基于微波与磁铁耦合效应的融雪除冰路面技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为快速、有效的清除道路积雪和冰层,保证道路畅通和行车安全,国内外都在积极探索和研究道路融雪除冰的新技术。道路微波除冰具有环保、快捷和融雪除冰彻底等优点,目前面临的关键技术问题是传统道路铺筑材料对微波的吸收发热效率低,导致融雪除冰速度慢,无法实现连续快速除冰。本文利用具有极强微波吸收发热能力的磁铁矿集料代替传统集料,铺筑一种新型的具有快速融雪除冰功能的沥青路面结构层。系统、深入的研究了磁铁矿沥青混凝土路面材料组成和结构组合设计、微波与磁铁耦合发热机理、磁铁矿沥青混凝土的微波除冰效率以及除冰工艺
     通过室内试验研究了磁铁矿集料的技术性质以及磁铁矿沥青混合料的路用性能,根据磁铁矿石的特点和微波除冰作业的要求,在磁铁矿沥青混合料的组成设计中提出了磁铁矿集料的技术标准、矿料级配设计方法以及混合料抗收缩裂缝能力的检验指标和方法。基于磁铁矿沥青混凝土层的特性,提出了适用于新建路面、桥面铺装和改建路面的磁铁矿沥青路面结构组合形式、结构层的推荐厚度以及结构组合设计的步骤。
     通过磁铁矿沥青混凝土介电常数和复导磁率的测定、磁铁矿集料的微波发热试验,结合理论分析揭示了微波与磁铁耦合发热效应的机理。根据微波反透射原理和热传导方程,建立了磁铁矿沥青路面微波除冰模型,实现了微波除冰的仿真模拟,分析了冰层与磁铁矿沥青路面结合部冰层温度的变化规律,确定了微波除冰的合理加热时间。
     利用理论分析、微波除冰试验和仿真模拟研究了磁铁矿集料品位和用量、环境温度、冰层厚度和微波场因素对微波除冰效率的影响规律。建立了磁铁矿沥青混凝土的微波吸收系数、微波除冰效率与磁铁矿集料品位、用量之间的试验统计换算关系,提出了根据磁铁矿石密度和集料用量计算微波吸收系数以及通过目标微波除冰效率反算磁铁矿石品位和集料用量的方法;计算得出了不同微波频率和环境温度条件下,能够满足工程快速除冰要求的最低磁铁矿石品位。
To clear the ice on the road rapidly and effectively, Engineers at home and abroad are getting into the swing of their work on the new techniques for snow-melting and deicing. Microwave deicing is considered as a new type of environmental friendly deicing method which can deice rapidly and drastically. The traditional material has the low absorbed efficiencies for microwave that the microwave deicing speed is very slowly.
     The paper presents paving asphalt concrete with magnetite aggregates which have a high absorbing efficiency for microwave instead of traditional aggregates. In this thesis, the author systemically study on mechanism of microwave and magnet coupling effect, mix design and structure design of magnetite asphalt concrete pavement, microwave deicing efficiency and deicing technology.
     By the laboratory tests of magnetite aggregate and asphalt mixture, the technical standards of magnetite aggregate, design method of the aggregate graduation and the ability of shrinkage crack resistance test of magnetite asphalt mixture were putting forward. According to the characteristics of magnetite asphalt concrete layer, structure forms, structure layer thickness and structure design procedures of the magnetite asphalt pavement suitable for newly-built road, bridge deck pavement and reconstruction road respectively are put forward.
     According to the test results of magnetite asphalt concrete's dielectric constant and complex magnetic permeability and magnetite aggregate's microwave heating, the mechanism of microwave and magnet coupling effect was revealed by theoretical analysis. The magnetite asphalt pavement's microwave deicing model was set up and the computer simulation of microwave deicing was achieved. The reasonable time of microwave heating was confirmed by analyzing the regularity for change of ice layer junction's tempreture.
