1364
    [165]Wang Y Q, Liu Y, He X W, Li W Y, Zhang Y K. Highly sensitive synchronous fluorescence determination of mercury (II) based on the denatured ovalbumin coated CdTe QDs[J]. Talanta.2012,99:69-74
    [166]Yang F P, Ma Q, Yu W, Su X G. Naked-eye colorimetric analysis of Hg2+ with bi-color CdTe quantum dots multilayer films [J]. Talanta.2011, (84):411-415
    [167]Fan J L, Hu M M, Zhan P, Peng X J. Energy transfer cassettes based on organic fluorophores:construction and applications in ratiometric sensing[J]. Chemical Society Reviews.2013,42(1):29-43
    [168]Velu R, Won N Y, Kwag J H, Jung S W, Hur J H, Kim S J, Park N Y. Metal ion-induced dual fluorescent change for aza-crown ether acridinedione-functionalized gold nanorods and quantum dots[J]. New Journal of Chemistry.2012,36(9):1725-1728
    [169]Zhu H J, Zhang W, Zhang K, Wang S H. Dual-emission of a fluorescent graphene oxide-quantum dot nanohybrid for sensitive and selective visual sensor applications based on ratiometric fluorescence[J]. Nanotechnology.2012,23(31):315502
    [170]Gui R J, An X Q, Huang W X. An improved method for ratiometric fluorescence detection of pH and Cd2+using fluorescein isothiocyanate-quantum dots conjugates[J]. Analytica Chimica Acta.2013,767:134-140
    [171]Noor M O, Shahmuradyan A, Krull U J. Paper-Based Solid-Phase Nucleic Acid Hybridization Assay Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer[J]. Analytical Chemistry.2013,85(3):1860-1867
    [172]Albers A E, Chan E M, McBride P M, Ajo-Franklin C M, Cohen B E, Helms B A. Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells [J]. Journal of the American Chemical Society. 2012,134(23):9565-9568
    [173]Zhang K, Zhou H B, Mei Q S, Wang S H, Guan G J, Liu R Y, Zhang J, Zhang Z P. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid[J]. Journal of the American Chemical Society.2011,133(22):8424-8427
    [174]Collier B B, Singh S, McShane M. Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots[J]. Analyst,2011(5):962-967
    [175]Zou W S, Qiao J Q, Hu X, Ge X, Lian H Z. Synthesis in aqueous solution and characterisation of a new cobalt-doped ZnS quantum dot as a hybrid ratiometric chemosensor[J]. Analytica Chimica Acta.2011,708(1-2):134-140
    [176]Gui R J, An X Q, Su H J, Shen W G, Zhu L Y, Ma X Y, Chen Z Y, Wang X Y Rhodamine 6G conjugated-quantum dots used for highly sensitive and selective ratiometric fluorescence sensor of glutathione[J]. Talanta 2012,94:295-300
    [177]Page L E, Zhang X, Jawaid A M, Snee P T. Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor[J]. Chemical Communications.2011,47(27): 7773-7775
    [178]Liu B Y, Zeng F, Wu G F, Wu S Z. Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors [J]. Analyst.2012, 137(16):3717-3724
    [179]Hu B, Hu L L, Chen M L, Wang J H. A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells[J]. Biosensors and Bioelectronics.2013,49:499-505
    [180]Liu H Z, Yu P, Du D, He C Y, Qiu B, Chen X, Chen G N. Rhodamine-based ratiometric fluorescence sensing for the detection of mercury(II) in aqueous solution[J]. Talanta. 2010,81(1-2):433-437
    [181]Sun X Y, Liu B, Xu Y B. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg [J]. Analyst.2012,2012,137(5): 1125-1129
    [182]Cao B M, Yuan C, Liu B H, Jiang C L, Guan G J, Han M Y. Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots[J]. Analytica Chimica Acta.2013,786,146-152
