矿物吸附剂对燃煤烟气中汞的脱除机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭作为我国的主要能源这一现状在很长一段时间内难以改变,大量的煤炭消耗带来了严重的环境问题。汞因为具备挥发性、持久性和生物积累性,被认为是一种全球性的污染物,近年来受到极大的关注。我国是世界上汞排放量最大的国家之一,而燃煤电厂是大气中汞的主要排放源之一,因此必须对其进行控制。吸附剂喷入法是一种,极具应用前景的脱汞技术,其能够有效利用现有的除尘设备实现烟气中汞的脱除。然而现有的活性炭类吸附剂在应用过程中存在两个主要问题:其一是活性炭价格较高导致燃煤电厂脱汞成本太高;其二是活性炭的喷入会增加飞灰中的碳含量,从而影响到飞灰在水泥工业中的应用,由此不仅会造成资源的浪费还会导致新的环境问题。因此研究和开发新型的低成本高效率的汞吸附剂具有重要意义。本文利用廉价的天然矿物材料作为活性炭的替代品,合成制备出了一系列的汞吸附剂,并对其脱汞性能进行了综合评价,深入探讨了矿物吸附剂的脱汞机理。
     首先选取了凹凸棒石、膨润土、丝光沸石和蛭石四种天然的硅酸盐矿物作为天然吸附剂,利用热活化法对吸附剂进行了活化处理,采用N2吸附-脱附、X-射线衍射(XRD)和X-射线荧光探针(XRF)等方法对吸附剂进行表征,在模拟烟气条件(N2、O2和CO2)下,利用VM3000测汞仪在固定床实验台架上对吸附剂的脱汞效果进行了测试。结果表明,热活化并未增强吸附剂的脱汞能力,而升高温度有利于吸附剂对Hg0的脱除。四种天然吸附剂中膨润土的脱汞效果最好,而蛭石的脱汞效果最差,天然矿物吸附剂对汞的脱除主要基于化学吸附机理。消解实验结果显示丝光沸石和凹凸棒石能够氧化Hg0,其原因与吸附剂中的钛元素有关。
     在对四种天然硅酸盐矿物脱汞能力的研究基础上,选取了凹凸棒石、膨润土和丝光沸石三种天然矿物作为吸附剂材料,选用了单质硫、交联硫化钠、巯基乙酸钙、二巯基吡啶、二巯基吡啶N氧化物、3-巯丙基-三甲氧基硅烷、半胱氨酸、胱氨酸、氯化铜、氯酸钠、溴化钾和碘化钾等各种试剂作为改性剂,制备出了一系列的化学改性吸附剂,并同时制备了Al柱撑蒙脱石吸附剂。研究结果表明,不同的吸附剂材料对改性剂的负载量不同,丝光沸石对有机改性剂的负载量最小,而层状结构有利于负载有机改性剂;单质硫改性吸附剂的脱汞效果要优于有机硫改性吸附剂,温度从70℃升高到120℃有利于吸附剂对汞的脱除;有机螯合改性吸附剂能够有效脱除Hg0,而单一的巯基基团并不能有效吸附Hg0;丝光沸石对氯化铜的负载能力较差,导致其改性后脱汞效果要弱于膨润土和凹凸棒石;在120℃时氯酸钠改性凹凸棒石表现出超过90%的汞脱除率,天然凹凸棒石中的铁氧化物能够消弱氯酸钠中的C1-O键从而促进其对汞的氧化;碘化钾改性吸附剂在干燥过程中会因碘化钾的分解而产生单质12,从而有效促进吸附剂对Hg0的脱除:三种天然矿物吸附剂对溴化钾的负载能力较差,导致溴化钾改性吸附剂无法有效脱除Hg0;A1柱撑蒙脱石极大改善了蒙脱石的物理特性,其比表面积由原来的61 m2/g增加到了209 m2/g,但脱汞效果并不明显;总体看来,平均汞脱除率在80%以上的吸附剂有:硫改性膨润土(S-Ben)、氯化铜改性凹凸棒石(Cu-Atp)、氯化铜改性膨润土(Cu-Ben)、氯酸钠改性凹凸棒石(Cl-Atp)和三种碘化钾改性吸附剂(I-Atp、I-Ben和I-Mor)。
     通过对比分析,选取了Cu-Atp作为最合适的汞吸附剂,结合VM3000测汞仪和安大略法两种测汞方式,在N2气氛下利用固定床实验台架对影响吸附剂脱汞效果的各因素进行了研究,发现S02和H20会略微抑制吸附剂对汞的脱除,NO则并无明显影响,不同形态的铜化合物及溶剂均会影响吸附剂的脱汞效果,在150℃下加热会导致吸附剂中氯化铜的水解,从而降低吸附剂的脱汞效果。分别利用准一级和准二级反应动力学模型对实验结果进行模拟研究,显示实验结果与动力学模型的模拟结果相吻合。随后为了改善吸附剂在高温下的脱汞效果,合成了锰掺杂改性吸附剂(Mn-Cu-Atp),实验结果显示,在150℃下该吸附剂对Hg0的脱除率能够长时间保持在80%,说明Mn的掺杂有效改善了Cu-Atp吸附剂在高温下的脱汞能力。
Coal is still and will be the mainly energy source in a long time for China. Resultant huge amount of coal consumption will result in serious environmental problem. China is one of the largest mercury emissions countries in the word and coal-fired power plants are considered as the largest anthropogenic sources of mercury pollution. Therefore the mercury emissions control of coal-fired power plants is reasonable and necessary. Sorbent injection is a promising mercury emissions control technique. It could well use the existing particulate matter controller and effectively removal mercury from flue gas. However, the application of activated carbons as the current mercury sorbents is limited by following two reasons. On one hand, the high price of activated carbons and a huge amount of sorbent demanded by coal-fired power plants result in a huge cost for mercury control. On the other hand, the application of carbon-based sorbents increases the carbon content in fly ash and affects the utilization of fly ash in cement. This is not only a waste of resource but also a cause of new environmental problems. Therefore, it is important to find out efficient and cost-effective mercury sorbents. In this paper, natural mineral materials were applied as alternative to activated carbons due to their low cost. Various of sorbents were synthesized and their mercury removal performances were evaluated. The mercury removal mechanism of mineral sorbents was also deeply discussed.
