后掠型风力机叶片的启动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
后掠型风力机叶片是翼型沿着向尾缘弯曲的积叠线造型而成的一种新型智能叶片。现有研究表明风力机后掠叶片在保证功率输出的同时可以显著降低叶片的推力载荷,这为降低风力机生产制造成本,提高风电生产的经济竞争性提供了一条有价值的途径。当前对后掠叶片的研究主要还是围绕气弹问题展开的,对于更为基础的气动研究开展较少,后掠对叶片绕流的影响机理有待深入探索。本文从叶片的气动性能、流动分离特性等角度研究了这种叶片造型方式的影响,并分析叶片后掠造型中几何参数如后掠的起始位置、后掠角等的影响。
     本文研究了叶片后掠对风力机叶片三维流场的影响。通过对NREL PhaseVI直叶片及其后掠改型叶片进行三维CFD数值计算,比较叶片经过后掠造型前后的功率输出,发现后掠叶片在低风速下比原型直叶片略小,而由于失速延迟作用在较高风速下超过了原型叶片的出功,但在高风速下两种叶片都出现大分离时,后掠叶片的功率输出现更大下降;对比叶片表面极限流线可见后掠叶片流场的三维流动效应更加显著,具体表现为在后掠叶片吸力面前缘处流动向叶轮中心偏转,而在尾缘附近则向叶尖方向存在更显著的偏转,这一点在流动分离情况下变得更加显著。叶段绕流与截面翼型压力场分析表明,科氏力、离心力及附壁效应等三维因素减小了后掠叶片截面翼型的吸力峰,同时抑制失速,从而导致叶片气动性能的上述变化。接着,从后掠对叶片流动分离的影响及叶片截面的二维流动两方面深入研究了三维因素影响叶片绕流的机理。
     针对后掠叶片的流动分离特性,本文探讨了后掠对流动分离的影响。与当地翼型的二维流场流动分离点进行比较,显示后掠叶片三维流场的流动分离点在一定程度上出现了向尾缘的推迟。但是与直叶片三维流场的流动分离点进行比较,在流动分离区,叶片的后掠使流动分离点向前缘靠近,降低了叶片的气动性能,揭示了后掠流动分离失速后气动效率急剧下降的机理。此外,可以看到,利用二维BEM模型对后掠叶片进行分析需要引进合适的三维失速延迟修正模型,而目前为止适合于后掠叶片的三维失速延迟模型并不存在。
     以三维计算流体力学求解所得流场结果为基础,研究了后掠对截面翼型二维主流方向流动的影响。通过壁面环量法分析了沿叶片展向截面翼型的入流,获得了截面翼型来流攻角的分布,将多个后掠改型叶片与原型直叶片进行比较,结果显示后掠对叶片展向的攻角分布影响较小,叶片的后掠主要通过三维效应影响当地翼型的压力分布来降低叶片气动载荷。
     最后探索了后掠几何参数对叶片主要气动特性的影响规律。由于需要考虑的因素较多,采用正交分析的方法设计了一组后掠改型叶片,并对其进行了数值模拟分析。直叶片与后掠叶片的推力系数对北表明,由于后掠减小了截面翼型的吸力峰,从而减小了压力面与吸力面的压力差,使得即使不考虑气弹耦合作用后掠叶片仍能够降低推力载荷。在此基础上,对影响后掠外形参数的因素进行极差分析,结果表明影响后掠叶片功率系数和推力系数的主要因素为后掠起始位置与当地后掠角。对比各因素水平下的总体气动参数的平均值显示各因素对叶片的气动性能的影响存在一定规律,这为后掠叶片的气动设计提供了理论依据。
The aft-swept wind turbine blade is a new type of smart blade formed by stacking airfoils along a line cured towards the trailing edge. It has been demonstrated to be able to dramatically reduce the thrust loads on the turbine while keeping the output power. Which means that the aft-swept blade provides promising approach to save the manufactural cost of wind turbine blade and make wind power more competitive in the financial aspect. However the aerodynamic characteristic of the swept blade is seldom studied especially the corresponding flow mechanism is not completely clear now. Therefore it is necessary to analyze the detailed flow field structure and separation characteristics of the swept blade from the special geometry parameters of the swept blade, such as the starting position of sweep and the local sweep angle etc.