     By theoretical analysis, microwave deicing tests and computer simulation results, the influence law was studied, which was magnetite aggregate's grade and amount, environmental temperature, ice layer's thickness and the factors of microwave field to microwave deicing efficiency. The conversion relationships of wicrowave absorption coefficient, deicing efficiency and magnetite aggregate's grade and amount were founded; the minimum grades of magnet ore were presented to achieve rapid deicing under different conditions of wacrowave frequency and environmental temperature.
引文
[1]巢清尘.气候异常对交通运输影响的对策研究.灾害学,2000,15(3):79-84.
    [2]张润利,贺杰.现代除冰技术[J].交通世界,2004,11(2):60-62
    [3]李中念,张振芳,严国栋.河北省超贫磁铁矿资料与开发利用分析[J].河北冶金,2006,3: 1-4.
    [4]郭二民.加强环境管理合理开发超贫磁铁矿[J].中国矿业,2009,18(6):27-29.
    [5]金敬福.材料冻粘特性及矿车冻粘规律试验研究[D].长春:吉林大学,2004.
    [6]杨晓东,金敬福.冰的粘附机理与抗冻粘技术进展[J].长春理工大学学报,2002,25(4):17-19.
    [7]靳长征,白晨.浅谈道路结冰的清除[J].河南交通科技,1996,13(5):45-46.
    [8]黄淑琴.路面加盐除冰[J].公路,1996(8):44-46.
    [9]代琳琳,赵晓明.融雪剂的环境污染与控制对策[J].安全与环境工程,2004,11(4):31-33,41.
    [10]刘丽华,刘恒权,张智勇.公路用融雪剂应用现状及技术发展趋势[J].公路交通科技(应用技术版),2009(10):218-220.
    [11]张炳臣,刘淑敏.冬季道路除雪方式的探讨[J].山东交通科技.2004,1:76-77.
    [12]张洪伟,韩森,刘洪辉.沥青路面除冰雪技术综述[J].黑龙江交通科技,2008(3):8-9.
    [13]谭忆秋,周纯秀.橡胶颗粒路面抑制冰雪技术[J].筑路机械与施工机械化,2008(11):22-26.
    [14]周纯秀,谭忆秋.橡胶颗粒沥青混合料除冰雪性能的影响因素[J].建筑材料学报,2009,12(6): 672-675.
    [15]Katarzyna Zwarycz. Snow Melting and Heating Systems Based on Geothermal Heat Pumps at Goleniow Airport Poland [R]. Geothermal Training Programme Reports, The United Nations University, Iceland,2002.
    [16]Arni Ragnarsson. Utilization of geothermal energy in Iceland[C]. International Geothermal Conference Session#10, Reykjavik, Iceland, Sep,2003.
    [17]L David Minsk. Heated Bridge Technology[R]. Report on ISTEA Sec.6005 Program, Publication No. FHWA-RD-99-158, U.S. Department of Transportation and Federal Highway Administration, July,1999.
    [18]D Derwin, P Booth, P Zaleski, W Marsey, W Flood Jr.SNOWFREE-Heated Pavement System to Eliminate Icy Runways [C].SAE Technical Paper Series 2003-01-2145,2003.
    [19]Koji Morita, Masashi Ogawa. Geothermal and Solar Heat Used to Melt Snow on Roads [R].Technical Brochure, CADDET Centre for Renewable Energy, IEA, Organization for Economic Co-operation and Development (OECD), Harwell, United Kingdom,1998.
    [20]Koji Morita, Makoto Tago. Operational Characteristics of the Gaia Snow-Melting System in Ninohe Iwate Japan:Development of a Snow-Melting System Which Utilizes Thermal Functions of the Ground [C]. Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28-June 10,2000.
    [21]Geir Eggenl, Geir Vangsnes. Heat Pump for District Cooling and Heating at OSLO Airport Gardermoen [C]. The IEA 8th Heat Pump Conference, Las Vegas, USA, May, 2006.
    [22]Katarzyna Zwarycz. Snow Melting and Heating Systems Based on Geothermal Heat Pumps at Goleniow Airport Poland[R].Geothermal Training Program Reports, The United Nations University, Iceland,2002.