    [183]Zhang K, Zhou H B, Mei Q S, Wang S H, Guan G J, Liu R Y, Zhang J, Zhang Z P. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid[J]. Journal of the American Chemical Society.2011,133(22):8424-8427
    [184]Stober W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Journal of Colloid and Interface Science.1968,26(1):62-69
    [185]Dong C Q, Ren J C. Measurements for molar extinction coefficients of aqueous quantum dots[J]. Analyst.2010,135(6):1395-1399
    [186]Duan J L, Jiang X C, Ni S Q, Yang M, Zhan J H. Facile synthesis of N-acetyl-1-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+[J]. Talanta. 2011,85(4):1738-1743
    [187]Koneswaran M, Narayanaswamy R. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II)[J]. Sensors and Actuators, B:Chemical. 2009,139(1):91-96
    [188]Duan J L, Song L X, Zhan J H. One-Pot Synthesis of Highly Luminescent CdTe Quantum dots by Microwave Irradiation Reduction and Their Hg2+-Sensitive Properties [J]. Nano Research.2009,2(1):61-68
    [189]Yuan C, Zhang K, Zhang Z P, Wang S H. Highly Selective and Sensitive Detection of Mercuric Ion Based on a Visual Fluorescence Method[J]. Analytical Chemistry.2012, 84(22):9792-9801
    [190]Zhao N, Lam J W Y, Sung H H Y, Su H M, Williams I D, Wong S K, Tang B Z. Effect of the Counterion on Light Emission:A Displacement Strategy to Change the Emission Behavior from Aggregation-Caused Quenching to Aggregation-Induced Emission and to Construct Sensitive Fluorescent Sensors for Hg2+Detection[J]. Chemistry-A European Journal.2014,20(1):133-138.
    [191]Jiang X J, Fu Y, Tang H, Zang S Q, Hou H W, Mak T C W, Zhang H Y. A new highly selective fluorescent sensor for detection of Cd2+and Hg+based on two different approaches in aqueous solution[J]. Sensors and Actuators, B:Chemical.2014,190: 844-850
    [192]Luo A L, Gong Y J, Yuan Y, Zhang J, Zhang C C, Zhang X B, Tan W H. A simple and pH-independent and ultrasensitive fluorescent probe for the rapid detection of Hg [J]. Talanta.2013,177:326-332
    [193]Zhang X L, Xiao Y, Qian X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+Ions in Living Cells[J]. Angewandte Chemie International Edition.2008, 47(42):8025-8029
    [194]Kawanishi Y, Kikuchi K, Takakusa H, Mizukami S, Urano Y, Higuchi T, Nagano T. Design and synthesis of intramolecular resonance-energy transfer probes for use in ratiometric measurements in aqueous solution[J]. Angewandte Chemie International Edition.2000,39(19):3438-3439
    [195]Charier S, Ruel O, Baudin, J B, Alcor D, Allemand J F, Meglio A, Jullien L. An efficient fluorescent probe for ratiometric pH measurements in aqueous solutions[J]. Angewandte Chemie International Edition.2004,43(36):4785-4788
    [196]Deo S, Godwin HA. A selective, ratiometric fluorescent sensor for Pb2+[J]. Journal of the American Chemical Society.2000,122(1):174-175
    [197]Pons T, Medintz I L, Wang X, English D S, Mattoussi H. Solution-Phase Single Quantum Dot Fluorescence Resonance Energy Transfer [J]. Journal of the American Chemical Society.2006,128(47):15324-15331
    [198]Domaille D W, Zeng L, Chang C J. Visualizing Ascorbate-Triggered Release of Labile Copper within Living Cells using a Ratiometric Fluorescent Sensor [J]. Journal of the American Chemical Society.2010,132(4):1194-1195
    [199]Banerjee S, Kar S, Santra S. A simple strategy for quantum dot assisted selective detection of cadmium ions[J]. Chemical Communications.2008,44(26):3037-3039