     Four types of natural minerals, bentonite (Ben), mordenite (Mor), attapulgite (Atp), and vermiculite (Ben), were selected as raw sorbents and thermal treatment were conducted. Characteristics of these sorbents were analyzed by an X-ray diffractometer (XRD), an accelerated surface area and porosimeter (ASAP) using the N2 isotherm adsorption/desorption method, and an X-ray fluorescence spectrometry (XRF). The sorbents performances on mercury removal were evaluated on a lab-scale fixed-bed system under a simulated flue gas condition (N2, O2, and CO2) and the mercury concentration was detected continuously using a VM3000 online mercury analyzer. The results showed that thermal treatment could not enhance mercury removal abilities of sorbents and increasing temperature benefited the mercury removal. Bentonite exhibited the best mercury removal performance in the four natural sorbents and a poor mercury removal performance was observed for the vermiculite. The Hg0 removal by natural mineral sorbents was mainly based on the chemosorption. The reason that the natural mordenite and attapulgite could oxidize elemental mercury should relate to the existence of active titanium.
     According to the experimental results of four silicate minerals, three minerals, Atp, Ben, and Mor, were selected as raw sorbents, and several chemical promoters were employed to enhance mercury removal abilities of these raw sorbents. The chemical promoters are element sulfur, sodium polysulfide, calcium thioglycolate,2-mercaptopydine, 2-pyridinethiol-l-oxide, (3-mercaptopropyl)trimethoxysilane, cysteine, cystine, copper chloride, sodium chlorate, potassium bromide, and potassium iodide. The Al-pillared montmorillonite was also synthesized. The results showed that the loading of promoters in the sorbents varied with the different sorbents materials. In general, the contents of organic promoters in Mor were the lowest and layer structure benefited organic promoters loading; The element S-modified sorbents performed well than the organic S-modified sorbents in mercury removal and increasing temperature promoted mercury removal for element S-modified sorbents; Single sulfhydryl group could not adsorbed Hg0, whereas the existing of different types of radical were propitious to mercury removal based on chelation; The mercury removal efficiency of Cu-Mor was lower than that of Cu-Atp and Cu-Ben dut to the poor capacity in ionic copper adsorption for Mor; Cl-Atp showed an average Hg0 removal efficiency more than 90%at 120℃. Iron oxide in natural Atp could promoted Hg0 oxidation by weakening the Cl-O bond in the chloride; For KI-modified sorbents, I2 was generated from the oxidation of KI during the drying process and it effectively promoted the Hg0 removal; The three natural minerals presented poor adsorption abilities for bromine, which resulted in the disappointing mercury removal efficiencies; The physical characteristics of montmorillonite was improved after Al-pillared modification and the value of BET surface area increased from 61 m2/g to 209 m2/g. However, the mercury removal efficiency of the sorbent was still poor. Generally, the sorbents with more than 80%average Hg0 removal efficiency are element S-modified Ben (S-Ben), CuCl2-modified Atp (Cu-Atp), CuCl2-modified Ben (Cu-Ben), NaClO3-modified Atp (Cl-Atp), and three Kl-modified sorbents (I-Atp, I-Ben, and I-Mor)。
     After the comparison of the different sorbents, Cu-Atp was selected as the most promising sorbent for further study. Two methods (using a VM3000 online mercury analyzer, and Ontario Hydro Method) were applied for mercury detecting. The experiment was conducted on a lab-scale fixed-bed system under a nitrogen gas condition and the various factors affecting mercury removal efficiency were studied. SO2 and H2O slightly inhibited mercury removal respectively. There was insignificant effect on mercury removal efficiency in the presence of NO. Both the forms of copper compounds and the solvents used in sorbent synthesis process could affect mercury removal efficiency of sorbents. The copper chloride in Cu-Atp would be hydrolyzed when Cu-Atp was heated at 150℃, and it could reduce the sorbent ability of mercury removal. The kinetic model simulation results were in good agreement with the experimental results. To improve the mercury removal ability of Cu-Atp at high temperature, Mn-doped Cu-Atp was synthesized. The experimental results showed that the mercury removal efficiency of Mn-doped Cu-Atp could retain at 80%in a long time at 150℃. It means that Mn doping effectively improved the sustained mercury removal ability of Cu-Atp.
