绝缘子超疏水涂层的制备及覆冰特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在输变电系统中,输电线路的覆冰现象十分普遍。覆冰可以引起导线舞动、断线、倒塔,导致绝缘子外绝缘特性的严重下降并引起绝缘子闪络,给电网安全运行造成了严重损害。虽然目前在电力系统中广泛运用的包括RTV涂料在内的憎水性涂料具有良好的憎水性,但其接触角不会超过110o,故并不能起到防覆冰的效果,更不能提高绝缘子串冰闪电压以及和阻止冰闪事故的发生,到目前为止,尚未见应用的实际效果。为有效地减少覆冰事故的发生,有必要研究仿荷叶超疏水涂层,这种涂层成膜后水珠在其上面的接触角可达到150o以上,滚动角小于5o,使得水珠在上面很容易滚动和滑落。将这种涂层涂敷在输变电线路的绝缘子上,其超疏水性能能够使滴落于绝缘子上的过冷却水滴在释放潜热前就已经滚走,从而有效降低绝缘子表面对过冷却水滴的捕获率,进而延缓和阻止覆冰事故的发生。
     本文基于“荷叶效应”,研究了一种超疏水涂层的制备方法及其疏水性能表征。并将涂敷有此种超疏水涂层的等腰三角形玻璃板、涂敷RTV涂层的等腰三角形玻璃板与没有涂层的等腰三角形玻璃板一起放入人工覆冰实验室进行覆冰实验,并对这三种试品的覆冰形貌、覆冰重量、耐压过程中的紫外光子数和泄漏电流以及覆冰结束后的交流冰闪电压进行测试、比较和分析。为考察超疏水涂层运用于绝缘子防覆冰的效果,将涂敷有此种超疏水涂层的三片玻璃绝缘子、涂敷RTV涂层的三片玻璃绝缘子与没有涂层的三片玻璃绝缘子一起放入人工覆冰实验室进行覆冰实验,并基于试验结果,提出了改进涂料配方以及配合超疏水涂料的防冰除冰措施的研究思路。
     通过大量的试验及其结果分析得到以下结论:
     ①超疏水涂层表面具有微纳二元复合粗糙结构,从而形成了“荷叶效应”和超疏水状态,静态接触角可以达到(160±0.5)o,这种表面水与固体的接触分数为6.6%,也就是说存在93.4%的空气截留面积;
     ②超疏水涂层能明显延缓等腰三角形玻璃板以及绝缘子试品的覆冰,阻止了连续覆冰膜的产生,在覆冰过程中表面只有分离的覆冰颗粒,由于超疏水涂层具有较低的滚动角,涂覆超疏水涂层的等腰三角形玻璃板试品在覆冰过程中倾斜的角度越大,覆冰量越小,延缓覆冰的效果越明显;
     ③由于超疏水涂层阻止了连续覆冰膜的产生,表面只有分离的覆冰颗粒,所以在耐压过程中涂覆超疏水涂层的玻璃板试品的泄漏电流远远没有涂覆RTV涂层的试品和没有任何涂层的试品强,且用紫外成像仪测得的耐压紫外光子数远远低于涂覆RTV涂层的试品和没有任何涂层的试品;
     ④测得的涂覆超疏水涂层的等腰三角形玻璃板以及绝缘子试品的交流冰闪电压远远高于涂覆RTV涂层的试品以及没有任何涂层的试品的测量值;
     ⑤改善超疏水涂料的配方工艺,例如采用复合纳米粒子代替单一粒径的无机纳米粒子,以实现规整的双重粗糙结构以及持久的超疏水性,并探讨超疏水涂料与其它防冰除冰措施相配合方法,如在超疏水涂料中添加电热型材料、光热型材料以及PTC材料,以增加超疏水涂膜对连续覆冰膜形成的有效阻止时间,对于电力系统输配电装备防覆冰事故和系统安全有着一定的研究意义。
In the power transmission system,icing is widespread phenomenon,which can cause bounce and rupture of transmission line and even lead to the fall of iron tower.With icing,the external insulation characteristics are always deteriorated to the extent that the flashovers of insulators can easily occur,which means the safety and stability of power transmission system are strongly chanllenged by icing.Notwithstanding the fact that super-hydrophobic coatings like RTV are widely used in power transmission system,they,with their contact angler not bigger than 110o,can’t prevent icing at all,therefore the AC flashover voltage of insulators can’t be increased when icing occurs.In order to prevent icing accendents and to decrease flashovers in icing,it is necessary to study and develop super-hydrophobic coating,on which the contact angle of water is bigger than 150o so that the waterdrops easily roll and fall from the surface of coating.On the surface of insulators painted with superhydrophobic coating,the water rolls and falls,which means that the waterdrops are scarecely captured,so icing can hardly happen.From this point of view,super-dydrophobic coating is a good method to prevent icing accidents and AC flashover of insultors.
