交流电场对复合绝缘子覆冰过程及放电特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝缘子覆冰闪络严重威胁输电线路安全运行,是电力系统安全运行亟待解决的关键技术之一。国内外对覆冰绝缘子闪络特性已进行大量研究,但这些研究多是在不带电情况下进行的,与实际运行情况有差异,事实上电场对输电线路绝缘子覆冰的影响不可忽视。本文在人工气候室内模拟自然覆冰条件,研究电场强度对复合绝缘子覆冰形态、密度、覆冰量和覆冰速度的影响,并与电场对XP-160型普通悬式瓷绝缘子的影响进行对比。根据高速摄像机拍摄的放电过程图片,分析带电与不带电情况下覆冰复合绝缘子放电特性的差异,利用有限元方法建立复合绝缘子电场计算模型,通过电场仿真,验证试验得到的结果。
     研究结果表明:交流电场不仅影响绝缘子覆冰外观、重量、密度和速度,而且其影响程度与覆冰环境条件有关,带电覆冰时复合绝缘子冰闪电压与不带电覆冰的情况有差异。
     随外加电压的升高,绝缘子覆冰表面粗糙度增加;冰凌中气泡增大、增多。外加0~20kV电压覆冰15min时,冰重随外加电压的升高增加,外加超过20kV电压覆冰15min时,冰重随外加电压的升高减轻。带电覆冰时,雾淞密度增大,雨淞密度随外加电压的增大减小,雨淞冰厚的增长会出现饱和。
     电吸力的作用使得覆冰量与覆冰密度增加;极化作用、粗糙度、泄漏电流以及绝缘子表面各类放电现象使得覆冰量与覆冰密度减小。电场强度较小时,电场的吸引作用为主,覆冰量与冰密度增加;电场强度较大时,极化作用为主,覆冰量与冰密度降低。
     带电覆冰时,冰凌在生长过程中向复合绝缘子芯棒弯曲,弯曲的冰凌会导致各个伞裙上冰凌尖端电场加剧,缓和绝缘子芯棒表面电场分布的不均匀性。外加30kV电压覆冰25min后,部分冰凌尖端电场强度大于空气击穿场强,存在稳定燃烧的电弧,使得冰凌不易被桥接。
     无论是哪种覆冰情况,覆冰复合绝缘子放电时都是高压端先起弧。带电覆冰情况下电弧首次出现到稳定燃烧的时间、电弧稳定燃烧到绝缘子串闪络的时间均较短。带电覆雾淞情况下复合绝缘子闪络电压下降;带电覆雨淞情况下复合绝缘子闪络电压上升。
In recent years, AC flashover programs of iced insulators is one of the severe problems for external insulation of transmission lines and has been one of the key technologies to assurance the electric power system safely operated which should be solved as soon as possible. There are a lot researches about the AC flashover performance and voltage correction, but most of these researches are under non-energized condition. Actually the influence of AC electrical field on the icing process of the transmission line insulators can’t be neglected. As a result, Experiment investigations are carried out on composite insulators and porcelain insulator string in the artificial climate chamber of Chongqing University. Anises the influence of AC electrical field stress on the shape, weight, density and speed of grow of ice. According to the photos carried on the flashover process of composite insulators covered-with ice using ultra-high-speed camera. Study on the influence of AC electrical field stress on the discharge characteristics of composite insulators covered with ice non-energized and on energized.Build the finite element surface electric field calculation model of composite insulators to proof the experiment result.
     Based on the test results, The influence of AC electrical will change the shape, weight, density and speed of grow of ice, the degree of the influence has relationship with ambient conditions of icing process. The flashover voltage of composite insulators covered with ice non-energized and on energized is different.
     As the voltage carried out on the insulator goes on, the degree of roughness, the amount of air bubbles in ice slush increased. The weight of the ice will increase with the increase of the voltage when ining on a voltage under 20kV for 15 min, and reduce with the increase of the voltage when ining on a voltage above 20kV for 15 min. The density of rime is great and the density of glaze will reduce with the voltage increase when icing on energized. The increase speed of glaze will saturate when icing on energized.
     The absorption is the reason of the weight and density of the ice increasing. And the polarization, the roughness of ice, leakage current and the discharge on the insulator will reduce the weight and density of the ice. The absorption is strong and increases the weight and density of the ice at weak electrical field. And the polarization is strong and reduces the weight and density of the ice at strong electrical field.
     The slush on energized will bend forward the core rod when icing on energized, which increase the electric field of icicles tips and reduce the inhomogeneity of the electric field along the composite insulator core. The electric field of some icicles tips will above breakdown field strength when the insulator icing at 30kV for 25 min.The arc will create at this place and make the energized insulators hard to be bridged by icicles.
     The discharge happened at the high voltage at first when icing non-energized and on energized. The times of the stage of pause arc appear and the development stage of pause arc when icing on energized is shorter than that icing non-energized. The flashover voltage reduced when the insulator covered with rime with voltage and increase when the insulator covered with glaze icing on energized.
