低床层烟炱和石灰粉混合物吸附法烟气脱硫实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干法烟气脱硫技术具有工艺简单,操作简便,投资、运行和维护费用低廉,脱硫产物易于处理等特点而引起人们的广泛关注。目前,我国的二氧化硫污染现象十分普遍,酸雨污染形势亦非常严峻,控制和治理SO_2污染已经刻不容缓。然而烟气脱硫技术因其投资较高,运行管理费用庞大等原因,难以适应发展中国家的国情,制约了该技术的推广应用。本文即是着眼于我国SO_2污染的现状,针对低浓度二氧化硫废气的治理,采用燃油锅炉排出的废弃物——烟炱掺加石灰粉的混合物为吸附剂,以废治废,开发一种经济、高效的干法烟气脱硫技术。
     本实验采用燃油锅炉排出的烟炱掺加石灰粉作为混合吸附剂,研究在低床层条件下吸附剂对SO_2的脱除效果。先在测定烟炱和石灰粉混合吸附剂基本性质的基础上,通过实验考察了影响脱硫效果的主要因素及其影响规律。并对吸附剂的脱硫机理进行了探讨。
     本文研究了进气SO_2浓度、进气风速、烟气温度、烟炱和石灰粉配比等因素对吸附剂脱硫效率的影响,同时考察了出口烟气SO_2浓度随时间的变化关系;并研究了经氧化铁、氧化铜和氧化铝改性对吸附剂脱硫效率的影响。结果表明,在本研究条件下脱硫效率随烟气温度的升高而降低,低温有利于SO_2的去除;在实验范围内随烟气流速的减小而增加,进气二氧化硫浓度与脱硫效率的关系具有极值,该法对于SO_2浓度为2300mg/m~3的烟气有较好的处理效果。烟炱和石灰粉的配比对脱硫效率有一定的影响,实验表明烟炱和石灰粉配比为3:1时脱硫效果较好;在吸附剂中加入金属氧化物能够显著提高脱硫效率,而且在较高效率下能够维持较长的时间,金属氧化物在烟炱表面的分散程度能明显影响脱硫效率的提高,采用中间体受热分解对吸附剂改性的方法,明显优于直接物理混合分散。
     通过对SO_2在烟炱上的吸附等温线的研究数据表明,可以用Freundlich方程来描述,用表面选择性吸附机理能够解释SO_2在烟炱上的吸附。而且透射电镜照片也直观地显示出了烟炱表面的一层吸附膜。通过吸附剂的FDP曲线的研究显示,H_2SO_4从吸附剂表面的脱附是整个吸附反应的控制步骤,对SO_2的脱除具有重要影响。
The dry flue gas desulphunzation technique has bring extensive because its simple technique and manipulation-, low investment operation and maintance fee and easy disposal of the desulphunzation product. Now sulfur dioxide and acid rian pollution has become a commen and critical phenomenon in China, so it's no time to delay to control and treat SCh pollution. But because of its high investment operation fee et al, flue gas desulphunzation techniques is not suitable for the development country to take. In this article study a economical and effective dry flue gas desulphunzation techniques is described aimed at the SOa pollution of our country and the low concentration of SQz desulphurization in flue gas.
    This paper systematically studies the influence of the process conditions, such as SO2 concentration in flue gas, flue gas temperature and gas velocity of flow etc,on the efficiency of the sorbent ,the change of outlet concentration of SCh and the influence of the sorbent treated by Fe^O^ CuO and A12C>3. The result of experiments shows: the desulphurization efficiency decrease with flue gas temperature increasing, so low temperature is more suitable for desulphurization under the experimental condition we chosed; in the experimental, the desulphurization efficiency increase with velocity of flue gas decreasing and there is a extremum between SOj concentration in flue gas and the desulphurization efficiency. This method is more effective for the treatment of SOa concentration of 2300mg/m3 in flue gas. The ratio of soot and calcareousness powder also influent the desulphurization efficiency. It can be seen the best ratio is 3:1; The desulphurization efficiency can be notably increased and maintain at high level when metal oxide is added into sorbent The disperse degree of metal oxide can influent the increase of the desulphurization efficiency and it can be seen that the method of disperse by means of decompound of the middle product be heated is better than that of by mixing by hand.
    By studying adsorption isotherms of adsorbent of the SO2 absorption, we could describe the desulphurization mechanism of adsorption by Freundlich equaption and
    ii
    
    
    
