导向叶片热气防冰流动传热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机在含有过冷水微滴的云层中飞行时,机身部件如风挡玻璃、机翼和垂尾等,可能会出现结冰现象。这对于飞机是非常危险的,因为它会改变其原有的气动外形,使得整机升力下降,阻力增加,操控性变差。飞机发动机也存在相似的问题。对涡轴发动机来说,其进气道中导向叶片上的积冰会引起进气状况恶化,脱落的积冰也可能进入发动机内部而使其损坏。为了减小结冰问题带来的危害,现代飞机上通常都装备有防冰系统。
     本文以目前应用较广的热气防冰系统为研究对象,在前人工作的基础上,对现有飞机热气防冰系统热平衡分析模型加以改进,力求使得模型分析结果更为准确,能够为飞机及发动机的防冰系统性能分析提供更为可靠的计算方法。本文的工作主要包括热气防冰系统引气管路流动仿真,二维水撞击特性的数值计算、热平衡分析模型的改进、防冰部件壁面温度计算程序的编写及结果分析四部分。论文对现有防冰系统的热平衡方程进行理论分析并加以改进,在热平衡分析模型中引入表面湿润系数F构建新的数学模型,在此基础上利用某发动机导向叶片作为算例,对其进行流场分析。在流场计算分析基础上,通过编写专用程序计算叶片壁面的温度场分布。论文最后对基于新旧两种数学模型下的温度场分布作比较分析。通过以上分析建模以及计算,得出表面湿润系数F=0.2时计算出的温度场要高于表面湿润系数F=1.0时的温度场,计算结果说明原有不考虑表面湿润系数的方法低估了壁面温度,会造成防冰系统引入过量的热空气,从而降低发动机的效率。同时,论文通过比较防冰系统热气防冰过程中各项热流所占比例,发现水微滴动能转变而来的热流所占总热流值的比例很小,因而可以在精度要求不是很高的前提下忽略。
Ice accretions may occur on certain exposed parts of an airplane, such as the windscreen, the aerofoil, and the tail when the airplane flies in clouds which contain super-cooled water droplets. This is very dangerous since ice accretions can seriously degrade aircraft performance and handling characteristics. Similar problem also exists on aircraft engines. For turbo-shaft engine, ice accumulated on the inlet guide vane of the engine can worsen air ingestion. In addition, shed ice may be sucked into the engine and induces serious damage. In order to reduce the hazards caused by in-flight icing, most modern airplanes have been equipped with anti-icing systems.
     This thesis investigates a widely used hot air anti-icing system and makes improvement of current computation model in order to get better results, trying to find a simple and effective method to evaluate its performance. The work is carried out in simulating air intake pipelines of the hot air anti-icing system, presenting a numerical method for calculating the water droplet impingement efficient, improving the thermal balance analysis model, developing a program for calculating the surface temperature. First, the current thermal balance model is improved by introducing a factor—wetness factor F. Then the guide vane is modeled, fluid field around the guide vane is also analyzed, followed by a program for calculating surface temperature is developed. At the end, the results are analyzed and compared with those based on the former model. In conclusion, it is found that the surface temperature is higher than that based on the previous way, which means the previous way is a waste of hot air. According to the new results, less hot air is needed, which will significantly improve the engine performance. The heat transfer from the kinetic energy of the droplets can be ignored because it just takes a small count of the total by comparing the percent of different heat flux.
引文
[1]裘燮纲,韩凤华。飞机防冰系统[M]。北京:航空教材编审组。1985,1-104。
    [2]董葳,赵冬梅。飞行结冰动力学发展综述。第一届现代空气动力学及气动热力学会议论文。2006。
    [3]王宗衍。直升飞机的防冰问题。第十六届全国直升机年会论文。2000。
    [4]李永艺,余能鹏,李基堂。直升机的积冰与预防。第十七届全国直升机年会论文。2001。
    [5]曲春雷。直升机防(除)冰技术研究。第十八届全国直升机年会论文。2002。
    [6]沈海军,史友进。飞机防冰与除冰的若干技术。飞机工程,2004,1:54-57。
    [7]李林,王立新,彭小东。结冰对民机飞行性能的影响研究。飞行力学,2004,22(3):12-16。
    [8] Kind R J, Potapczuk M G, Feo A, Golia C, Shah A D. Experimental and computational simulation of in-flight icing phemomena. Progress in Aerospace Science, 1998, 34: 257-345.
    [9]王宗衍。美国冰风洞概览。航空科学技术,1997,3:45-47。
    [10] Wendisch M, Garrett T J, Strapp J W. Wind tunnel tests of the airborne PVM-100A response to large droplets. Journal of Atmospheric and Oceanic Technology, 2002, 19(10): 1577-1584.
    [11] Guffond D P, Cassaing J J, Brunet L S. Overview of icing research at ONERA, 1985, 1: 14-17.