     Based on lotus effect,the technics of preparing the super-hydrophobic coating is studied and its hydrophobicity properties analyzed.One glass-plate with this super-hydrophobic coating,one with RTV coating,and one without any coating are put together in the artificial climate chamber for icing test.Their surface ice morphology,their icing weight,their leakage current’s frequency spectrum and their AC flashover voltage are tested,compared and studied.In order to know the anti-icing effects of this super-hydrophobic coating when used for isulators,3 insulators with this super-hydrophobic coating,3 with RTV coating and 3 without any coating are put in artificial climate chamber for icing test and based on the test results,the methods of developing the superhydrophobic coating and the auxiliary methods which can make anti-icing of this super-hydrophobic coating more effective are studied.
     The following conclusions are made based on test results:
     1) Micro-nano roughness structure is found on the super-hydrophobic coating,which leads to lotus effect and super-hydrophobicity.Only 6.6% of this surface is in contact with waterdrop on it and 93.4% with air;
     2) The super-hydrophobic coating can evidently delay the icing process on glass-plate samples and insulators,and due to its super-hydrophobicity,the larger the inclination angle of the glass-plate sample with super-hydrophobic coating is,the less the weight of ice on it;
     3) Because the super-hydrophobic coating inhibits the forming of continuous ice film and on the surface of super-hydrophobic coating are only separated ice particles,the leaking current of the glass-plate sample with super-hydrophobic coating is much smaller than that of glass-plate sample with RTV coating and without any coating and the number of photons of the sample with super-hydrophobic coating discovered by ultraviolet imaging spectrograph is much less than that of sample with RTV coating and without coating;
     4) It is found that the flashover voltage of the sample with super-hydrophobic coating after icing is much higher thant that of the sample with RTV coating and without coating;
     5) It is very important for the safety of power transmission system to increase the inhibition time of super-hydrophobic coating against icing by replacing nano-particles of the same size with composite particles in making the coating or by developing auxiliary anti-icing measures.
引文
[1]孙才新,司马文霞,苏立春.大气环境与电气外绝缘[M].北京:中国电力出版社, 2002.
    [2]逸梅,史惠萍.绝缘子的覆冰及覆冰绝缘子的放电特性[J].广西电力技术. 1995, No.3: 20-24.
    [3]蒋兴良.输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[D].重庆:重庆大学, 1997.
    [4]张宏志.大面积导线覆冰舞动事故的调查与分析[J].东北电力技术. 2001, No.12: 15-19.
    [5]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社, 2001.
    [6] PHAN C L. Accumulation du Verglas sur Les Nouveaux Types D’isolateur Sous Haute Tension.[J]. Canadian Electrical Engineering Journal,1977,2(4),24-28.
    [7]蒋兴良,杜辕,林峰,胡建林,张志劲.持久性就地成型防污闪复合涂料对绝缘子覆冰及交流冰闪电压的影响[J].电网技术. 2008, 32(1): 71-75.