    [200]Li H B, Zhang Y, Wang X Q, Gao Z N. A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots[J]. Mikrochimica Acta.2008,160(1-2):119-123
    [201]Spanhel L, Weller H, Henglein A. Photochemistry of Semiconductor Colloids.22. Electron Injection from Illuminated CdS into Attached TiO2 and ZnO Particles [J]. Journal of the American Chemical Society.1987,109(22):6632-6635
    [202]Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J]. Chemical Reviews.1993,93(1):267-300
    [203]Xu H, Miao R, Fang Z, Zhong X H. Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media[J]. Analytica Chimica Acta.2011, 687(1):82-88
    [204]Han B Y, Yuan J P, Wang E K. Sensitive and Selective Sensor for Biothiols in the Cell Based on the Recovered Fluorescence of the CdTe Quantum Dots-Hg(II) System[J]. Analytical Chemistry.2009,81(13):5569-5573
    [205]Xia Y S, Zhu C Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II)[J]. Talanta,2008 75(1):215-221
    [206]Adams R N. Probing Brain Chemistry with Electroanalytical Techniques [J]. Analytical Chemistry.1976,48(14):1128A-1138A
    [207]O'Neill R D. Microvoltammetric Techniques and Sensors for Monitoring Neurochemical Dynamics In Vivo[J]. Analyst,119(5),767-779
    [208]Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A. M., Gambhir S S, Weiss S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J]. Science,2005,308(5709):538-544
    [209]Hyman S E, Malenka R C. Addiction and the brain:The neurobiology of compulsion and its persistence[J]. Nature Reviews Neuroscience.2001,2(10):695-703
    [210]SyslovaK, Rambousek L, Kuzma M, Najmanova V, Bubenikova-Valesova V, Slamberova R, Kacer P. Monitoring of dopamine and its metabolites in brain microdialysates:Method combining freeze-drying with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A.2011,1218(21):3382-3391
    [211]Carrera V, Sabater E, Vilanova E, Sogorb M A. A simple and rapid HPLC—MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine:Application to the secretion of bovine chromaffin cell cultures [J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Science.2007,847(2):88-94
    [212]Zhao Y S, Zhao S L, Huang J M, Ye F G. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis[J]. Talanta.2011,85(5):2650-2654
    [213]Bouri M, Lerma-Garcia M J, Salghi R, Zougagh M, Rios A. Selective extraction and determination of catecholamines in urine samples by using a dopamine magnetic molecularly imprinted polymer and capillary electrophoresis[J]. Talanta.2012,99, 897-903
    [214]Robinson D L, Hermans A, Seipel A T, Wightman R M. Monitoring Rapid Chemical Communication in the Brain[J]. Chemical Reviews.2008,108(7):2554-2584
    [215]Baldrich E, Gomez R, Gabriel G, Munoz F X. Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes:Application to dopamine detection[J]. Biosensors and Bioelectronics.2011,26(5):1876-1882
    [216]Biji P, Patnaik A. Interfacial Janus gold nanoclusters as excellent phase-and orientation-specific dopamine sensors[J]. Analyst.2012,137(20):4795-4801
    [217]Yu D J, Zeng Y B, Qi Y X, Zhou T S, Shi G Y, A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite[J]. Biosensors and Bioelectronics.2012,38(1):270-277
    [218]dos Santos M P, Rahim A, Fattori N, Kubota L T, Gushikem Y. Novel amperometric sensor based on mesoporous silica chemically modified with ensal copper complexes for selective and sensitive dopamine determination[J]. Sensors and Actuators B:Chemical. 2012,171-172:712-718