    [12]王宗衍。冰风洞与结冰动力学。制冷学报,1999,4:15-17。
    [13] Silva G.A.L.da, Silvares O M, Zerbini E.J.G.J. Numerical simulation of airfoil thermal anti-ice operation Part2: implementation and results. Journal of Aircraft, 2007, Vol 44, No.2:636-640
    [14] Gregory J. Falabella. Development of a Navier-Stokes solver to analyze compressible flow about airfoils and wings altered by leading edge ice accretions [dissertation]. New Jersey: The State University of New Jersey. 1999.
    [15] Adam Rutkowski, Willam B. Wright, Mark Potapczuk. Numerical study of droplet splashing and re-impingement. AIAA-2003-388. 2003.
    [16] Tan S C, M Papadakis. General effects of large droplet dynamics on ice accretion modeling. AIAA-2003-392. 2003.
    [17] Naterer G F. Coupled liquid film and solidified layer growth with impinging supercooled droplsts and Joule heating. International Journal of Heat and Fluid Flow, 2003, 24: 223-235.
    [18] Sherif S A, Pasumarthi N, Bartlett C S. A semi-empirical model for heat transfer and ice accretion on aircraft wings in supercooled clouds. Cold Regions Science and Technology, 1997, 26: 165-179.
    [19] Guy Fortin, Jean-Louis Laforte, Adrian Ilina. Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. International Journal of Thermal Science, 2006, 45: 595-606.
    [20] Baruzzi G, Tran P, Habashi W G, Akel I, Balage S, Narramore J C. FENSAP-ICE: progress towards a rotorcraft full 3-D icing simulation system. AIAA-2003-24. 2003.
    [21] Krzysztof Szilder, Edward P. Lozowski. Simulation of airfoil icing with a novel morphogenetic model. Journal of Aerospace Engineering, 2005, Vol.18, No.2: 102-110
    [22] Myers T G, Charpin J.P.F. A mathematical model for atmospheric ice accretion and water flow on a cold surface. International Journal of Heat and Mass Transfer, 2004, 47: 5483-5500.
    [23] Tsao J C, Rothmayer A P. Application of triple-deck theory to the prediction of glaze ice roughness formation on an airfoil leading edge. Computers & Fluids, 2002, 31: 977-1014.
    [24] Guy Fortin, Adrian Ilinca, Jean-Louis Laforte. Prediction of 2d airfoil ice accretion by bisection method and by rivulets and beads modeling. AIAA-2003-1076. 2003.
    [25] Messinger B L. Equilibrium temperature of an unheated icing surface as a function of airspeed. Journal of the Aeronautical Sciences, Vol.20,No.1,pp:29~42.
    [26] Wright W B, Bidwell C S. Additional improvements to the NASA Lewis ice accretion code LEWICE.AIAA-95-0752, 1995.
    [27]曲凯阳,江亿。各种因素对过冷水发生结冰的影响。太阳能学报,2003,24(6):814-821。
    [28] Alessando AM endola, Giuseppe mingione. On the problem of icing modern civil aircraft. Air & Space Europe, 2001, Vol.3, No. 3/4: 214-217.
    [29]周以齐,闫法义,陈宏。管路系统中流体数学模型及其在虚拟现实中的应用。机械与电子,2005,2:57-59。
    [30]李世武。管网系统热经济决策理论与方法的研究[博士论文]。西安:西北工业大学。2002。
    [31]郭文,邓化愚,刘松龄。空气冷却系统与涡轮转子温度场的耦合计算。第五届动力年会论文集(5~8)。2003。
    [32] Miller D S. Internal flow systems. BHRA Fluid Engineering , 1978.
    [33] Flowmaster V7软件模块及其新功能。CAD/CAE与制造业信息化,2006,12:34-37。
    [34]《航空发动机设计手册》总编委会。航空发动机手册第16分册。北京:航空工业出版社。2001:69-96,247-298。
    [35]韩凤华,张朝民,王跃欣。飞机机翼表面水撞击特性计算。北京航空航天大学学报,1995,21(3):16-21。
    [36]杨倩,常士楠,袁修干。水滴撞击特性的数值计算方法研究。航空学报,2002,23:174-176。
    [37]杨倩,常士楠,袁修干。发动机进气道水滴撞击特性分析。北京航空航天大学学报,2002,28(3):362-365。
    [38]杨倩。发动机进气道防冰系统研究[硕士论文]。北京航空航天大学。2002。
    [39]顾海君。发动机进气道唇口水滴撞击特性的数值模拟研究[硕士论文]。南京:南京航空航天大学。2005。
    [40]王波。涡轴发动机零级导叶热气防冰系统性能的计算与实验研究[硕士论文]。上海:上海交通大学硕士学位论文,2007。
    [41] Kamel M Al-Khalil. Numerical simulation of an aircraft anti-icing system incorporating a rivulet model for the runback water [D]. Toledo: The University of Toledo, 1991.
    [42] Anderson DN. Methods for scaling icing conditions[J]. AIAA-95-0540, 1995.
    [43] S. Lee, H. S. Kim and M. B. Bragg. Investigation of factors that influence iced-airfoil aerodynamics[J] , AIAA-2000-0099, 2000.
    [44]刘志刚,刘咸定,赵冠春。工质热物理性质计算程序的编制及应用。北京:科学出版社。1992。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700