引文
[1]http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm.
    [2]http://www.nea.gov.cn/2011-12/22/c_131320896.htm.
    [3]濮洪九.中国煤炭与电力.北京:煤炭工业出版社,2006.
    [4]http://news.bjx.com.cn/html/20100125/241777.shtml.
    [5]National guidelines and legislation. IEA Coal Research.1999.
    [6]Milford*, J. B., Pienciak, A. After the Clean Air Mercury Rule:Prospects for Reducing Mercury Emissions from Coal-Fired Power Plants. Environmental Science & Technology.2009,43(8):2669-2673.
    [7]U.S.EPA. Air Toxics Standards for Utilities. http://www.epa.gov/airquality/powerplanttoxics/actions.html, (accessed on July 10, 2011).
    [8]Schroeder, W. H., Munthe, J. Atmospheric mercury--an overview. Atmospheric Environment.1998,32(5):809-822.
    [9]Sloss, L., Smith, I. Trace element emissions. IEA Coal Research.2000.
    [10]Cheng, H., Hu, Y. China Needs to Control Mercury Emissions from Municipal Solid Waste (MSW) Incineration. Environmental Science & Technology.2010,44(21): 7994.7995.
    [11]中华人民共和国国家标准,GB 13223-2011.
    [12]Xiao, Z. F., Munthe, J., Schroeder, W. H., et al. Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus B.1991,43(3):267-279.
    [13]Siegel, S. M., Siegel, B. Z. First estimate of annual mercury flux at the Kilauea main vent. Nature.1984,309(5964):146-147.
    [14]Mason, R. P., Fitzgerald, W. F., Morel, F. M. M. The biogeochemical cycling of elemental mercury:Anthropogenic influences. Geochimica et Cosmochimica Acta. 1994,58(15):3191-3198.
    [15]Amyot, M., Southworth, G., Lindberg, S. E., et al. Formation and evasion of dissolved gaseous mercury in large enclosures amended with 200HgC12. Atmospheric Environment.2004,38(26):4279-4289.
    [16]Mason, R. P., Sheu, G. R. Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles.2002,16(4):1093.
    [17]Seigneur, C., Vijayaraghavan, K., Lohman, K., et al. Global Source Attribution for Mercury Deposition in the United States. Environmental Science & Technology. 2003,38(2):555-569.
    [18]Nriagu, J. O. A global assessment of natural sources of atmospheric trace metals. Nature.1989,338(6210):47-49.
    [19]UNEP. Global Atmospheric Mercury Assessment:Sources, Emissions and Transport. Technical Geneva, Switzerland.2008.
    [20]仇广乐,冯新斌.270年以来大气汞的沉降-自然释汞源与人为释汞源之冰芯记录.环境监测管理与技术.2003,15(2):45.
    [21]U.S. EPA, Mercury Study Report to Congress.1997.
    [22]Pirrone, N., Cinnirella, S., Feng, X., et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics.2010,10(13):5951-5964.
    [23]Dabrowski, J. M., Ashton, P. J., Murray, K., et al. Anthropogenic mercury emissions in South Africa:Coal combustion in power plants. Atmospheric Environment.2008, 42(27):6620-6626.
    [24]Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., et al. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment.2006,40(22):4048-4063.
    [25]Pacyna, E. G, Pacyna, J. M., Sundseth, K., et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment.2010,44:2487-2499.
    [26]Lee, J.-Y., Ju, Y., Keener, T. C., et al. Development of cost-effective noncarbon sorbents for Hg0 removal from coal-fired power plants. Environmental Science and Technology.2006,40(8):2714-2720.
    [27]U.S. EPA. Mercury Study Report to Congress; EPA-452/R-97-003; U.S. EPA Office of Air Quality Planning and Standards, U.S. Government Printing Office: Washington, DC,1997, Dec.
    [28]Naylor, T. B. Flue Gases Research, Technology and Economics. New York:Nova Science Publishers.2009:151-202.
    [29]Glodek, A., Pacyna, J. M. Mercury emission from coal-fired power plants in Poland. Atmospheric Environment.2009,43(35):5668-5673.
    [30]Ito, S., Yokoyama, T., Asakura, K. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Science of The Total Environment.2006, 368(1):397-402.
    [31]Pudasainee, D., Kim, J.-H., Seo, Y.-C. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. Atmospheric Environment.2009,43(39):6254-6259.
    [32]王起超,沈文国,麻状伟.中国燃煤汞排放量估算.中国环境科学.1999,19(4):318-321.
    [33]蒋靖坤,郝吉明,吴烨,et al.中国燃煤汞排放清单的初步建立.环境科学.2005,26(2):34-39.
    [34]任建莉,周劲松,骆仲泱.燃煤电站汞排放量的预测模型.动力工程.2005,25(4):587-592.
    [35]Streets, D. G., Hao, J., Wu, Y, et al. Anthropogenic mercury emissions in China. Atmospheric Environment.2005,39(40):7789-7806.
    [36]Wu, Y, Wang, S., Streets, D. G., et al. Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003. Environmental Science & Technology.2006,40(17): 5312-5318.
    [37]Chemical and Engineering News.2003:20-21.