    [219]Sasso L, Heiskanen A, Diazzi F, Dimaki M, Castillo-Leon J, Vergani M, Landini E, Raiteri R, Ferrari G, Carminati, M Sampietro M, Svendsen W E, Emneus J. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations [J]. Analyst.2013,138(13):3651-3659
    [220]Liu X, Jiang H, Lei J P, Ju H X. Anodic Electrochemiluminescence of CdTe Quantum Dots and Its Energy Transfer for Detection of Catechol Derivatives [J]. Analytical Chemistry.2007,79(21):8055-8060
    [221]Liu X, Cheng L X, Lei J P, Ju H X. Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots[J]. Analyst.2008,133(9): 1161-1163
    [222]Li L L, Liu H Y, Shen Y Y, Zhang J R, Zhu J J. Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine[J]. Analytical Chemistry.2011,83(3): 661-665
    [223]Bao L, Sun L F, Zhang Z L, Jiang P, Wise F W, Abruna H D, Pang D W. Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films[J]. The Journal of Physical Chemistry C. 2011,115(38):18822-18828
    [224]Fritzen-Garcia M B, Monteiroa F F, Cristofolini T, Acuna J J S, Zanetti-Ramos B G, Oliveira I R W Z, Soldi V, Pasa A A, Creczynski-Pasa T B. Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection[J]. Sensors and Actuators B:Chemical.2013,182: 264-272
    [225]Wang H Y, Feng X G, Zhang M, Zhao H. Determination of Dopamine in Injections and Urine by an Enzyme-catalyzed Fluorescence Quenching Method[J]. Analytical Sciences. 2007,23(11):1297-1300
    [226]Li Q M, Li J, Yang Z J. Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent[J]. Analytica Chimica Acta.2007,583(1):147-152
    [227]Xu Q L, Yoon J Y. Visual detection of dopamine and monitoring tyrosinase activity using a pyrocatechol violet-Sn4+complex[J]. Chemical Communications.2011,47(46): 12497-12499
    [228]Lin Y H, Chen C, Wang C Y, Pu F, Ren J S, Qu X G. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction[J]. Chemical Communications.2011,47(4):1181-1183
    [229]Lee H C, Chen T H, Tseng W L, Lin C H. Novel core etching technique of gold nanoparticles for colorimetric dopamine Detection[J]. Analyst.2012,137(22): 5352-5357
    [230]Feng J J, Guo H, Li Y F, Wang Y H, Chen W Y, Wang A J. Single Molecular Functionalized Gold Nanoparticles for Hydrogen-Bonding Recognition and Colorimetric Detection of Dopamine with High Sensitivity and Selectivity [J]. ACS Applied Materials and Interfaces.2013,5(4):1226-1231
    [231]Liu J M, Wang X X, Cui M L, Lin L P, Jiang S L, Jiao L, Zhang L H. A promising non-aggregation colorimetric sensor of AuNRs-Ag+for determination of dopamine [J]. Sensors and Actuators B:Chemical.2013,176:97-102
    [232]Chen J L, Yan X P, Meng K, Wang S F. Graphene Oxide Based Photoinduced Charge Transfer Label-Free Near-Infrared Fluorescent Biosensor for Dopamine[J]. Analytical Chemistry.2011,83(22):8787-8793
    [233]Chen Y Z, Yang J, Ou X M, Zhang X H. An organic nanowire-metal nanoparticle hybrid for the highly enhanced fluorescence detection of dopamine [J]. Chemical Communications.2012,48(47):5883-5885
    [234]Lin Y H, Yin M L, Pu F, Ren J S, Qu X G. DNA-Templated Silver Nanoparticles as a Platform for Highly Sensitive and Selective Fluorescence Turn-On Detection of Dopamine[J]. Small.2011,7(11):1557-1561
    [235]Tessler N, Medvedev V, Kazes M, Kan S H, Banin U. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes [J]. Science.2002,295(5559):1508-1511
    [236]Dubach J M, Harjes D I, Clark H A. Ion-Selective Nano-optodes Incorporating Quantum Dots[J]. Journal of the American Chemical Society.2007,129(27):8418-8419