    [8] Khalifa M M,Morris R M.Performance of line insulators under rime ice[J]. IEEE Trans. on Power Apparatus and Systems,1967,86(6),692-698.
    [9]曲爱兰.有机—无机杂化乳液超疏水涂膜的制备及表面微观结构调控[D].广州:华南理工大学2008.
    [10]重覆冰区除冰综合措施的研究,总结报告,武汉高压研究所,1990.12.11-12
    [11] Canada electrical association,proceedings of the 1st IWAIS,Wankuwa,Canada.1982:23-25
    [12] Hydro Quebec,proceedings of the international icing symposium’95,Montreat.1995:65-66
    [13] Japanese society of snow and ice,proceedings of the 5st IWAIS,Tokyo,Japan.1990:86-89
    [14] James W.Hall,Ice storm management on an electrical utility system,proceedings of the 7th IWAIS,Canada,1996:225-230
    [15] Mulherin,Donaldson.Modeling of the ice Accretion on Wires.Journal of Climate and Applied Meteorology,1998,Vol.23
    [16]能源部武汉高压研究所.输电线路导线除冰方法综合研究(第三集).高压技术,1988,1.
    [17]能源部武汉高压研究所.输电线路导线除冰方法综合研究(第二集).高压技术,1990,1.
    [18] Admirat,Lapeyre.The amount of Icicles of Overhead Lines.Proceedings of 5th IWAIS’90,Japan,1988:B6-3
    [19] Yasui.Growth of air Hoar in Super-cooled Fog.Low Temperature Science,Series B5,1990.
    [20] [美]J.G.安德生等著.超高压输电线路.西南电力设计院,北京电力设计院.北京:水利电力出版社,1979:51-52
    [21] [美]卡里卡,戴斯蒙著.工程传热学.刘吉萱主译.北京:人民教育出版社,1990:63-64
    [22] Graber,Mark.Ice and Snow Accretion on Structures.England:Research Studies Press LTD,1991.
    [23] Zumwalt,Egbert.The Density of Accreted Ice,1988,Vol.112:1081-1090
    [24] Gerardi.Growth of air Hoar in super-cooled Fog.Low Temperature Science,Series A13,2004.
    [25]袁慎芳,陶宝祺,石立华.一种飞机结构监测及自适应除冰的模拟实验.航空学报,2000,21(6):575-577
    [26]蒋兴良,肖代波.憎水性涂料在输电线路防冰中的应用前景[J].南方电网技术, 2008, 2(2): 14-18.
    [27]关志成等著.绝缘子及输变电设备外绝缘[M].北京:中国电力出版社,2007
    [28]顾剔人,朱步瑶等.表面化学[M].北京:科学出版社,2001
    [29]江雷,冯琳著.仿生智能纳米界面材料[M].北京:化学工业出版社,2007
    [30] Barthlott W,Neinhuis C.Planta,1997,202:1-8
    [31] Zhao N,Xie Q D,Weng L H et al.Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution[J].Macromolecules,2005,38:8996-8999
    [32] Venkateswara R,Bhagat S D,Hirashima H,et al. Synthesis of flexible silica aerogels using methyltrimethoxysilane(MTMS) precursor[J]. J Colloid Interf Sci,2006,300(1):279-285
    [33] Feng L,Song Y L,Zhai J,et al. Creation of a superhydrophobic surface from an amphiphilic polymer[J]. Angew Chem Int Ed,2003,42:800-802
    [34] Farzaneh M,Baker T,Bernstorf A,et al.Insulator icing test methods and procedures: a position paper prepared by the IEEE task force on insulator test methods[J]. IEEE Trans. On Power Delivery, 2003, 18(4): 1503-1515.
    [35]李璟延,司马文霞,孙才新等.染污绝缘子放电中泄漏电流的频谱变化[J].高电压技术, 2008, 34(3): 455-457.
    [36]律方成,马国明,刘云鹏,等.基于水平集模型的电气设备紫外图像放电区域分割[J].中国电机工程学报,2008,28(19):20-24.