    [38]Amar, P. Mercury Emission from Coal-fired Power Plants (The Case for regulatory Action). Technical Northeast States for Coordinated Air Use Management:Boston, Massachusetts.2003.
    [39]王云彩.汞污染对人体健康的危害.生活与健康.2004,(3):21-23.
    [40]Khan, B., Tansel, B. Mercury Bioconcentration Factors in American Alligators (Alligator mississippiensis) in the Florida Everglades. Ecotoxicology and Environmental Safety.2000,47(1):54-58.
    [41]江刚.格陵兰汞污染增加.中国环境科学.2001,21(6):552.
    [42]Lee, S. H., Rhim, Y. J., Cho, S. P., et al. Carbon-based novel sorbent for removing gas-phase mercury. Fuel.2006,85(2):219-226.
    [43]Pavlish, J. H., Sondreal, E. A., Mann, M. D., et al. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology.2003,82(2-3): 89-165.
    [44]Wu, B., Peterson, T. W., Shadman, F., et al. Interactions between vapor-phase mercury compounds and coal char in synthetic flue gas. Fuel Processing Technology. 2000,63(2-3):93-107.
    [45]Linak, W. P., Wendt, J. O. Trace metal transformation mechanisms during coal combustion. Fuel Processing Technology.1994,39(2):173-198.
    [46]F, F. Trace elements from combustion and gasification of coal-an equilibrium approach. Fuel and Energy 1995,36(5):357-357.
    [47]Frandsen, F., Erickson, T. A., Kuhnel, V., et al. Equilibrium speciation of As,Cd,Cr,Hg,Ni,Pb,and Se in oxidative thermal comversion of coal-a comparison of thermodynamic packages. High temperature Gas Clean.1996:462-473.
    [48]Helble, J. J., Mojtahedi, W., Lyyranen, J., et al. Trace element partitioning during coal gasification. Fuel.1996,75:931-939.
    [49]Yan, R., Gauthier, D., Flamant, G. Possible interactions between As, Se, and Hg during coal combustion. Combustion and Flame.2000,120(1-2):49-60.
    [50]Pavlish, J. H., Holmes, M. J., Benson, S. A., et al. Application of sorbents for mercury control for utilities burning lignite coal. Fuel Processing Technology.2004, 85(6-7):563-576.
    [51]Wang, S. X., Zhang, L., Li, G. H., et al. Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys.2010,10(3):1183-1192.
    [52]Qu, Z., Yan, N., Liu, P., et al. The role of iodine monochloride for the oxidation of elemental mercury. Journal of Hazardous Materials.2010,183(1-3):132-137.
    [53]Feeley, T. J., L.A.Brickett, O'Palko, A. Field testing ofmercury control technologies for coal-fared power plants. DOE/NETL Mercury R&D Program Review, U.S. DOE. May 2005.
    [54]Wang, Y.-j., Duan, Y.-f., Yang, L.-g., et al. Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants. Journal of Fuel Chemistry and Technology.2008,36(1):23-29.
    [55]Zhang, L., Zhuo, Y., Chen, L., et al. Mercury emissions from six coal-fired power plants in China. Fuel Processing Technology.2008,89(11):1033-1040.
    [56]杨宏旻,Liu, K. L., Cao, Y.电站烟气脱硫装置的脱汞特性试验.动力工程.2005,26:554-557.
    [57]S.B.Ghorishi, C.W.Lee, J.D.Kilgroe. Mercury speciation in combustion systems:studies with simulated flue gases and model fly ashes. Presented at the 92nd Annual Meeting of Air and Waste Management Association, St.Louis, MO, 1999.
    [58]R.Chang, B.Hargrove, T.Carey, et al. Power plant mercury control options and ilssues. Proc.Power-Gen'96 International Conference, Orlando, Fla.,1996.
    [59]DeVito, M. S., Withum, J. A., Statnick, R. M. Flue gas Hg measurements from coal-fired boilers equipped with wet scrubbers. International Journal of Environment and Pollution.2002,17(1-2):126-142.
    [60]Byun, Y, Ko, K. B., Cho, M., et al. Oxidation of elemental mercury using atmospheric pressure non-thermal plasma. Chemosphere.2008,72(4):652-658.
    [61]Dunham, G. E., Miller, S. J., Chang, R., et al. Mercury capture by an activated carbon in a fixed-bed bench-scale system. Environmental Progress.1998,17(3): 203-208.
    [62]T.Broderick. Determination of dry carbon-based sorbent injection for mercury control in utility ESP and baghouses. Proceedings of the Air&Waste Management Association's Annual Meeting&Exhibition,1998.
    [63]Zhuang, Y, Chen, C., Timpe, R., et al. Investigations on bromine corrosion associated with mercury control technologies in coal flue gas. Fuel.2009,88(9): 1692-1697.
    [64]Chi, Y, Yan, N., Qu, Z., et al. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas. Journal of Hazardous Materials.2009,166(2-3):776-781.
    [65]Presto, A. A., Granite, E. J. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology.2006,40(18):5601-5609.
    [66]Zhuang, Y., Laumb, J., Liggett, R., et al. Impacts of acid gases on mercury oxidation across SCR catalyst. Fuel Processing Technology.2007,88(10):929-934.