    [237]Wolcott A, Gerion D, Visconte M, Sun Jia, Schwartzberg A, Chen S W, Zhang J Z. Silica-Coated CdTe Quantum Dots Functionalized with Thiols for Bioconjugation to IgG Proteins[J]. The Journal of Physical Chemistry B.2006,110(11):5779-5789
    [238]Zhao D, Song H J, Hao L Y, Liu X, Zhang L C, Lv Y. Luminescent ZnO quantum dots for sensitive and selective detection of dopamine[J]. Talanta.2013,107:133-139
    [239]Ai X Z, Ma Q, Su X G. Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots[J]. Microchimica Acta.2013,180(3-4):269-277
    [240]Liu S Y, Shi F P, Zhao X J, Chen L, Su X G.3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine[J]. Biosensors and Bioelectronics.2013,47:379-384
    [241]Liu L, Guo X H, Li Y, Zhong X H. Bifunctional Multidentate Ligand Modified Highly Stable Water-Soluble Quantum Dots[J]. Inorganic Chemistry.2010,49(8):3768-3775
    [242]Li Y, Shen B, Liu L, Xu H, Zhong X H. Stable water-soluble quantum dots capped by poly(ethylene glycol) modified dithiocarbamate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2012,410:144-152
    [243]Liu L, Zhong X H. A general and reversible phase transfer strategy enabling nucleotides modified high-quality water-soluble nanocrystals[J]. Chemical Communications.2012, 48(46):5718-5720
    [244]Medintz I L, Stewart M H, Trammell S A, Susumu K, Delehanty J B, Mei B C, Melinger J S, Blanco-Canosa J B, Dawson P E, Mattoussi H. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing[J]. Nature Materials.2010,9(8):676-684
    [245]Ji X, Palui G, Avellini T, Na H B, Yi C Y, Knappenberger Jr. K L, Mattoussi H. On the pH-Dependent Quenching of Quantum Dot Photoluminescence by Redox Active Dopamine[J]. Journal of the American Chemical Society.2012,134(13):6006-6017
    [246]Qu L H, Peng X G. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth[J]. Journal of the American Chemical Society.2002,124(9):2049-2055.
    [247]Xie R G, Kolb U, Li J X, Basche T, Mews A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals [J]. Journal of the American Chemical Society.2005,127(20):7480-7488.
    [248]Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X G. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction[J]. Journal of the American Chemical Society.2003,125(41):12567-12575.
    [249]Yu W W, Qu L H, Guo W Z, Peng X G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals [J]. Chemistry of Materials.2003, 15(14):2854-2860.
    [250]Berfield J L, Wang L J C, Reith M E A. Which Form of Dopamine Is the Substrate for the Human Dopamine Transporter:the Cationic or the Uncharged Species[J]. The Journal of Biological Chemistry.1999,274(8):4876-4882
    [251]Dooley C J, Rouge J, Ma N, Invernale M, Kelley S O. Nucleotide-stabilized cadmium sulfide nanoparticles[J]. Journal of Materials Chemistry.2007,17(17):1687-1691
    [252]Green M, Smith-Boyle D, Harries J, Taylor R. Nucleotide passivated cadmium sulfide quantum dots[J]. Chemical Communications.2005, (38):4830-4832
    [253]Green M, Taylor R, Wakefield G. The synthesis of luminescent adenosine triphosphate passivated cadmium sulfide nanoparticles[J]. Journal of Materials Chemistry.2003,13(8): 1859-1861
    [254]Mei Q S, Zhang Z P. Photoluminescent Graphene Oxide Ink to Print Sensors onto Microporous Membranes for Versatile Visualization Bioassays[J]. Angewandte Chemie International Edition.2012,51(23):5602-5606