    [37]汪金刚,何为,陈涛.绝缘子表面电场与紫外脉冲关系以及在劣化绝缘子检测中的应用[J].电工技术学报,2008,28(6):137-142.
    [38] Pinnangudi B , Gorur R S . Quantification of corona discharge on non-ceramic insulators[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(3):513-523.
    [39]迟殿林.用紫外成像检测电气设备外绝缘状况[J].东北电力技术,2005,28(1):22-23.
    [40]戴利波.紫外成像技术在高压设备带电检测中的应用[J].电力系统自动化,2003,27(20):97-98.
    [41] Chen Shixiu.Light spectra on DC corona[C].Proceeding of 1998 international symposium onElectrical Insulating Material,Japan,1998:321-324.
    [42]赵文华,张旭东,姜建国,魏念荣.尖-板电晕放电光谱分析.光谱学与光谱分析,2003, 23(5):955-957.
    [43]杨晓琳.电气设备外绝缘放电紫外成像检测及图像处理的研究[硕士学位论文].华北电力大学,2007.
    [44]蒋兴良,卢杰,杜辕等.间插布置绝缘子串的交流冰闪特性[J].中国电机工程学报,2009, 29(10): 12-16.
    [45]蒋兴良,孙才新,司马文霞等. 10KV合成绝缘子覆冰交流闪络特性及冰闪过程的研究[J].中国电机工程学报, 2002, 22(8): 58-61.
    [46] Patankar N.A. Mimicking the Lotus effect:influence of double roughness structure and slender pillars[J]. Langmuir,2004,20:8209-8213 M
    [47] Feng L., Li S., Li Y. et al. Super-hydrophobic surfaces: from natural to artificial. Adv.Mater.,2002,14(24):1857-1860
    [48]郑黎俊,乌学东,卜楼增等.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699
    [49] Patankar N.A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir,2004,20:7097-7102
    [50] He B.,Patankar N.A.,Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces.[J]. Langmuir,2003,19,4999-5003
    [51] Herminghaus S. Roughness-induced non-wetting[J]. Europhys.Lett. 2000,52(2):165-170
    [52] Weiyan Liao, Zhidong Jia, Zhicheng Guan, Liming Wang. Reducing Ice Accumulation on insulators by Applying Semi conducting RTV Silicone Coating. IEEE Transactions on Dielectrics and Electrical Insulation, December 2007, 14(6):1446-1454.
    [53] Farzaneh M, Kiernicki J, Drapeau J F. Ice accretion on energized line insulators. International Journal off shore and Polar Engineering,2(3), pp: 2282-2283, 1992.
    [54] Farzaneh M, Kiernicki J. Flashover performance of IEEE standard insulators under ice conditions. IEEE Trans on Power delivery,12(4), pp:1602-1613, 1997.
    [55] L.C.Phan, Matsuo.H. Minimum flashover Voltage of Iced Insulators. IEEE Transactions on Electrical Insulation. 1983, 18(6), pp.605-618
    [56] Farzaneh M, Kiernicki J. Flashover problems caused by ice build-up on insulators. IEEE Electrical Insulation Magazine,11(2), 1995.
    [57] Farzaneh M, Laforte J L. A laboratory of wet icing build up on HV Insulators. International Journal of Offshore and Polar Engineering, 18(3), pp: 167-172, 1998.
    [58]刘振亚.特高压电网[M].北京:中国经济出版社, 2005.
    [59] S. M. Berlijn etc. Laboratory Tests and Web Based Surveillance to Determine the Ice- and Snow Performance of Insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2007, 14(6): 1373-1380.
    [60] D. M. Leite. Registration instruments for measurements of leakage currents on polluted insulators[C]. The 6th International symposium on high voltage engineering, New Orleans, USA, 1989: 230-234.
    [61] A. E. Vlastos. Leakage current data acquisition system for field tests of insulators[C]. The 8th International symposium on high polymeric voltage engineering, Yokohama, Japan, 1993:205-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700