    [67]Pritchard, S. Predictable SCR co-benefits for mercury control. Journal Name:Power Engineering (Barrington); Journal Volume:113; Journal Issue:1.2009:Medium:X; Size:page(s) 42,44,47.
    [68]Yan, R., Zeng, H., Yu, Q. The Fate of Trace Elements during Several Coal Pretreatment Processes. Energy & Fuels.2002,16(5):1160-1166.
    [69]Lopez-Anton, M. A., Diaz-Somoano, M., Garcia, A. B., et al. Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel.85(10-11):1389-1395.
    [70]周劲松.燃煤循环流化床锅炉汞排放及控制试验研究.热力发电.2004,1.
    [71]Luttrell, G. H., Kohmuench, J. N., Yoon, R.-H. An evaluation of coal preparation technologies for controlling trace element emissions. Fuel Processing Technology. 2000,65-66(0):407-422.
    [72]韩军,徐明厚.燃煤痕量元素排放的控制研究.动力工程.2003,23:2744-2751.
    [73]Dronen, L. C, Moore, A. E., Kozliak, E. I., et al. An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal. Fuel.2004,83(2): 181-186.
    [74]Eswaran, S., Stenger, H. G., Fan, Z. Gas-phase mercury adsorption rate studies. Energy and Fuels.2007,21(2):852-857.
    [75]Li, Y. H., Lee, C. W., Gullett, B. K. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel.2003,82(4):451-457.
    [76]Miller, S. J., Laudal, D. L., Chang, R., et al. Laboratory-scale investigation of sorbents for mercury control. The 87th Annual Meeting and Exhibition of the Air & Waste Management Association,Cincinnati,OH,.1994.
    [77]Miller, S. J., Laudal, D. L., Dunham, G. E., et al. Piolt-scale investigation of mercury control in baghouses. In Proceddings of the ERPI/DOE International Conference on Managing Hazardous and Particulate Pollutants, Toronto, Canada. 1995.
    [78]Lee, S. J., Seo, Y.-C., Jurng, J., et al. Removal of gas-phase elemental mercury by iodine-and chlorine-impregnated activated carbons. Atmospheric Environment. 2004,38(29):4887-4893.
    [79]Yan, R., Liang, D. T., Tsen, L., et al. Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption. Fuel.2004,83(17-18):2401-2409.
    [80]Liu, W., Vidic, R. D., Brown, T. D. Impact of Flue Gas Conditions on Mercury Uptake by Sulfur-Impregnated Activated Carbon. Environmental Science & Technology.1999,34(1):154-159.
    [81]Hsi, H.-C., Rood, M. J., Rostam-Abadi, M., et al. Effects of Sulfur Impregnation Temperature on the Properties and Mercury Adsorption Capacities of Activated Carbon Fibers (ACFs). Environmental Science & Technology.2001,35(13): 2785-2791.
    [82]Hsi, H.-C., Rood, M. J., Rostam-Abadi, M., et al. Mercury adsorption properties of sulfur-impregnated adsorbents. Journal of Environmental Engineering.2002, 128(11):1080-1089.
    [83]Ghorishi, S. B., Keeney, R. M., Serre, S. D., et al. Development of a Cl-Impregnated Activated Carbon for Entrained-Flow Capture of Elemental Mercury. Environmental Science & Technology.2002,36(20):4454-4459.
    [84]Zeng, H. C., Jin, F., Guo, J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel.2004,83(1):143-146.
    [85]Lee, S.-S., Lee, J.-Y., Keener, T. C. Novel sorbents for mercury emissions control from coal-fired power plants. Journal of the Chinese Institute of Chemical Engineers.2008,39(2):137-142.
    [86]Lee, S.-S., Lee, J.-Y., Khang, S.-J., et al. Modeling of mercury oxidation and adsorption by cupric chloride-impregnated carbon sorbents. Industrial & Engineering Chemistry Research.2009,48(19):9049-9053.
    [87]Lee, S.-S., Lee, J.-Y., Keener, T. C. Bench-Scale Studies of In-Duct Mercury Capture Using Cupric Chloride-Impregnated Carbons. Environmental Science & Technology.2009,43(8):2957-2962.
    [88]Luo, Z., Hu, C., Zhou, J., et al. Stability of mercury on three activated carbon sorbents. Fuel Processing Technology.2006,87(8):679-685.
    [89]Mei, Z. J., Shen, Z. M., Yuan, T., et al. Removal of vapor-phase elemental mercury by N-doped CuCoO4 loaded on activated carbon. Fuel Processing Technology.2007, 88(6):623-629.
    [90]Mei, Z., Shen, Z., Zhao, Q., et al. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon. Journal of Hazardous Materials. 2008,152(2):721-729.
    [91]Vidic, R. D., Siler, D. P. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon.2001,39(1):3-14.
    [92]Mercury Study Report to Congress Volume I:Executive Summary, Technical Office of Air Quality Planning and Standards and Office of Research and Development:Washington, DC, December.1997.
    [93]Brown, T. D., Smith, D. N., Hargis, R. A., et al. Mercury measurement and its control:what we know, have learned, and need to further investigate. Journal of the Air & Waste Management Association.1999,49:628-640.
    [94]Jones, A. P., Hoffmann, J. W., Smith, D. N., et al. DOE/NETL's Phase II Mercury Control Technology Field Testing Program:Preliminary Economic Analysis of Activated Carbon Injection. Environmental Science & Technology.2007,41(4): 1365-1371.