    [255]Ali S R, Parajuli R R, Ma Y F, Balogun Y, He H X. Interference of Ascorbic Acid in the Sensitive Detection of Dopamine by a Nonoxidative Sensing Approach[J]. The Journal of Physical Chemistry B.2007,111 (42):12275-12281
    [256]Hou S F, Kasner M L, Su S J, Patel K, Cuellari R. Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene[J]. The Journal of Physical Chemistry C.2010,114(35):14915-14921
    [257]Wang Y, Li Y M, Tang L H, Lu J, Li J H. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochemistry Communications.2009,11(4): 889-892
    [258]Panholzer T J, Beyer J, Lichtwald K. Coupled-Column Liquid Chromatographic Analysis of Catecholamines, Serotonin, and Metabolites in Human Urine[J]. Clinical Chemistry.1999,45(2):262-268
    [259]Shamsipur M, Shanehasz M, Khajeh K, Mollania N, Kazemi S H. A novel quantum dot-laccase hybrid nanobiosensor for low level determination of dopamine[J]. Analyst, 2012,137(23):5553-5559
    [260]Wen Q S, Liu L B, Yang Q, Lv F T, Wang S. Dopamine-Modifi ed Cationic Conjugated Polymer as a New Platform for pH Sensing and Autophagy Imaging [J]. Advanced Functional Materials.2013,23(6):764-769
    [261]Sykora M, Petruska M A, Alstrum-Acevedo J, Bezel I, Meyer T J, Klimov V I. Photoinduced Charge Transfer between CdSe Nanocrystal Quantum Dots and Ru-Polypyridine Complexes[J]. Journal of the American Chemical Society.2006, 128(31):9984-9985
    [262]Cumberland S L, Hanif K M, Javier A, Khitrov G A, Strouse G F, Woessner S M, Yun C S. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chemistry of Materials.2002,14(4):1576-1584
    [263]Zhang W J, Zhong X H. Facile Synthesis of ZnS-CuInS2-Alloyed Nanocrystals for a Color-Tunable Fluorchrome and Photocatalyst[J]. Inorganic Chemistry.2011,50(9): 4065-4072
    [264]Santra P K, Nair P V, Thomas K G, Kamat P V. CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance[J]. The Journal of Physical Chemistry Letters.2013,4(5):722-729
    [265]Zhang S Y, Ong C N, Shen H M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells[J]. Cancer Letters.2004, 208(2):143-153
    [266]Shahrokhian S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode[J]. Analytical Chemistry.2001,73(24):5972-5978
    [267]Huang Z Z, Pu F, Lin Y H, Ren J S, Qu X G. Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds [J]. Chemical Communications.2011,47(12):3487-3489
    [268]Seshadri S, Beiser A, Selhub J, Jacques P F, Rosenberg I H, RB. D'agostino Wilson P W F, Wolf P A. PLASMA HOMOCYSTEINE AS A RISK FACTOR FOR DEMENTIA AND ALZHEIMER'S DISEASE[J]. The New England Journal of Medicine.2002, 346(7):476-483
    [269]Refsum H, Ueland P M, Nygard O, Vollset S E. HOMOCYSTEINE AND CARDIOVASCULAR DISEASE.[J] Annual Review of Medicine,1998,49:31-62
    [270]Ray J G, Laskin C A. Folic Acid and Homocysteine Metabolic Defects and the Risk of Placental Abruption, Pre-eclampsia and Spontaneous Pregnancy Loss:A Systematic Review[J]. Placenta,1999,20(7):519-529
    [271]Smith A D. Homocysteine, B vitamins, and cognitive deficit in the elderly[J]. The American Journal of Clinical Nutrition.2002 75(5):785-786
    [272]Hwang C, Sinskey A J, Lodish H F. Oxidized redox state of glutathione in the endoplasmic reticulum [J]. Science,1992,257(5076):1496-1502.
    [273]Dalton T P, Shertzer H G, Puga A. REGULATION OF GENE EXPRESSION BY REACTIVE OXYGEN[J]. Annual Review of Pharamcology and Toxicology.1999,39: 67-101
    [274]Townsend D M, Tew K D, Tapiero H. The importance of glutathione in human disease[J]. Biomedicine & Pharmacotherapy.2003,57(3-4):145-155.