    [23]Mariuse Owczarek, Roman Domanski. Application of dynamic solar collector model for evaluation of heat extraction from the road bridge[C].9th International Conference on Thermal Energy Storage. Warsaw in Poland, Vol. Ⅱ,2003.
    [24]高一平.利用太阳能的路面融雪系统[J].国外公路,1997,17(4).
    [25]李明,高青,江彦,等.地下蓄能过程温度场变化分析研究[J].暖通空调,2006,36(增刊).
    [26]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路,2007(5):170-174.
    [27]侯作富,李卓球,王建军.碳纤维导电混凝土融雪化冰的试验研究[J].混凝土与水泥制品,2004(5).
    [28]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究[J].建筑材料学报,2004,7(2).
    [29]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究[D].武汉:武汉理工大学,2003.
    [30]王庆艳.太阳能-土壤蓄热融雪系统路面得热和融雪机理研究[D].大连:大连理工大学, 2007.
    [31]李炎锋,武海琴,王贯明,等.发热电缆用于路面融雪化冰的实验研究[J].北京工业大学学报,2006,32(3):217-222.
    [32]武海琴.发热电缆用于路面融雪化冰的技术研究[D].北京:北京工业大学,2005.
    [33]WuoriAF. Ice-Pavement bond disbanding-surface modification and disbanding[R]. Strategic Highway Research program Rpt, SHRP-H-644, National Research Council, Washington, DC,1993.
    [34]Osborne, T.L., and W. R. Hutcheson,1989. "Asphalt compounds and method for asphalt reconditioning using microwave radiation," U. S. Patent No.4,849,020 (July 18,1989). Assigned to the Titan Corporation, Valparaiso, IN.
    [35]Wuori, A.F., Ed.,1993. Ice-Pavement Bond Disbonding-Surface Modification and Disbonding, Strategic Highway Research Program Rpt. SHRP-H-644, National Research Council, Washington, DC. Available on-line at http://gulliver.trb.org/publications/shrp/ SHRP-H-644. pdf.
    [36]Lindroth, D.P., W.R. Berglund, and C.F. Wingquist,1995. "Microwave thawing of frozen soils and gravels," J. of Cold Regions Engr.9, pp.53-63.
    [37]Lindroth D P, Berglund W R, Wingquist C F. Microwave thawing of frozen soils and gravels[J]. Journal of Cold Regions Engineering,1995,9(2):53-63.
    [38]Walkiewica J W, D P lindroth, A E Clark. Improved grind ability of taconite ores by microwave heating[R]. U.S. Bureau of Mines Report of Investigations955,1995.
    [39]Hopstock, D.M."Microwave-absorbing road construction and repair material."[R]. Duluth: University of Minnesota Duluth,2003.
    [40]Hopstock, D.M. and Zanko, L.M. "Minnesota taconite as a microwave-absorbing road aggregate material for deicing and pothole patching applications."[J]. Northland Transporter,2004(3).
    [41]Zanko, L.M., Niles, H.B., and Oreskovich, J.A. Properties and aggregate potential of coarse taconite tailings from five Minnesota taconite operations [J]. University of Minnesota Duluth, Natural Resources Research Institute, Technical Report NRRI/TR-2003/44; and Local Road Research Board Report Number 2004-06:227.
    [42]Velasquez, R.A., Turos, M., Moon, K.H., Zanko, L.M., and Marasteanu, M.O. Using Taconite Aggregates in Asphalt Mixtures, Use of Mine and Industrial By-products as Aggregate[J]. Transportation Research Board(TRB) 88th meeting, Washington, D.C. January 14,2009(09-3185).
    [43]Velasquez, R.A., Turos, M., Moon, K.H., Zanko, L.M., and Marasteanu, M.O. Using recycled taconite as alternative aggregate in asphalt pavements [J]. Construction and Building Materials 2009 (23):3070-3078.
    [44]Zanko L.M., Fosnacht D.R., Hopstock, D.M. Construction Aggregate Potential of Minnesota Taconite Industry Byproducts [J]. Cold Regions Engineering 2009, Duluth, Mimm.,2009(14):252-274.