     The swept blade can dramatically affect the aerodynamic of wind turbine. From the power comparison of NREL Phase VI straight blade and the corresponding swept one, computed by Computational Fluid Dynamics (CFD) method, we can see that:(1) at low wind speed, the output power of the swept blade is slightly less than straight blade;(2) when wind speed increases, the swept blade exhibits more stall delay char-acteristic and obtain higher power;(3) at high speed, when the flow are both separated, the aerodynamic performance of the swept blade decreases evidently. After deep anal-ysis on the three-dimensional (3D) flow filed, it was demonstrated that the span wise flow is speed by the swept profile, as the flow at the suction side around the airfoil leading edge slightly turn toward the rotating center and the flow at the suction side on the trailing edge is dramatically bending to the blade tip direction, which is greatly en-hanced at the flow separation condition. Further analyzing of the pressure distribution of local airfoil shows that the character of swept blade is mainly due to the influence of the centrifuge force, Coriolis force, Coanda effects and the interaction between them.
     For the separation aspect, comparing the local flow field of2D airfoil and3D swept blade, it can be seen that due to rotation the separation point of the3D swept blade is nearer to the trailing edge. But this condition is different when comparing the flow field of the swept blade and straight blade. This means that the swept blade has less stall delay effect than the straight one and this is not good for the load reduction of the swept blade and this is the why the swept blade has a poorer performance at deep separation.
     For the main flow aspect, based on the3D CFD results and using the wall cir-culation method, we analyzed the2D local flow field along the span of the swept and straight blades and obtained the inflow angle of attack (AOA). Comparing the flow fields, little difference of the AOA distribution between the swept and the straight blades was observed, and for the swept blade the reduction of load is realized from the change of the local pressure distribution.
     At last, the aerodynamic quality of the swept blade influenced by its geometry parameters is analyzed. Considering the complex geometry parameters of the swept blade may have an influence on the aerodynamic performance and the operation state of the wind turbine, we designed an orthogonal test, in which a group of swept blades has been included which has different geometry characteristic. Then the aerodynamic performance of these blades are computed by CFD. From the comparing of the thrust coefficients we can see that because the pressure difference between the suction side and the pressure side is reduced by Coanda effects, the swept blade can reduce the thrust load even not considering the excellent aeroelastic performance of which. Mak-ing range analysis of the geometry parameters describing the swept blade, we can see that the power coefficient of the swept blade is dramatically influenced by the starting point of the sweep and the local sweep angle. From the comparing the average aerody-namic performance influenced by these different geometry parameters it can be seen that the influence of the geometry parameters obey some certain rules, which provides the theoretical basis for the design of swept blade.
引文
[1]贺德馨,陈坤,张亮亮,等.风工程与工业空气动力学[M].北京:国防工业出版社,2006:834.
    [2]普氏.2011年BP世界能源统计年鉴[M].北京:[出版者不详],2011:48.
    [3]财政部对外财经交流办公室综合处.理性看待中国石油对外依存度的上升[缺文献类型标志代码]http://wjb.mof.gov.cn/pindaliebiao/zcyj/ 201109/t20110902_591497.html.
    [4]中华人民共和国工业和信息化部原材料工业司.2011年上半年石油和化学工业经济运行报告[R].北京:中华人民共和国工业和信息化部,2011.http://ycls.miit.gov.cn/n11293472/n11295125/n11299486/ 13984889.html.
    [5]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [6]JACOBSON M Z. Review of solutions to global warming,air pollution,and energy security[J].Energy and Environmental Science,2009,2(2):148. http: //xlink.rsc.org/?DOI=b809990c.
    [7]Joselin Herbert G,INIYAN S,SREEVALSAN E,et al. A review of wind energy technologies[J]. Renewable and Subtainable Energy Reviews, 2007, 11(6):1117-1145.
    [8]邓华宁.我国风力发电潜力巨大风能资源居世界首位[缺文献类型标志代码]http://news.xinhuanet.com/newscenter/2004-08/18/content_1814711.htm.
    [9]郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006,58(2):20-24.
    [10]王仲颖,时璟丽,赵勇强,等.中国风电发展路线图2050[R].北京:国家发展和改革委员会能源研究所,2011:43.
    [11]国家能源局.国家能源局发布2011年全社会用电量[缺文献类型标志代码].http://www.nea.gov.cn/2012-01/14/c_131360365.htm.
    [12]中国风能协会.2011年中国风电装机容量统计[R].北京:[机构不详],2012:10.
    [13]HANSEN M O L.风力机空气动力学[M].肖劲松,译.2nd.[出版地不详]:中国电力出版社,2009:166.