    Abstract
    interpreted the absorption by surface selected adsorption. It can be seen directly that there is a layer of adsorption film on the soot surface in TEM. The FDP line of adsorbent show that HfeSCU desorption from the soot surface is the key step of the whole absorption reaction and is the important influence factor on desulphurization.
引文
[1]肖文德主编.二氧化硫脱除与回收.化学工业出版社.2001:2
    [2]王金南主编.二氧化硫排放交易.中国环境科学出版社.2000:5
    [3]余新明.中小型燃煤锅炉烟气除尘脱硫研究的意义、现状与展望.工业安全与防尘.1999,9:15~18
    [4]削菲,石劲松.烟气脱硫技术现状与发展建议,江苏化工.2001:33~35
    [5]陈亚非.烟气脱硫技术综述.制冷空调与电力机械,2001:17~21
    [6]Meierer,Matthias.Operation and optimization of flue gas desulfurization systems in coal-fired power plants.Power plant Chemstry.1999,1(3):12~17
    [7]冯玲,杨景玲等.烟气脱硫技术的发展及应用现状.环境工程1997:19~24
    [8]李忠于.国外烟气脱离技术.硫酸工业.1996:1~12
    [9]郝吉明,马广大主编.大气污染控制工程.高等教育出版社.1996:330~331
    [10]尹华强,胡玉英等.我国烟气脱硫技术进展.四川环境.1999,18(4):7~11
    [11]唐恒,缪应祺.烟气脱硫技术的现状和发展.江苏理工大学学报.1999,20(1):44~47
    [12]陈理.国外烟气脱硫脱硝技术开发近况。化工环保.1997,17(3):145~149
    [13]周月桂,章明川等.干式烟气脱硫技术进展及其应用前景分析.能源技术.2001,22(3):128~133
    [14]雷仲存主编.工业脱硫技术.化学工业出版社.2000:124~130
    [15]杨国华,郑琼娇.流化床CuO烟气脱硫试验研究.环境工程.1995,13(5):19~22
    [16]杜秋平.利用烟气脱硫技术控制大气污染.华北电力技术.1999,11:29~32
    [17]程锦晖.电子束烟气处理方法简介.石油化工环境保护.2001,1:24~27
    [18]于军玲,李守信等.电子束脱硫技术在我国的应用前景.电力情报.2001,2:14~17
    [19]Ohtsuka K,Yukitake T and Shimoda M.Oxidation characteristics of nitrogen monoxide in corona discharge field,Proceedings of the institute of electrosatics Japan,1985,9(5):346~351
    [20]Ohtsuka K,Kukitake T,and Shimoda M.Removal of SO_2 and NO from gases using
    
    wet type electrostatic Preciptators,Proceedings of the institite of electrostatics Japan,1985,9(5):352~358
    [21]Masuda S,Hosokana S,Tachibana N,Ando T and Matsumoto Y.Fundamental behavior of direct coupled submicrosecond pulse energization in electrostatic preipitators.IEEE Trans.Ind.Appl.1987,23(1):120~126
    [22]Chemnts J S,Mizuno A Finney W C and Kavis R H.Combined removal of SO_2,NOx and fly ash from simulated flue gas using pulsed streamer corona.IEEE Trans.Ind.Appl.1989,25(1):62~69
    [23]朱爱民,宫为民等.氨与脉冲电晕等离子体脱除SO_2的协同效应.中国环境科学.1997,17(1):37~40
    [24]赵君科,王保健等.脉冲电晕等离子体烟气脱硫工业试验研究.中国工程科学.2002,4(2):74~78
    [25]张守玉,曹晏等.活性炭(焦).脱除烟道气中二氧化硫工艺.煤炭转化.1999,22(3):28~34
    [26]董勇,冯维兴等.浅谈中小型燃煤锅炉烟气脱硫技术开发。山东环境.1998,2:21~22
    [27]沈迪新,杨晓葵.中、日、美三国烟气脱硫技术的发展和现状.环境科学进展.1993,1(3):12~24
    [28]Lancia A.Analysis of Relevant Steps in Wet Flue Gas Desulphurization Using Limestone Slurries.Intern J Environ Studies.1992,41(1/2):27~41
    [29]毛健雄,毛健全等主编.煤的清洁燃烧[M].北京:科学出版社.1998
    [30]钟秦主编.燃煤烟气脱硫脱硝技术及工程实例.化学工业出版社.2002
    [31]张全,傅志华.固定床燃煤方式中烟炱的形成及其消除方法.中南工业大学学报.1996,27(3):295~297
    [32]任传龙.混气色素碳黑的生产与应用.辽宁化工.1995,5:33~34
    [33]国家环境保护局.空气和废气监测分析方法.中国环境科学出版社.1990:93~107
    [34]易江.碘量法与定电位点解法测定SO_2的比较与讨论.上海环境科学.1996,15(1):37~38
    [35]彭人勇,周萍华等.BET氮气吸附法粉体比表面积误差探讨,非金属矿,Vol.24,
    