    [275]Herzenberg L A, De Rosa S C, Dubs J G, Roederer M, Anderson M T, Ela S W, Deresinski S C, Herzenberg L A. Glutathione deficiency is associated with impaired survival in HIV disease[J]. Proceedings of the National Academy of Science of the United States of America.1997,94(5):1967-1972
    [276]Amarnath K, Amarnath V, Amarnath K, Valentine H L, Valentine W M. A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples[J]. Talanta.2003,60(6):1229-1238
    [277]Nolin T D, McMenamin M E, Himmelfarb J. Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography:Application to studies of oxidative stress [J]. Journal of Chromatography B.2007,852(1-2):554-561
    [278]Ogasawara Y, Mukai Y, Togawa T, Suzuki T, Tanabe S, Ishii K. Determination of plasma thiol bound to albumin using affinity chromatography and high-performance liquid chromatography with fluorescence detection:Ratio of cysteinyl albumin as a possible biomarker of oxidative stress[J]. Journal of Chromatography B.2007,845(1): 157-163
    [279]Rafii M, Elango R, Courtney-Martin G, House J D, Fisher L, Pencharz P B. High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography—electrospray tandem mass spectrometry[J]. Analytical Biochemistry.2007,371(1):71-81
    [280]McMenamin M E, Himmelfarb J, Nolin T D. Simultaneous analysis of multiple aminothiols in human plasma by high performance liquid chromatography with fluorescence detection[J]. Journal of Chromatography B.2009,877(28):3274-3281
    [281]Inoue T, Kirchhoff J R. Determination of Thiols by Capillary Electrophoresis with Amperometric Detection at a Coenzyme Pyrroloquinoline Quinone Modified Electrode [J]. Analytical Chemistry.2002,74(6):1349-1354
    [281]Chen G, Zhang L Y, Wang J. Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols[J]. Talanta. 2004,64(4):1018-1023
    [283]Carlucci F, Tabucchi A. Capillary electrophoresis in the evaluation of aminothiols in body fluids[J]. Journal of Chromatography B.2009,877(28):3347-3357
    [284]MacCoss M J, Fukagawa N K, Matthews D E. Measurement of Homocysteine Concentrations and Stable Isotope Tracer Enrichments in Human Plasma[J]. Analytical Chemistry.1999,71(20):4527-4533
    [285]Sass J O, Endres W. Quantitation of total homocysteine in human plasma by derivatization to its N(O,S)-propoxycarbonyl propyl ester and gas chromatography-mass spectrometry analysis[J]. Journal of Chromatography A.1997,776(2):342-347
    [286]Shinohara Y, Hasegawa H, Tagoku K, Hashimoto T. Simultaneous determination of methionine and total homocysteine in human plasma by gas chromatography-mass spectrometry [J]. Journal of Chromatography B.2001,758(2):283-288
    [287]Vellasco A P, Haddad R, Eberlin M N, Hoehr N F. Combined cysteine and homocysteine quantitation in plasma by trap and release membrane introduction mass spectrometry [J]. Analyst.2002,127(8):1050-1053
    [288]Lawrence N S, Davis J, Compton R G. Electrochemical detection of thiols in biological media[J]. Talanta.2001,53(5):1089-1094
    [289]Lawrence N S, Deo R P, Wang J. Detection of homocysteine at carbon nanotube paste electrodes[J]. Talanta.2004,63(2):443-449
    [290]Fei S D, Chen J H, Yao S Z, Deng G H, He D L, Kuang Y F. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modiWed with platinum[J]. Analytical Biochemistry.2009,35(1):29-35
    [291]Wang W, Li L, Liu S F, Ma C P, Zhang S S. Journal of the American Chemistry Society. 2008,130(33):10846-10847
    [292]Harfield J C, Batchelor-McAuley C, Compton R G. Electrochemical determination of glutathione:a review[J]. Analyst.2012,137(10):2285-2296
    [293]Li Y, Wu P, Xu H, Zhang H, Zhong X H. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity [J]. Analyst. 2011,136(1):196-200