引文
[1]孙才新,司马文霞,舒立春.大气环境与电气外绝缘[M].北京:中国电力出版社, 2002.
    [2]舒印彪.我国特高压输电的发展与实施[J].中国电力, 2005, 38(11): 1-8.
    [3]腾中林.冰厚度随高度的变化[J].天气月报, 1959, 13(3): 7-11.
    [4] Imai I. Studies of ice accretion [J]. Res. Snow Ice, 1953, 1(3): 35-44.
    [5] Daisuke Kuroiwa. Icing and snow accretion [J]. Monograph Series of the Research Institute of Applied Electricity, 1958, 6(5): 1-30.
    [6]王守礼,李家垣.云南高海拔地区电线覆冰问题研究[M].昆明:云南科技出版社, 1993.
    [7] Chameski M.D. Flashover Tests of Artificially Insulator [J]. IEEE Trans. PAS-101, 1982, 8(3): 2429-2433.
    [8] Chen Xing. Modeling of Electrical Arc on Polluted Ice Surface [M]. Canada: PH.D Dissertation, 2000.
    [9]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社, 2002.
    [10] Farzaneh M, Melo O.T. Properties and effect of freezing and winter fog on outline insulators [J]. Journal of Cold Regions Science and Technology, 1990, 23(19): 33-46.
    [11] Jiang Xingliang, Shu Lichun. Chinese transmission lines’icing characteristics and analysis of severe ice accidents [J]. International Journal of Offshore and Polar Engineering, 2004, 14(3): 196-201.
    [12]蒋兴良,马俊,王少华.输电线路冰害事故及原因分析[J].中国电力, 2005, 38(11): 27-30.
    [13] Kuroiwa D. Icing and snow accretion on electric wires [J]. U.S. Army Cold Regions Research and Engineering Laboratory, 1965, 8(3): 1-10.
    [14] Oguchi H et al. Icing on Electric wires [J]. Research on Snow and Ice. 1953, 5(1): 45-49.
    [15]蒋兴良,输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[博士学位论文].重庆大学, 1997.
    [16]粟福衍,贾逸梅,王均谭等. 500kV绝缘子串的人工雾淞覆冰和放电试验[J].中国电机工程学报, 1999, 19(2): 75-78.
    [17] Phan L C, Matsuo H. Minimum flashover voltage of iced insulators [J]. IEEE Transactions on Electrical Insulation, 1983, 18(6): 605-618.
    [18] Farzaneh M, Zhang J, Behavior of DC arc on ice surfaces [C]. Proceedings of 8th IWAIS. 1998: 193-197.
    [19]孙才新,蒋兴良等.导线覆冰及其干湿增长临界条件分析[J].中国电机工程学报, 2003, 23(3): 141-145.
    [20] Farzaneh M, Drapeau J.F. AC flashover performance of insulators covered with artificial ice [J]. IEEE Transactions on Power Delivery, 1995, 10(2): 1038-1046.
    [21] Jean Laflamme. Spatial Distribution of Ice Accretion within Ice Storms and Within Transmission Lines Routes [C]. Proceedings of 5th IWAIS’90, Japan, 1990: 3-4.
    [22]贵州省电力工业局,贵州省气象科研所编著.覆冰文集[M].贵州:贵州电力技术, 1992.
    [23]云南省电力设计院,云南省气象科学研究所编著.云南高海拔地区电线覆冰问题研究[M].云南:云南科技出版社出版, 1993.
    [24] Jiang Xingliang. Ice Failures Investigation and Analysis of Transmission Lines in the Three Gorges District [C]. Proceedings of 7th IWAIS’96, Quebec, Canada, 1996: 30-34.
    [25]水利电力部武汉高压研究所.输电线路导线除冰方法综合研究(第一集)[J].高电压技术, 1986, 1(3): 10-16.
    [26] Naterer G.F. Coupled liquid film and solidified layer growth with impinging super cooled droplets and joule heating [J]. International Journal of Heat and Fluid Flow, 2003, 24(3): 223-235.
    [27]滕中林.架空线路的结冰及冰厚计算[J].电力技术, 1978, 3(1): 3-5.
    [28]顾乐观,孙才新等.高海拔外绝缘及电晕特性的研究——覆冰绝缘子的交流放电特性及放电过程的研究[M].“七.五”国家重大技术装备科技攻关项目报告.重庆, 1989.
    [29] Renner P E, Hill H L, Ratz O.Effect of icing on DC insulation strength [C]. IEEE Summer Power Meeting and EHV Conference, 1970, Los Angeles, Calif. USA: 1201-1206.
    [30]顾乐观,孙才新.电力系统的污秽绝缘[M].重庆:重庆大学出版社, 1990.
    [31]司马文霞,蒋兴良,武利会等.低气压下覆冰染污10kV复合绝缘子直流电气特性[J].中国电机工程学报. 2004, 24(7): 122-126.
