SCR法烟气脱硝系统数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新的污染物排放标准的颁布,烟气脱硝技术面临着前所未有的压力和挑战。如何经济、有效地提高脱硝效率,降低NO_x的排放量,成为大气环境污染控制工作者研究的热点问题。随着数值计算技术的发展,利用高效、便捷的计算流体力学软件对SCR法脱硝系统进行仿真为混合器和气流分布板的设计、改造提供了重要参数。其缩短了工程周期,减少了试验的盲目性,对提高SCR法脱硝系统的环境效益、社会效益和经济效益均具有重要的意义。
     根据本试验室现有设备条件和发展方向,本课题采用数值模拟的方法进行SCR法烟气脱硝系统内NH_3的掺混和气流流场情况试验研究。最终以计算流体动力学理论为指导探索出了适合于SCR法脱硝系统数值模拟的方法和规律。
     本文得出的主要结论如下:
     (1)使用计算流体动力学软件—FLUENT软件,采用标准κ-ε模型、物质输运模型和多孔介质模型对SCR法烟气脱硝系统中的流场、物质掺混和压力场进行数值模拟计算,计算方法可靠,计算结果合理。
     (2)原模型设计混合器时共设计了八片连续混合器全长一米,其压力损失过大增加了引风机负荷并且制造费用较高。现数值模拟结果表明采用两组四片间隔250mm布置方案的混合器布置方式完全可以达到掺混要求并减少了压力损失降低了制造成本。
     (3)在经过几十组的模型调整后最终确定了多向组合导流片的布置方式。对其模拟结果分析表明流场均布情况满足工况要求,其断面流速均方根值达到美国RMS标准合格要求并且接近良好。
With the promulgation of the new emission standard of air pollutants, the flue gas denitration faces great pressure and challenges. How to improve the denitrated efficiency economically and effectively, and reduce the quantity of NO_x emission become research focuses. With the development of numerical calculation techniques, the numerical simulation becomes a means to solve these problems gradually. Effective CFD software is used to simulate the SCR De-NO_x system, which offers important parameters for the design and alteration of the mixing device and airflow distribution. It shortens engineering period and reduces blindness in experiment in SCR DE-NO_x system, which is beneficial to our environment, society, and economy.
     Under the equipmental conditions and development directions of our laboratory, numerical simulation methods is utilized to study mass transfer and airflow distribution in SCR De-NO_x system in this subject. Finally, this subject also explores the suitable methods and rules of numerical simulation of SCR DE-NO_x system.
     In this paper, the main conclusions are as follows:
     (1) The computational fluid dynamics software - FLUENT software, standardκ-εmodel, and multi-holes medium model are used to simulate the flow field, material transport, and pressure field of SCR DE-NO_x system, which shows reliable and rational simulation results.
     (2) The original model of mixer layout consisting of eight consecutive pieces causes too much pressure loss, increased fan load and higher manufacturing cost. Simulation results show that mixer layout consisting of four pieces with spacing of 250mm can achieve mixing effect and reduce pressure loss and manufacturing cost.
     (3) The satisfying layout model is the combination of multi-diversion. Simulation results of the model show that the flow conditions meet the requirements of operating mode. The velocity mean square root meets requirements and is close to the United States RMS standard.
引文
[1]黄诗坚.NO_x的危害及其排放控制[J].电力环境保护,2004,20(1):24.
    [2]李晓芸,赵毅,王修彦.火电厂有害气体控制技术[M].北京:中国水利水电出版社,2005:65-68,109.
    [3]Anupam S,William E,Ellison C.Lessons learned from SCR experience of coal fired units in Japan,Europe and USA[C],2002 conference on SCR and Non-Catalytic Reduction for NO_x control.2005:15-16.
    [4]Babcock-Hitachi.Environmental control system for thermal power plants DESOx and DENOx[M].Japan:2002:136-142.
    [5]L.A.Sparks,J.M.Lockhart.Demonstration of SCR Technology to control nitrogen oxide emissions from high-sulfur[R].USA:DOE Office of Fossil Energy,2003:12.