    No.1,2001:7~8
    [36]Grajek H,Neffe S,Witkiexicz Z.J.Chromatog,1992,600:67~77
    [37]Uno Maecorg,Lilli Peama,Heino Kolk.J.Chromalog,1994,659:213~216
    [38]庄世坚.多孔固体的比表面积计算方法新探.色谱.1986,4(1):83~85
    [39]马波,赵长志.气相色谱法测定催化剂载体的比表面积.光谱实验室.1996,13(6):45~48
    [40]北京大学化学系物理化学教研室编.物理化学实验(修订本).北京:北京大学出版社,1985:225~228
    [41]复旦大学等编,蔡显鄂,项一非等修订.物理化学实验(第二版).北京:高等教育出版社,1993:187~190
    [42]刘振宇,郑经堂等.PAN基ACF的孔结构表征.材料研究学报.1999,13(5):477~482
    [43]赵虹,商连弟等.比表面积简易测定法.无机盐工业.2002,34(3):43~45
    [44]顾惕人,马季铭等编著.表面化学.北京:科学出版社.1994
    [45]潘泽琳,王学香等.氧化铝孔容测定方法改进研究.轻金属.1994,10:7~10
    [46]Gao X et al.Dry SO_2 Removal at Low Temperature Using Calcium-Based Sorbents.In: CHEN Z H et al.eds.Int.Conf.on Energy and Environ—ment.Shanghai China:Begell House Inc.1995:760~766
    [47]孙佩极主编。冶金化工过程及设备.北京冶金工业出版社.1993
    [48]黄学敏,马广大.干法烟气脱硫用高效粒状脱硫剂的研究.西安建筑科技大学学报.2000,32(3):245~247
    [49]刘现卓,赵长遂等.低温烟气脱硫实验研究.能源研究与利用.2000,6:3~6
    [50]王爱军,祈海鹰等.蒸汽活化提高脱硫剂钙利用率的实验研究.工程热物理学报.2000,21(6):769~773
    [51]吴菊贤,刘世斌等。氧化铁脱除SO_2反应机理研究.硫酸工业.1992,(5):18~23
    [52]黄开辉,万惠霖主编.催化原理.科学出版社.1983
    [53]杨国华,郑琼娇.流化床CuO烟气脱硫试验研究.环境工程.1995,13(5):19~21
    [54]James T Yeh,et al.Combined SO_2/NOx removal from flue gas,Enviromental
    
    Progress,1985,4(4):223~228
    [55]Darguzas J N,Sloat D G,et al.Development activities and commercial status of the moving bed copper oxide desulfurization/denitrification process.The 20th international conference on coal utilization & fuel systems,Clearwater,FL,USA,20~23 Mar 1995
    [56]Paolo Davini.Flue gas desulphurization by activated carbon fiber obtained from polyacrylonitrile by-product.Carbon.2003,41:277~284
    [57]Türkan Kopac,Sefa Kocabas Adsorption equilibrium and breakthrough analysis for sulfur dioxide adsorption on silica gel.Chemical Engineering and Processing.2002,41:223~230
    [58]叶振华编著.化工吸附分离过程.北京:中国石化出版社.1992:37~76
    [59]Türkan Kopac.Non-isobaric adsorption analysis of SO_2 on molecular sieve 13X and activated carbon by dynamic technique.Chemical Engineering and Processing.1999,38:45~43
    [60]武秀文.低床层烟炱吸附法烟气脱硫的实验研究.广东工业大学硕士学位论文.2002.3
    [61]王皆腾,祁海鹰等.碳氢燃料在高温空气燃烧过程中的裂解和烟炱生成.能源技术.2001,22(5):221~225
    [62]Knoblauch K,Richiter E,Juntgen H.Application of active coke in processes of SO_2 and Nox removal from flue gas.Fuel.1981,60(9):832~838
    [63]Lizzio A A,Debarr J A.Effect of surface area and chemisorbed oxygen on the SO_2 adsorption capacity of actived char.Fuel.1996,75 (3):1515~1522
    [64]程振民,蒋正兴等.活性炭脱硫研究Ⅱ水蒸汽存在下SO_2的氧化反应机理.环境科学学报.1997,17(3):273~277
    [65]Mochida I,Kuroda K,Miyamoto.Remarkable catalytic activity of calcined pitch based activated carbon fiber for oxidative removal of SO_2 as aqueous H_2SO_4.Energy & Fuels,1997,11(2):272~276
    [66]Paolo Davini.Investigation of flue gas desulphufization by fly ash and calcium hydroxide mixtures.Resourses,Conservation and Recycling.1995,15:193~201
    [67]A.Grarea,J.R.Viguri.Kinetics of flue gas desulphurizafion at low temperatures:fly
    
    ash/calcium(3/1) sorbent behaviour.Chemical Engineering Science.1997,52(5):715~732
    [68]A.Garea,I.Fernandez,J.R.Fly-ash/cacium hydroxide mixtures for SO_2 removal:struc-tural properties and maximum yield.Chemical Engineering Journal.1997,66:171~179
    [69]J.Fernndez,M.J.Renedo.Effect of CaSO_4 on the structure and use of Ca(OH)_2/fly ash sorbents for SO_2 removal.Powder Technology.2001,119:201~205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700