    [14]MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy ex-plained[M]. Chichester: JOHN WILEY & SONS,LTD, 2002:590. http://onlinelibrary.wiley.com/doi/10.1002/0470846127.fmatter_indsub/summary.
    [15]BURTON T, SHARPE D, JENKINS N, et al. Wind Energy Handbook[M]. Chichester:JOHN WILEY & SONS,LTD,2001:617.
    [16]GWEC. Global Wind Report:Annual market update 2011[R].[S.1.]:Global Wind Energy Council,2012:15.
    [17]GWEC. Global Wind Report:Annual market update 2010[R].[S.1.]:Global Wind Energy Council,2011:72.
    [18]BTM. International Wind Energy Development:World Market Update 2005[R].[S.1.]:BTM,2005.
    [19]BTM. International Wind Energy Development:World Market Update 2008[R].[S.1.]:BTM,2008.
    [20]DALE M. Europe Offshore Wind Supply Chain:Responding to Growth[J].2011.
    [21]胡士山,陈严,叶枝全.风力机优化设计的DSFD方法[J].太阳能学报,1997,18(2):152-156.
    [22]杜朝辉,SELIG M S.一种水平轴风轮叶片的气动设计方法[J].太阳能学报,2000,21(4):364-370.
    [23]IEC T C. IEC61400-1 Wind turbines-Part 1:Dsign repirements[M].3rd. Geneva: The International Electrotechnical Commission, 2005:144.
    [24]Rules for classification and construction:Non-Marine technology. Wind energy-Regulations for the certification of wind energy conversion system[M]//. Ger-manischer Lloyd:Germanischer Lloyd, 1998:32.
    [25]KONG C, BANG J, SUGIYAMA Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11-12):2101-2114. http://linkinghub.elsevier.com/retrieve/pii/ S036054420400369X.
    [26]白井艳.水平轴风力机专用翼型族试验分析及优化设计[D].北京:中国科学院研究生院,2010:76.
    [27]白井艳,杨科,徐建中.水平轴风力机专用翼型族试验分析及优化设计[J].工程热物理学报,2011,32(7):1131-1136.
    [28]李宏利.水平轴风力机专用翼型族的设计及其气动性能研究[D].北京:中国科学院研究生院,2009:81.
    [29]张石强.风力机专用翼型及叶片关键设计理论研究[D].[地址不详]:重庆大学,2010:154.
    [30]梁志强,莫银峰,李添宾.台风对风力发电机组的危害及对策[缺文献类型标志代码].http://www.cgnwp.com.cn/n47897/n64167/n64333/574656. html.
    [31]VEERS P S, BIR G S, LOBITZ D W. Aeroelastic tailoring in wind-turbine blade applications[R]. Bakersfield: American Wind Energy Association Meeting and Exhibition, 1998.
    [32]KARAOLIS N M, MUSSGROVE P J, JERONIMIDIS G. Active and Passive Aeroelastic Power Control Using Asymmetric Fibre Reinforced Laminates for Wind Turbine Blades[C]//. MILBROW D J.10th British Wind Energy Confer-ence. London:[s.n.],1988.
    [33]KARAOLIS N M, JERONIMIDIS G, MUSSGROVE P J. Compos-ite Wind Turbine Blades: Coupling Effects and Rotor Aerodynamic Perfor-mance[C]//European Wind Energy Conference 1989. Glasgow, Scotland: Eu-ropean Wind Energy Conference, 1989.
    [34]EISLER G R, VEERS P S. Parameter Optimization Applied to Use of Adap-tive Blades on a Variable Speed Wind Turbine[R]. Albuquerque:Sandia National Laboratories,1998:27. http://scholar.google.com/scholar? hl=en&btnG=Search&q=intitle:Parameter+Optimization+Applied+to+ Use+of+Adaptive+Blades+on+a+Variable+Speed+Wind+Turbine#0.
    [35]ZUTECK M D. Adaptive blade concept assessment: curved planform induced twist investigation[R]. Albuquerque:Sandia National Laboratories,2002:22.
    [36]DOBREV I, MASSOUH F. Fluid-structure interaction in the case of a wind turbine rotor[C]//18eme Congres Francais de Mecanique Grenoble. Grenoble: [s.n.],2007.
    [37]ASHWILL T D, KANABY G, JACKSON K, et al. Development of the swept twist adaptive rotor (star) blade[C]//48th AIAA Aerospace Sciences Meeting In-cluding the New Horizons Forum and Aerospace Exposition. Orlando, Florida: American Institute of Aeronautics and Astronautics,2010:1-13.