    [6]王树荣,王琦,王建华,高翔,骆仲泱,岑可法.选择性催化:还原脱硝技术在燃煤电厂的应用及发展[J].电站系统工程,2005,21(4):13.
    [7]王福军.计算流体动力学分析-CFD软件原理与应用[加.北京:清华大学出版社,2005:124-153.
    [8]刘霞,葛新锋.FLURNT软件其在我国的应用[J].能源研究与利用,2003,32(2):36-38.
    [9]翟建华.计算流体力学(CFD)的通用软件[J].河北科技大学学报,2005,26(2):160-165.
    [10]李勇,刘志友,安亦然.介绍计算流体力学通用软件-Fluent[J].水动力学研究与进展,2001,16(2):254-258.
    [11]艾明香,王世峰.FLURNT软件及其在陶瓷窑炉中的应用.山东轻工业学院学报[J],2006,20(2):52-56.
    [12]赵琴,王靖.FLURNT在暖通空调领域中的应用[J].制冷与空调,2003,13(1):15-18.
    [13]赵琴.FLURNT软件的技术特点及其在暖通空调领域的应用[J].计算机应用,2003,23(3):24-25.
    [14]刘炜,张俊丰,童志权.选择性催化还原法(SCR)脱硝研究进展[J].工业安全与环保,2005,31(1):26-27.
    [15]路涛,贾双燕,李晓芸.关于烟气脱硝的SNCR工艺及其技术经济分析[J].现代电力,2004,21(1):20.
    [16]张大欣,徐光,赵焰,刘静,黄湘.电子束半干法烟气净化试验装置[J].高技术通讯,2003,2:80-81
    [17]S Masuda,H Nakao.Control of NOx by positive and negative pulsed corona discharges[J],center for coal utilization,2006,26(2):74-83.
    [18]王德荣,林彦奇,赵蔚,宋刚,刘德才.利用焦炭吸附进行燃煤烟气脱硫脱氮技术的研究[J].环境保护科学.2002,28(2):4-6.
    [19]许行勇,徐建昌,李雪辉,王乐夫.固体吸附/再生法同时脱硫脱硝技术的研究进展[J].广州 化工.2003,31(1):6.
    [20]路涛.火电厂脱硝的数值模拟[D].北京:华北电力大学(北京),2003:36.
    [21]李晓芸,赵毅,王修彦.火电厂有害气体控制技术[M].北京:中国水利水电出版社,2005:144-182.
    [22]刘今.发电厂烟气脱硝技术[J].江苏电机工程,1996,25(3):19.
    [23]赵宗让.电厂锅炉SCR烟气脱硝系统设计优化[J].中国电力,2005,28(11):69-74.
    [24]吴杰.V_2O_5-WO_3-MoO_3/TiO_2催化剂脱硝性能的试验研究[D].杭州:浙江大学,2006.
    [25]Christian Andersson,Leif Lind.Comparison of TiO_2-based oxide catalysts for the selective catalytic reduction of NO[J].Applied Catalysis,2005,23:123-134.
    [26]Sarna.Supported VPO catalysts for selective oxidation of butane[J].Catal Today.2004,43:101-110
    [27]Kleemann M,Elsener M,Koebel M.A.Invesfigation of the ammonia adsorption on monolithic SCR catalysts by transient response analysis[J].Applied Catalysis.2005,27:38-42.
    [28]Baltensperger U,Markus A.Use of Positron-Emitting N for Studies of the Selective Reduction of NO by NH_3 over Vanadia/Titania Catalyst at Very Low Reactant Concentrations[J].Electric Power.2003,97:123-125.
    [29]李喆.SCR烟气脱硝模拟中试系统建造及催化剂制备研究[D].西安:西安理工大学,2007.
    [30]涂建华,袁伟峰,朱培军.气流分布的等效阻力法模拟计算[J].环境工程,2004,22(5):37-39.
    [31]杨文生,赵心夏.改进气流分布板提高电收尘器收尘效率的有效途径[J].西南民族大学学报,2003,29(3):347-351.