    [95]Dunham, G. E., DeWall, R. A., Senior, C. L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology.2003, 82(2-3):197-213.
    [96]Senior, C, Bustard, C. J., Durham, M., et al. Characterization of fly ash from full-scale demonstration of sorbent injection for mercury control on coal-fired power plants. Fuel Processing Technology.2004,85(6-7):601-612.
    [97]Laudal, D. L., Brown, T. D., Nott, B. R. Effects of flue gas constituents on mercury speciation. Fuel Processing Technology.2000,65-66:157-165.
    [98]Norton, G. A., Yang, H., Brown, R. C., et al. Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel.2003,82(2):107-116.
    [99]Baek, J.-L., Yoon, J.-H., Lee, S.-H., et al. Removal of Vapor-Phase Elemental Mercury by Oil-Fired Fly Ashes. Industrial & Engineering Chemistry Research. 2007,46(4):1390-1395.
    [100]Ghorishi, S. B., Gullett, B. K. An experimental study on mercury sorption by activated carbons and calcium hydroxide. The fifth annual north American waste-to-energy conference, Research Triangle Park, NC. April 1997.
    [101]Ghorishi, B., Singer, C. F., Sedman, C. Preparation and evaluation of modified line and silica-lime sorbents for mercury vapor emission control. EPRI-DOE-EPA Combined utility air pollution control symposium, Atlanta, Georgia.1999.
    [102]Jennifer, W., Erdem, S. Ads orption of trace elements and sulfur dioxide on Ca-based sorbents. International Pittsburgh Coal Conference.2006.
    [103]任建莉,周劲松,骆仲泱.钙基类吸附剂脱除烟气中气态汞的试验研究.燃料化学学报.2006,34(5):557-561.
    [104]黄治军,段钰锋,王运军,et al改性氢氧化钙吸附脱除模拟烟气中汞的试验研究.中国电机工程学报.2009,29(17):56-62.
    [105]Hargrove, O. W., Carey, T. R., Richardson, C. F., et al. Enhanced Control of Mercury and other HAP by Innovative Modifications to Wet FGD Processes. 1997.
    [106]Blythe, G., Miller, S., Richardson, C., et al., ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS-SITE 2 RESULTS, Technical 2000; p Medium:ED; Size:vp.
    [107]Yang, S., Guo, Y, Yan, N., et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/y-Fe2O3 at lower temperatures. Journal of Hazardous Materials.2011,186(1):508-515.
    [108]Dong, J., Xu, Z., Kuznicki, S. M. Magnetic Multi-Functional Nano Composites for Environmental Applications. Advanced Functional Materials.2009,19(8): 1268-1275.
    [109]Dong, J., Xu, Z., Kuznicki, S. M. Mercury Removal from Flue Gases by Novel Regenerable Magnetic Nanocomposite Sorbents. Environmental Science & Technology.2009,43(9):3266-3271.
    [110]Wu, S., Azhar Uddin, M., Sasaoka, E. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents. Fuel.2006,85(2):213-218.
    [111]Wu, S., Ozaki, M., Uddin, M. A., et al. Development of iron-based sorbents for HgO removal from coal derived fuel gas:Effect of hydrogen chloride. Fuel.2008, 87(4-5):467-474.
    [112]Granite, E. J., Pennline, H. W., Hargis, R. A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research.2000,39(4): 1020-1029.
    [113]Qiao, S., Chen, J., Li,.J., et al. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina. Industrial & Engineering Chemistry Research.2009,48(7):3317-3322.
    [114]Li, J., Yan, N., Qu, Z., et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/a-Al2O3 at lower temperatures. Environmental Science & Technology.2010,44(1):426-431.
    [115]Li, Y., Murphy, P., Wu, C.-Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology.2008,89(6):567-573.
    [116]Pitoniak, E., Wu, C.-Y., Londeree, D., et al. Nanostructured Silica-Gel Doped with TiO<sub>2</sub> for Mercury Vapor Control. Journal of Nanoparticle Research.2003,5(3):281-292.
    [117]Lee, T. G, Biswas, P., Hedrick, E. Overall Kinetics of Heterogeneous Elemental Mercury Reactions on TiO2 Sorbent Particles with UV Irradiation. Industrial & Engineering Chemistry Research.2004,43(6):1411-1417.
    [118]Lee, T. G., Biswas, P., Hedrick, E. Comparison of HgO capture efficiencies of three in situ generated sorbents. AIChE Journal.2001,47(4):954-961.
    [119]Jeon, S. H., Eom, Y., Lee, T. G. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers. Chemosphere.2008,71(5):969-974.
    [120]Martellaro, P. J., Moore, G. A., Peterson, E. S., et al. ENVIRONMENTAL APPLICATION OF MINERAL SULFIDES FOR REMOVAL OF GAS-PHASE HG(0) AND AQUEOUS HG2+. Separation Science and Technology.2001,36(5-6): 1183-1196.
    [121]Poulston, S., Granite, E. J., Pennline, H. W., et al. Metal sorbents for high temperature mercury capture from fuel gas. Fuel.2007,86(14):2201-2203.