    [38]METZGER F B, ROHRBACH C. Benefits of blade sweep for advanced tur-boprops[C]//21st AIAA/SAE/ASME/ASEE Joint Propulsion Conference. Mon-terey, Calif: American Institute of Aeronautics and Astronautics, 1985:1-11.
    [39]LOBITZ D W, VEERS P S, MIGLIORE P G. Enhanced Performance of HAWTs Using Adaptive Blades[C]//1996 ASME/AIAA Wind Energy Symposium. Hous-ton:[s.n.],1996,1:41-45.
    [40]LOBITZ D W, VEERS P S, LAINO D J. Performance of twist-coupled blades on variable speed rotors[R]. Albuquerque: Sandia National Laboratories,1999:11.
    [41]CHATTOT J J. Effects of blade tip modifications on wind turbine performance using vortex model[J]. Computers & Fluids, 2009,38(7):1405-1410. http: //linkinghub.elsevier.com/retrieve/pii/S0045793008000790.
    [42]LARWOOD S M, ZUTECK M D. Swept wind turbine blade aeroelastic modeling for loads and dynamic behavior[J]. AWEA Windpower, 2006:1-17.
    [43]LARWOOD S M. Dynamic analysis tool development for advanced geometry wind turbine blades[D].[S.1.]:UNIVERSITY OF CALIFORNIA, DAVIS,2009: 165.
    [44]AMANO R S, MALLOY R J. Aerodynamic Comparison of Straight Edge and Swept Edge Wind Turbine Blade[C]//AIAA Aerospace Sciences Meeting in-cluding The New Horizons Forum and Aerospace Exposition. Orlando, Florida: American Society of Mechanical Engineers (ASME),2008,5:193-197, http: //link.aip.org/link/abstract/ASMECP/v2008/i48661/p193/s1.
    [45]KONG F, WU T, HU J. Study of swept and curved blade influences on HAWT performance[C]//2009 World Non-Grid-Connected Wind Power and En-ergy Conference. Nanjing:IEEE,2009:1-5.
    [46]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:1.
    [47]张果宇,蒋劲,刘长陆.风力发电机整机气动性能数值模拟计算与仿真研究[J].华东电力,2009(3).
    [48]张玉良,李仁年,杨从新.水平轴风力机的设计与流场特性数值预测[J].兰州理工大学学报,2007,33(2):54-57.
    [49]孙纪宁.ANSYS CFX对流传热数值模拟基础应用教程[M].北京:国防工业出版社,2010.
    [50]郭天威,方景龙.风力发电机组风轮叶片气动外形优化设计及风轮气动性能计算研究[C]//中美清洁能源技术论坛.北京:[出版者不详],2001:103-108.
    [51]FAN Z, KANG S. Numerical simulations of the aerodynamic behavior of large horizontal-axis wind turbines [C]//Proceedings of the Inaugural US-EU-China Thermophysics Conference. Beijing:American Society of Mechanical Engineers (ASME),2009:1-7, http://www.sciencedirect.com/science/ article/pii/S0360319909020175.
    [52]张仲柱,王会社,赵晓路,等.水平轴风力机叶片气动性能研究[J].工程热物理学报,2007,28(5)781-783.
    [53]HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady Aerodynamics Ex-periment Phase VI:Wind Tunnel Test Configurations and Available Data Cam-paigns[R]. Golden:National Renewable Energy Laboratory, 2001:310.
    [54]BRUINING A, TIMMER W A. Airfoil characteristics of rotating wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,39(1-3):35-39.
    [55]SORENSEN N N, MICHELSEN J A, SCHRECK S J. Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft_120 ft wind tunnel[J]. Wind Energy,2002,5(2-3):151-169. http://doi. wiley. com/10.1002/we.64.
    [56]MANDAS N, CAMBULI F. Numerical prediction of horizontal axis wind turbine flow[C]//Proceedings of the European Wind Energy Conference. Athens,Greece: [s.n.],2006:9.
    [57]SCHMITZ S, CHATTOT J J. Characterization of Three-Dimensional Effects for the Rotating and Parked NREL Phase VI Wind Turbine[J]. Journal of Solar Energy Engineering, 2006,128(4):445.
    [58]刘磊,徐建中.湍流模型对风力机叶片气动性能预估的影响[J].工程热物理学报,2009,30(7):1136-1139.