    [294]Xu H, Wang Y W, Huang X M, Li Y, Zhang H, Zhong X H. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols[J]. Analyst.2012,137(4): 924-931
    [295]Wei M J, Yin P, Shen Y M, Zhang L L, Deng J H, Xue S Y, Li H T, Guo B, Zhang Y Y, Yao S Z. A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells [J]. Chemical Communications.2013,49 (41):4640-4642
    [296]Madhu S, Gonnade R, Ravikanth M. Synthesis of 3,5-Bis(acrylaldehyde) Boron-dipyrromethene and Application in Detection of Cysteine and Homocysteine in Living Cells[J]. The Journal of Organic Chemistry[J].2013,78(10):5056-5060
    [297]Chen X Q, Zhou Y, Peng X J, Yoon J Y. Fluorescent and colorimetric probes for detection of thiols[J]. Chemical Society Reviews.2010,39(6):2120-2135
    [298]Huang S, Xiao Q, Li R, Guan H L, Liu J, Liu X R, He Z K, Liu Y. A simple and sensitive method for L-cysteine detection based on the fluorescence intensity increment of quantum dots[J]. Analytica Chimica Acta.2009,645:73-78
    [299]Zhang Y, Li Y, Yan X P. Photoactivated CdTe/CdSe Quantum Dots as a Near Infrared Fluorescent Probe for Detecting Biothiols in Biological Fluids[J]. Analytical Chemistry. 2009,81(12):5001-5007
    [300]Gaspera E D, Antonello A, Guglielmi M, Post M L, Bello V, Mattei G, Romanato F, Martucci A. Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties [J]. Journal of Materials Chemistry.2012,21(12):4293-4300
    [301]Shang L, Yin J Y, Li J, Jin L H, Dong S J. Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma[J]. Biosensors and Bioelectronics.2009,25(2):269-274.
    [302]Pan Z X, Zhao K, Wang J, Zhang H, Feng Y Y, Zhong X H. Near Infrared Absorption of CdSexTel-x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability[J]. ACS Nano.2012,7(6):5215-5222
    [303]Tang J, Sargent E H. Infrared Colloidal Quantum Dots for Photovoltaics:Fundamentals and Recent Progress[J]. Advanced Materials.2011,23(1):12-29
    [304]Guo CX, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Layered Graphene/Quantum Dots for Photovoltaic Devices [J]. Angewandte Chemie International Edition.2010,49(17):3014-3017
    [305]Diaz-Cruz M S, Tauler F, Esteban M. Cadmiun-Binding Properties of Glutathione:A Chemometrical Analysis of Voltammetric Data[J]. Journal of Inorgnic Biochemistry. 1997,66(1):29-36
    [306]Wu P, Li Y, Yan X P. CdTe Quantum Dots (QDs) Based Kinetic Discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton Hybrid System for Sensitive Photoluminescent Detection of Fe2+[J]. Analytical Chemistry.2009,81(15):6252-6257
    [307]IUPAC. Nomencalture, symbols, units and their usage in spectrochemical analysis-II. date interpretation Analytical Chemistry Division[J]. Spectrochimica Acta Part B:Atomic Spectroscopy.1978,33(6):241-245
    [308]ACS committee on environmental improvement. Guidelines for data acquisition and data quality evaluation in environmental chemistry[J]. Analytical Chemistry.1980,52 (14):2242-2249
    [309]Shahmiri M R, Bahari A, Karimi-Maleh H, Hosseinzadeh R, Mirnia N. Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen[J]. Sensors and Actuators:B. Chemical.2013,177:70-77
    [310]Ji Y, Ma Y X, Sun X M. Determination of glutathione in individual Ramos cells by capillary electrophoresis with electrochemiluminescence detection[J]. Analytical Methods.2013,5(6):1542-1547
    [311]McDermott G P, Terry J M, Conlan X A, Barnett N W, Francis P S. Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemiluminescence[J]. Analytical Chemistry.2011,83(15):6034-6039
    [312]Squellerio I, Caruso D, Porro B, Veglia F, Tremoli E, Cavalca V. Direct glutathione quantification in human blood by LC-MS/MS:Comparison with HPLC with electrochemical detection[J]. Journal of Pharmaceutical and Biomedical Analysis.2012, 71:111-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700