    [122]Meyer, D. E., Sikdar, S. K., Hutson, N. D., et al. Examination of Sulfur-Functionalized, Copper-Doped Iron Nanoparticles for Vapor-Phase Mercury Capture in Entrained-Flow and Fixed-Bed Systems. Energy & Fuels.2007,21(5): 2688-2697.
    [123]Abu-Daabes, M. A., Pinto, N. G. Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor from flue gases by chelation. Chemical Engineering Science.2005,60(7):1901-1910.
    [124]Meyer, D. E., Meeks, N., Sikdar, S., et al. Copper-doped silica materials silanized with bis-(triethoxy silyl propyl)-tetra sulfide for mercury vapor capture. Energy & Fuels.2008,22(4):2290-2298.
    [125]Liu, Y. Zeolite-supported silver nanoparticles for coal-fired power plant mercury emission control. Ph.D. Thesis, University of Alberta, Edmonton, Alberta, Canada,. 2009.
    [126]Melamed, R., da Luz, A. B. Efficiency of industrial minerals on the removal of mercury species from liquid effluents. Science of The Total Environment.2006, 368(1):403-406.
    [127]Chojnacki, A., Chojnacka, K., Hoffmann, J., et al. The application of natural zeolites for mercury removal:from laboratory tests to industrial scale. Minerals Engineering. 17(7-8):933-937.
    [128]Perez-Quintanilla, D., Hierro, I. d., Fajardo, M., et al.2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media. Journal of Hazardous Materials.2006,134(1-3):245-256.
    [129]Morency, J. R., Panagiotou, T., Senior, C. L. Zeolite sorbent that effectively removes mercury from flue gases. Filtration and Separation.2002,39(7):24-26.
    [130]Jurng, J., Lee, T. G., Lee, G. W., et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere.2002,47(9):907-913.
    [131]Kwon, S., Vidic, R. D. Evaluation of two sulfur impregnation methods on activated carbon and bentonite for the production of elemental mercury sorbents. Environmental Engineering Science.2000,17(6):303-313.
    [132]Mendioroz, S., Guijarro, M. I., Bermejo, P. J., et al. Mercury retrieval from flue gas by monolithic adsorbents based on sulfurized sepiolite. Environmental Science & Technology.1999,33(10):1697-1702.
    [133]Lee, S.-S., Lee, J.-Y., Keener, T. C. Elemental Mercury Control by Novel Oxidant and Sorbent in an Entrained-Flow System Water Air Soil Pollut:Focus.2008,8(3-4): 343-347.
    [134]Lee, J.-Y., Ju, Y., Lee, S.-S., et al. Novel mercury oxidant and sorbent for mercury emissions control from coal-fired power plants. Water Air Soil Pollut:Focus.2008, 8(3-4):333-341.
    [135]Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method); ASTM Method D6784-02. American Society for Testing and Materials:West Conshohocken, PA.2006.
    [136]Liu, W., Vidic, R. D., Brown, T. D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environmental Science & Technology. 2000,34(1):154-159.
    [137]Skodras, G, Diamantopoulou, I., Pantoleontos, G, et al. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. Journal of Hazardous Materials.2008,158(1):1-13.
    [138]Alptekin, G. O., Dubovik, M., Cesario, M., et al. Non-carbon sorbents for mercury removal from flue gases. Powder Technology.2008,180(1-2):35-38.
    [139]Torres Sanchez, R. M., Genet, M. J., Gaigneaux, E. M., et al. Benzimidazole adsorption on the external and interlayer surfaces of raw and treated montmorillonite. Applied Clay Science.2010, doi:10.1016/j.clay.2010.06.026.
    [140]Korkuna, O., Leboda, R., Skubiszewska-Zieba, J., et al. Structural and physicochemical properties of natural zeolites:clinoptilolite and mordenite. Microporous and Mesoporous Materials.2006,87(3):243-254.
    [141]Wang, W., Chen, H., Wang, A. Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite. Separation and Purification Technology.2007, 55(2):157-164.
    [142]Flora, J. R. V., Hargis, R. A., O'Dowd, W. J., et al. Modeling sorbent injection for mercury control in baghouse filters:I-Model development and sensitivity analysis. Journal of the Air & Waste Management Association.2003,53(4):478-488.
    [143]Celis, R., Hermosln, M. C., Cornejo, J. Heavy metal adsorption by functionalized clays. Environmental Science & Technology.2000,34(21):4593-4599.
    [144]Nabi, D., Aslam, I., Qazi, I. A. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. Journal of Environmental Sciences.2009, 21(3):402-408.
    [145]Pirila, M., Martikainen, M., Ainassaari, K., et al. Removal of aqueous As(III) and As(V) by hydrous titanium dioxide. Journal of Colloid and Interface Science.2011, 353(1):257-262.
    [146]Lee, K.-M., Hu, C.-W., Chen, H.-W., et al. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Materials and Solar Cells.2008,92(12):1628-1633.
    [147]Li, Y. H., Lee, C. W., Gullett, B. K. The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon.2002,40(1):65-72.
    [148]Zeng, H., Jin, F., Guo, J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel.2004,83(1):143-146.
    [149]Gutierrez, L. B., Mir? Eduardo, E., Ulla, M. A. Effect of the location of cobalt species on NO adsorption and NOx-SCR over Co-mordenite. Applied Catalysis A: General.2007,321(1):7-16.