    [32]蒋兴良,孙才新,司马文霞等. 10kV复合绝缘子覆冰交流闪络特性及冰闪过程的研究[J].中国电机工程学报. 2002, 22(8): 58-61.
    [33]田玉春,蒋兴良,舒立春等.高海拔地区10kV复合绝缘子覆冰闪络特性[J].高电压技术. 2002, 28(6): 13-15.
    [34]舒立春,蒋兴良,田玉春等.海拔4000m以上地区4种复合绝缘子覆冰交流闪络特性及电压校正[J].中国电机工程学报. 2004, 24(1): 97-101.
    [35]张志劲,蒋兴良,马俊等.工作电压下110kV交流绝缘子串覆冰特性研究[J].中国电机工程学报. 2006, 26(4): 140-143.
    [36] Jiang Xingliang, Zhang Zhijin, Shu Lichun, et al. Study on icing of energized insulators with AC service voltage and electrical performance [C]. Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, 2004: 19-22.
    [37]梁瑜.带电条件下输电线路导线和绝缘子覆冰电气特性研究[硕士学位论文].重庆大学,2005.
    [38]王守礼.影响电线覆冰因素的研究与分析[J].电网技术, 1994, 18(4): 18-24.
    [39]谭冠日.电线结冰的若干小气候特征的探讨[J].气象学报, 1982, 8(1): 18-24.
    [40] Makkonen L. Estimating intensity of atmospheric ice accretion on stationary structure [J]. App. Met, 1981, 20(5): 595-600.
    [41] Makkonen L. Modeling of ice accretion on wires [J]. Journal of Climate and Applied Meteorology, 1984, 23(6): 929-939.
    [42] Farzaneh M, LaForte J.L. The effect of voltage polarity on ice accretions on short string insulators [J]. Joumal of Offshore Mechanics and Arctic Engineering, 1991, 113(3): 179-184.
    [43] Farzaneh M, LaForte J.L. The effect of voltage polarity on icicles on line insulators [J]. International Journal of Offshore and Polar Engineering, 1992, 4(2): 297-302.
    [44] Kuffel E. Zaengl W.S. High voltage engineering [J]. Pogrom on Press, 1984, 23(5): 29-34.
    [45] Beasley D.R et al. Comparative study of three methods for computing electric field [J]. Proc. IEE, 1979, 11(3): 19-25.
    [46] Rarraud R. Comparative electric field calculations and measurements on High Voltage insulators [J], Electra, 1992, 141 (7): 68-72.
    [47]曾余庚等.电磁场有限单元法[M],北京:科学出版社, 1982.
    [48] Farzaneh M, Volat C. Three-dimensional modeling of potential and electric field distributions along an EHV ceramic post insulator covered with ice [J]. IEEE Transactions on Power Delivery. 2005, 20(3): 2006-2013.
    [49] CIGRE Task Force 33.04.09. Influence of Ice and Snow on the Flashover Performance of Outdoor Insulators [J], partⅠ: Effect of Ice, Electra, 1999, 187(1): 91-111.
    [50] CIGRE Task Force 33.04.09. Influence of Ice and Snow on the Flashover Performance of Outdoor Insulators [J], partⅡ: Effect of snow, Electra, 2000, 188(2): 55-69.
    [51] Jaiswal V, Farzaneh M, Lowther D A. Finite element method modeling of electrical field calculations around an ice-covered insulator [C], Proceedings of 10th IWAIS. 2002: 193-197.
    [52] Jaiswal V, Farzaneh M, Lowther D A. Calculation of potential distributions along semi conducting glazed insulator for impulse voltages under icing conditions [C]. CCECE2003-CCGEI2003, Montreal, 2003: 631-634.
    [53]张家诚,林光之.中国气候[M].上海:上海科学出版社, 1985.
    [54] E. Achenbach. The effect of surface roughness on the heat transfer from a circular cylinder to the cross flow of air. Int. J. Heat and mass transfer, 1977, 5(20) : 359-369.
    [55]马俊,蒋兴良,张志劲等.交流电场对绝缘子覆冰形成的影响机理[J].电网技术, 2008, 32(5): 7-11.
    [56] Farzaneh M.Vibration of high voltage conductors induced by corona-induced vibration of hanging metal points [J]. IEEE Trans on Power Appl & Syst, 1984, 103(9): 105-116.
    [57]杨庆,覆冰绝缘子沿面电场特性和放电模型研究, [博士学位论文],重庆大学, 2006.
    [58]邵进,基于电场分布的覆冰合成绝缘子结构特征研究, [硕士学位论文],重庆大学, 2006.
    [59]王波,伞裙结构对复合绝缘子直流冰闪特性影响的研究, [硕士学位论文],重庆大学, 2007.
    [60]杜辕,采用间插布置的绝缘子串交流覆冰闪络特性研究, [硕士学位论文],重庆大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700