    [32]梁振山、隋秀兰等.关于空气动力场的研究[J].水利电力劳动保护,1994(3):24-26.
    [33]赵俊起,刘同欣,张津.气流均布装置最佳开孔率和孔形的实验研究[J].电力情报,2001,(1):39-41.
    [34]赵俊起,刘俊芳,付延春.气流分布板最佳结构形式的探讨[J].水利电力劳动保护,1996,(2):8-10.
    [35]赵俊起,曹新等.气流分布板最佳孔隙率的确定[J].水利电力劳动保护,1995,42(2):15-17.
    [36]孔珑.工程流体力学[M].北京:中国电力出版社,2001:85-99.
    [37]陶文铨.数值传热学[M].西安:西安交通大学出版社,2003:332-409.
    [38]韩占忠,王敬等.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:122-135.
    [39]岳敏.电除尘器气流分布数值模拟研究[D].西安:西安理工大学,2007:30-42.
    [40]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社,2003:234-241.
    [41]周学漪.计算水力学[M].北京:清华大学出版社,1995:235-250.
    [42]Flurnt Inc.FLUENT User' s Guide.Flurnt Inc,2003.
    [43]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004:135-142.
    [44]Flumt Inc.GAMBIT Modeling Guide.Flumt Inc,2003.
    [45]G.Hein.Influence of Dust Reentrainment and Skew Gas Flow Technology on ESP Efficiency[C].Proceedings of the 8th International on Conference on Electrostatic Precipitation.Birmingham:the 8th International Conference on Electrostatic Precipitation,2003:16-19.
    [46]贾双燕.火电厂烟气脱硝的数值模拟[D].北京:华北电力大学,2004:37-52.
    [47]管锡珺,董典同,马培建,栾兵.NO_x的产生及脱除研究进展[J].青岛建筑工程学院学报,2002(4):21-22.
    [48]刘今.发电厂烟气脱硝技术[J].江苏电机工程,2006(3):13-15.
    [49]李玉江,吴涛.德国燃煤电厂氮氧化物的控制技术[J].环境科学研究,2000(4):20-22.
    [50]黄少鹗.浅谈电站锅炉固体燃料燃烧技术的发展与NO_x排放治理[J].电力环境保护,2001(1):35-38.
    [51]李平,卢冠忠,肖文德.面向21世纪的烟气脱硫脱氮一体化工艺[J].化学世界,2000(7):14-15.
    [52]饶应福,顾强,钱雄.燃煤锅炉烟气中NO_x生成机理及脱除技术[J].江苏煤炭,2000(3):32-36.
    [53]王志轩.我国火电厂大气污染物排放标准问题探讨及修订建议[J].中国电力,2001,34(6):61-65.
    [54]范贤振,郭烈锦,高晖,聂剑平.200MW四角切向燃烧煤粉炉炉内过程的数值模拟[J].西安交通大学学报,2002,36(3):241-245.
    [55]由长福,祁海鹰,徐旭常,采用不同湍流模型及差分格式对四角切向燃烧煤粉锅炉内冷态流场的数值模拟[J].动力工程,2001,21(2):1128-1131.
    [56]金颖,周伟国,阮应君.烟气扩散的CFD数值模拟[J],安全与环境学报,2002,2(1):21-23.
    [57]Perry.A,Siebers.Nature[M].2005:657-666.
    [58]赵坚行,燃烧的数值模拟[M].科学出版社,2002:235-246.
    [59]蔡晓峰.基于数值模拟的SCR法烟气脱硝技术优化设计[D].北京:华北电力大学,2006:27-32.
    [60]王应时,范维澄,周力行,徐旭常.燃烧过程数值计算[M].科学出版社,1994:365-372.
    [61]帕坦卡S.V,张政译.传热与流体流动的数值计算[M],科学出版社,2004:135-162.
    [62]张泽,吴少华,秦裕现,徐旭常.内流场中复杂结构喷嘴射流的近流线数值模拟[J].国电机工程学报,2001.21(8):108-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700