    [150]Cao, J.-L., Shao, G.-S., Wang, Y., et al. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catalysis Communications.2008,9(15): 2555-2559.
    [151]Krishnan, S. V., Gullett, B. K., Jozewicz, W. Sorption of Elemental Mercury by Activated Carbons. Environmental Science & Technology.1994,28(8):1506-1512.
    [152]Korpiel, J. A., Vidic, R. D. Effect of Sulfur Impregnation Method on Activated Carbon Uptake of Gas-Phase Mercury. Environmental Science & Technology.1997, 31(8):2319-2325.
    [153]Liu, W., Vidic, R. D., Brown, T. D. Optimization of Sulfur Impregnation Protocol for Fixed-Bed Application of Activated Carbon-Based Sorbents for Gas-Phase Mercury Removal. Environmental Science & Technology.1998,32(4):531-538.
    [154]Liu, W., Vidic, R. D., Brown, T. D. Optimization of High Temperature Sulfur Impregnation on Activated Carbon for Permanent Sequestration of Elemental Mercury Vapors. Environmental Science & Technology.1999,34(3):483-488.
    [155]Lee, S.-H., Park, Y.-O. Gas-phase mercury removal by carbon-based sorbents. Fuel Processing Technology.2003,84(1-3):197-206.
    [156]Li, Y., Daukoru, M., Suriyawong, A., et al. Mercury emissions control in coal combustion systems using potassium Iodide:bench-scale and pilot-scale studies. Energy & Fuels.2009,23(1):236-243.
    [157]Mondale, K. D., Carland, R. M., Aplan, F. F. The comparative ion exchange capacities of natural sedimentary and synthetic zeolites. Minerals Engineering.1995, 8(4-5):535-548.
    [158]Shafirovich, E., Zhou, C. J., Ekambaram, S., et al. Catalytic effects of metals on thermal decomposition of sodium chlorate for emergency oxygen generators. Industrial & Engineering Chemistry Research.2007,46(10):3073-3077.
    [159]Zhang, Y. C., Ellison, J. E., Cannon, J. C. Interaction of iron oxide with barium peroxide and hydroxide during the decomposition of sodium chlorate. Industrial & Engineering Chemistry Research.1997,36(5):1948-1952.
    [160]Begg, I. D., Halfpenny, P. J., Hooper, R. M., et al. X-Ray Topographic Investigations of Solid State Reactions. I. Changes in Surface and Bulk Substructure During Incipient Thermal Decomposition in Sodium Chlorate Monocrystals. in: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences:vol.386,1983.431-442.
    [161]Granite, E. J., Pennline, H. W., Hargis, R. A. Sorbents for mercury removal from flue gas. Topical Report DOE/FETC/TR-98-01;National Energy Technology Laboratory (NETL):Pittsburgh, PA, January 1998.
    [162]Derenne, S., Sartorelli, P., Bustard, J., et al. TOXECON clean coal demonstration for mercury and multi-pollutant control at the Presque Isle Power Plant. Fuel Processing Technology.2009,90(11):1400-1405.
    [163]史晓莉.凹凸棒石表面特性及其与重金属离子的界面作用.合肥工业大学硕士学位论文.2005.
    [164]Carey, T. R., Hargrove, C. W., Richardson, C. F., et al. Factors affecting mercury control in utility flue gas using activated carbon. J. Air Waste Manage. Assoc.1998, 48:1166-1174.
    [165]Eswaran, S., Stenger, H. G. Understanding Mercury Conversion in Selective Catalytic Reduction (SCR) Catalysts. Energy & Fuels.2005,19(6):2328-2334.
    [166]Uddin, M. A., Yamada, T., Ochiai, R., et al. Role of SO 2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon. Energy & Fuels. 2008,22(4):2284-2289.
    [167]Lee, S.-S., Lee, J.-Y., Keener, T. C. The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases. Fuel.2009,88(10):2053-2056.
    [168]黄川微.凹凸棒石对重金属的吸附及其酸溶动力学研究.合肥工业大学硕士学位论文.2004.
    [169]Chen, H., Zhao, Y., Wang, A. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials.2007, 149(2):346-354.
    [170]Drelich, J., Li, B., Bowen, P., et al. Vermiculite decorated with copper nanoparticles: Novel antibacterial hybrid material. Applied Surface Science.2011,257(22): 9435-9443.
    [171]Lee, S.-S., Lee, J.-Y., Keener, T. C. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Processing Technology.2009,90(10):1314-1318.
    [172]Aguado, J., Arsuaga, J. M., Arencibia, A. Adsorption of Aqueous Mercury(II) on Propylthiol-Functionalized Mesoporous Silica Obtained by Cocondensation. Industrial & Engineering Chemistry Research.2005,44(10):3665-3671.
    [173]Billinge, S. J. L., McKimmy, E. J., Shatnawi, M., et al. Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica. Journal of the American Chemical Society.2005,127(23):8492-8498.
    [174]Wang, X., Cheng, S., Chan, J. C. C. Propylsulfonic Acid-Functionalized Mesoporous Silica Synthesized by in Situ Oxidation of Thiol Groups under Template-Free Condition. The Journal of Physical Chemistry C.2007,111(5): 2156-2164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700