    [59]CHAVIAROPOULOS P K, NIKOLAOU I G, AGGELIS K A, et al. Viscous and Aeroelastic Effects on Wind Turbine Blades. The VISCEL project. Part I:3D Navier-Stokes Rotor simulations[J]. Wind Energy,2003,6(4):365-385. http: //doi.wiley.com/10.1002/we.100.
    [60]范立钦,周鼎义.飞机空气动力学[M].西安:西北工业大学出版社,1989.
    [61]TRINKS W. Governors and the governing of prime movers[M]. Governors and the Governing of Prime Movers.[S.1.]:D. Van Nostrand company,1919:209. http://books.google.com.hk/books?id=v1RDAAAAIAAJ.
    [62]METRAL A R. On the Phenomenon of Fluid Veins and their Application, the Coanda Effect[J]. AF Translation,1939(F-TS-786-RE).
    [63]BERNOULLI'S PRINCIPLE AND THE COANDA EFFECT[缺文献类型标志代码].http://www.discoverhover.org/infoinstructors/guide8. htm.
    [64]SNEL H, HOUWINK R, PIERS W J. Sectional Prediction of 3D Effects for Sep-arated Flow on rotating blades[C]//18th European Rotorcraft Forum. Avignon, France:National Aerospace Lab.,1992:31.
    [65]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型——Ⅰ.理论基础[J].太阳能学报,1999,20(4):392-397.
    [66]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型——Ⅱ.模型建立及应用[J].太阳能学报,2000,21(1):1-6.
    [67]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型——Ⅲ.模型改进[J].太阳能学报,2000,21(2):145-150.
    [68]CORTEN G P. Flow separation on wind turbines blades[D].[S.1.]:University of Utrecht.,2001:170.
    [69]LI Y, PAIK K J, XING T, et al. Dynamic overset CFD simulations of wind turbine aerodynamics[J]. Renewable Energy, 2012,37(1):285-298. http: //linkinghub.elsevier.com/retrieve/pii/S0960148111003223.
    [70]GLAUERT H. Airplane propellers[M]//. DURAND W F. Aerodynamic theory (Vol. IV). Berlin, Germany:Julius Springer, 1935:169-360.
    [71]DRELA M. XFOIL:An Analysis and Design System for Low Reynolds Number Airfoilsii[C]//Conference Proceedings on Low Reynolds Number Aerodynam-ics. Notre Dame, Indian:[s.n.],1989, http://web.mit.edu/drela/Public/ papers/xfoil_sv.pdf.
    [72]DRELA M. Low-Reynolds-Number Airfoil Design for the M.I.T. Daedalus Pro-totype:A Case Study[J]. Journal of Aircraft, 1988,25(8):724-732.
    [73]DRELA M. Design and optimization method for multi-element airfoils[C]//AHS, and ASEE, Aerospace Design Conference. Irvine, CA: American Institute of Aeronautics and Astronautics,1993.
    [74]SHEN W Z, HANSEN M O L, SO RENSEN J N R R. Determination of angle of attack (AoA) for rotating blades[M]//. PEINKE J, SCHAUMANN P, BARTH S. Wind Energy.[S.1.]:Springer Berlin Heidelberg,2007:205-209.
    [75]HANSEN M O L, SO RENSEN N N, SO RENSEN J N R R, et al. Extraction of lift, drag and angle of attack from computed 3-D viscous flow around a rotating blade[R]. DUBLIN CASTLE:EWEC,1997:499-502.
    [76]JOHANSEN J, SO RENSEN N N. Aerofoil characteristics from 3D CFD rotor computations[J]. Wind Energy,2004,7(4):283-294. http://doi.wiley.com/ 10.1002/we.127.
    [77]HANSEN M O L, JOHANSEN J. Tip studies using CFD and comparison with tip loss models[J]. Wind Energy, 2004,7(4):343-356. http://doi.wiley.com/ 10.1002/we.126.
    [78]SHEN W Z, HANSEN M O L. Determination of the angle of attack on rotor blades[J]. Wind Energy,2009(May 2008):91-98.
    [79]王连祥,方德植,张鸣镛,等.正交试验设计[M]//王连祥,方德植,张鸣镛,等.数学手册,第一版.北京:高等教育出版社,1979:853-860.
    [80]SPALART P R, ALLMARAS S R. A one-equation model for aerodynamic flows[J]. Recherche Aerospatiale,1992,1:5-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700