    [45]关明慧,徐宇工,卢太金,等.微波加热技术在清除道路积冰中的应用[J].北方交通大学学报,2003,27(4):79-83.
    [46]李笑,徐宇工,刘福利.微波除冰方法研究[J].哈尔滨工业大学学报,2003,35(11):1342-1343.
    [47]徐宇工,李笑,宁智,等.微波加热清除道路结冰的方法和微波除冰车[P].中国专利:02125427.3,2004-01-28.
    [48]徐宇工,李笑,宁智,等.一种微波除冰车[P].中国专利:CN02243786.X,2004-03-10.
    [49]美的集团有限公司.磁控管微波消除路面冰雪的方法[P].中国:200710027333,2007-09-05.
    [50]美的集团有限公司.一种除雪机[P].中国:200520059734,2006-08-02.
    [51]唐相伟,焦生杰,高子渝,等.冬季道路微波除冰效率研究[J].中国工程机械学报,2008,6(1):105-110.
    [52]焦生杰,唐相伟,高子渝,等.微波除冰效率关键技术研究[J].中国公路学报,2008,21(6):121-126.
    [53]吴万胜,唐相伟,郑积相.微波技术在公路养护上的应用[J].筑路机械与施工机械化,2006,23(1):1-4.
    [54]唐相伟.道路微波除冰效率研究[D].西安:长安大学,2009.
    [55]郭乃胜,赵颖华,俞远征.聚酯纤维沥青混凝土路面的疲劳寿命计算[J]..沈阳建筑大学学报(自然科学版),2005,24(1):67-71.
    [56]郭乃胜,赵颖华,李刚.聚酯纤维沥青混凝土的低温抗裂性能分析[J]..沈阳建筑工程学院学报(自然科学版),2004,1:340-343.
    [57]希朋赛.沥青玛蹄脂碎石研究[D].西安:长安大学,2004.
    [58]李德超.SMA混合料配合比设计方法研究[D].西安:长安大学,2003.
    [59]焦继成.超薄磨耗层在高速公路养护中的应用[J].公路交通科技(应用技术版),2007,11:60-63.
    [60]史建.超薄磨耗层沥青混凝土路用性能试验研究[D].长春:吉林大学,2007.
    [61]程永春,付极,刘寒冰,等.超薄磨耗层沥青混合料路用性能试验研究[J].公路,2009,3(3): 13-16.
    [62]张争奇,赵战利,张卫平.矿料级配对沥青混合料低温性能的影响[J].长安学报(自然科学版),2005,25(2):1-5.
    [63]陈国明.矿料级配走向对沥青混合料性能的影响[J].公路,2009(3):135-138.
    [64]黄玉兰.电磁场与微波技术[M].北京:人民邮电出版社,2007.
    [65]王保志.微波技术与工程天线[M].北京:人民邮电出版社,1991.
    [66]周在杞,周克印,许会.微波检测技术[M].化学工业出版社,2008.
    [67]张兆键,钟若青.微波加热技术基础[M].北京:电子工业出版社,1988.
    [68]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理学与高薪技术,2004,33(6):438-442.
    [69]王绍林.微波加热技术的应用[M].机械工业出版社,2004,1:4.
    [70]Marbet-Wil,2003."Sul Mix Fix," http://www.marbetwil.com.pl/en/index.php.
    [71]Wakliewicz, J.W., D.P. Lindroth, and A.E. Clark,1995." Improved grindability of taconite ores by microwave heating," U.S. Bureau of Mines Report of Investigations 9559.
    [72]田步宁,杨德顺,唐家明等.传输/反射法测量材料电磁参数的研究[J].电波科学学报,2001,16(1):57-60.
    [73]田步宁,杨德顺,唐家明等.传输/反射法测量复介电常数的三个方程研究[J].宇航学报,2002,23(5):22-27.
    [74]应四新.微波加热与微波干燥[M].北京:国防工业出版社,1976.
    [75]陈先法.微波加热器[J].杭州食品科技,1992,27(1):43-44.
    [76]陈重,崔正勤.电磁场理论基础[M].北京:北京理工大学出版社,2003,247-248.
    [77]杨显清,赵家升,王园.电磁场与电磁波[M].北京:国防工业出版社,2003,53-109.
    [78]纪海翔.基于FDTD的微波加热模型分析[D].西安.西安电子科技大学,2004.
    [79]朱守正.温变参数材料微波加热的数值模拟[J].电子学报,1994(09):28-34.
    [80]Von Hippel, A.R., Ed. Dielectric Materials and Applications[M]. M.I.T. Press, Cambridge, MA,1954b:361
    [81]李迎.内燃机流固藕合传热问题数值仿真与应用研究[D].杭州:浙江大学,2006.
    [82]姜洪舟.无机胶凝材料微波加热过程的数学模拟研究[D].武汉:武汉理工大学,2006.
    [83]叶君永,黄卡玛.随机相位和随机频率微波加热效应的数值模拟[J].强激光与粒子束,2004,16(12):1576-1580.
    [84]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [85]谭建国.使用ANSYS6.0进行有限元分析[M].北京.北京大学出版社,2002.
    [86]贺庆强,张勤河,刘克强,等.H型钢开坯过程的热力藕合有限元分析[J].系统仿真学报,2007,19(1):19-21.
    [87]朱敏波,钟杨帆,段宝岩.星载天线在轨热变形多因素影响仿真分析[J].系统仿真学报,2007,19(6):1376-1378.
    [88]金敬福,丛茜,杨晓东.常用工程材料的冻粘特性及冻粘界面破坏形态[J].吉林大学学报(工学版),2005,35(5):486-489.
    [89]杨晓东,尚广瑞,金敬福.Q235钢表面PTFE涂层的冻粘试验[J].吉林大学学报(工学版),2004,34(2):272-276.
    [90]Chatter, Susanta. Aspects of the freezing process in a porous material-water system part 1. Freezing and the properties of water and ice. Cement and Concrete Research,1999, 29(4):627-630.
    [91]Croney D. Frost damage to roads in Great Britain. Highway Res. Board Sp. Rep. No.2 (Washington),1952.
    [92]Croutch V K, Hartley R A. Adhesion of ice to coatings and the performance of ice release coatings[J]. Coat. Technol.1992.64:41-53.
    [93]Civan, Fraruk, Unfrozen water in freezing and thawing soil:kinetics and correlation. Journal of Cold Regions Engineering.2000,14:146-156.
    [94]尚广瑞,杨晓东,金敬福,等.几种典型材料与冰的冻粘系数[J].长春理工大学学报,2004,27(1):77-79.
    [95]樊海滨.国外融雪材料在冬季除雪中的使用[J].筑路机械与施工机械化,2006(11):5-7.
    [96]唐相伟,焦生杰,高子渝,等.微波除冰应用与分析[J].筑路机械与施工机械化,2008(7): 15-18.
    [97]童华桥,张卫波.除冰除冰技术浅谈[J].福建工程学院学报,2008,6(12):1-3.
    [98]黄钟岳,陈光,王晓放,等.热力机械复合除雪除冰方法研究[J].筑路机械与施工机械化,2004(1):28-30.
    [99]刘志军,张璧光.微波加热在木材干燥中的应用[J].世界林业研究,2005,18(3):54-58.
    [100]赵鹤云,项金钟,吴兴慧.电磁污染与电磁波吸收材料[J].云南大学学报,2002,24(1A):59-61.
    [101]郭祥玉,张子东,马锐,等.电子设备的电磁屏蔽技术[J].光电对抗与无源干扰,2001,2:39-43.
    [102]袁敏.电磁屏蔽技术研究[J].电子机械工程,1998,6:36-37.
    [103]唐铃.电磁屏蔽技术的分析与设计[J].计算技术与自动化,2003,22(4):101-102.
    [104]万朋.金属网电磁屏蔽问题初探[J].安全与电磁兼容,1999,3:27-29.
    [105]Liu Dichen, Deng Suqiao. The study of metal meshes on electromagnetic interference shielding effectiveness[J]. Environmental Electromagnetics,2000. CEEM 2000. Proceedings. Asia-Pacific Conference on,3-7May 2000:326-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700