辐照技术对蓝藻生长的抑制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化,导致国内外众多湖库蓝藻生长泛滥,对饮用水安全造成了严重威胁。为防止蓝藻“水华”危害,必须采取有效措施对其实施治理。但现有的蓝藻“水华”防治技术,存在防治不彻底及易产生二次污染等问题。因此,研究能够克服以上技术的不足,能有效防治蓝藻“水华”的新技术迫在眉睫。
     γ-射线辐照和介质阻挡放电在作用过程中能产生活性很强的自由基,将水中许多有机污染物完全降解和矿化。作为高级氧化技术,与常规污染处理技术相比,γ-射线辐照和介质阻挡放电在常温常压下进行,工艺简单,效率高、无二次污染,适用于常规技术难以处理的环境污染物。
     本课题对γ-射线辐照抑制“水华”优势藻—铜绿微囊藻和鱼腥藻生长的情况进行了研究;分析了γ-射线辐照对铜绿微囊藻和鱼腥藻细胞内叶绿素a(Chl-a)、类胡萝卜素(Cartenoid)、藻蓝蛋白(PC)、总可溶性蛋白(TSP)和超氧化歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等酶活及丙二醛(MDA)的影响;对比分析了γ-射线辐照处理前后铜绿微囊藻和鱼腥藻细胞表面及内部结构的变化,找出了辐照抑制两种蓝藻生长的机理;考察了γ-射线辐照和介质阻挡放电两种辐照手段对自然水体中“水华”蓝藻的去除,为辐照技术除藻的实际应用奠定理论基础;根据蓝藻的生理特性,研究γ-射线辐照对太湖越冬蓝藻复苏的抑制,为蓝藻“水华”的防治提供一个新思路。取得的主要研究结果为:
     (1)初始叶绿素a浓度为5.62mg/L的铜绿微囊藻悬浮液,经剂量9kGy的Y-射线辐照处理后,培养5d,悬浮液中Chl-a含量仅为对照样的2%,相当于98%铜绿微囊藻细胞被去除。酸性环境有利于γ-射线辐照对铜绿微囊藻的抑制。Y-射线辐照产生的.OH和H202对铜绿微囊藻细胞的生长抑制起主要作用。铜绿微囊藻细胞经γ-射线处理后,细胞内光合色素和蛋白含量随辐照剂量增加而降低,细胞内MDA含量逐步增加,说明细胞膜质已被氧化。γ-射线辐照处理后,铜绿微囊藻细胞内SOD、POD和CAT酶活性随辐照剂量增加是先增加后降低,辐照剂量达到9kGy时,藻细胞内活性酶系统几乎完全被损伤。藻细胞SEM和TEM图表明,辐照处理后铜绿微囊藻细胞萎缩,细胞内类囊体逐渐溶解和消失,降低了蓝藻细胞色素的光能捕获和传递能力,影响了细胞内蛋白电子产率和传递速率。最终,蓝藻细胞内能量转化和电子传递过程终止,细胞生长所需的能量和有机物供给不足,代谢活性降低,其生长受到抑制。
     (2)初始Chl-a浓度为5.62mg/L的鱼腥藻,经剂量11kGy的γ-射线辐照处理后培养5d,悬浮液中Chl-a含量为对照样的1.3%,相当于98.7%鱼腥藻被去除。酸性环境有利于γ-射线辐照对鱼腥藻的抑制。11kGy的γ-射线辐照处理后,鱼腥藻细胞内光合色素和蛋白含量几乎降低为零。鱼腥藻细胞内SOD、POD和CAT活性随辐照剂量的增加是先增加后降低,细胞内MDA含量随辐照剂量增加而逐步增加。通过SEM和TEM分析,发现经11kGy的γ-射线辐照处理后鱼腥藻大部分藻丝断裂,藻细胞严重萎缩,细胞内类囊体溶解消失,细胞内部生理功能受到不可逆损伤,以致藻细胞死亡。
     (3)γ-射线辐照能有效去除太湖水体中的“水华”蓝藻。初始Chl-a浓度为12.38mg/L的太湖“水华”蓝藻,经剂量10kGy的γ-射线辐照处理后培养5d,悬浮液中Chl-a含量为0.56mg/L,与对照样相比,相当于95.5%“水华”蓝藻被去除。γ-射线辐照处理后蓝藻细胞内Cartenoid、PC和TSP含量显著降低。随辐照剂量增加,蓝藻细胞内SOD和POD酶活性先增加后降低。辐照剂量越高,细胞内MDA含量越高,蓝藻细胞被氧化的程度越深。
     (4)介质阻挡放电也能有效去除太湖“水华”蓝藻。放电功率、放电时间、空气流速对去除效率均有影响。放电功率越高,放电时间越长,空气流速越大,蓝藻去除率越高。放电功率100W,放电时间18min,空气流速1.0L/min条件下,初始Chl-a浓度为9.58mg/L的藻液,经放电处理后培养4d,悬浮液中Chl-a浓度为对照样的12.2%,即蓝藻去除率达到了87.8%。放电处理后,蓝藻细胞内Cartenoid、PC、SOD、POD和MDA发生显著变化。
     (5)γ-射线辐照能有效抑制太湖越冬藻类的复苏,辐照剂量越大,抑制效果越好。太湖原水经5kGy的γ-射线辐照处理后培养40d,其Chl-a、Chl-b和PC含量仅为对照样的8.66%、16.8%和17.2%,太湖原水中越冬藻类的复苏受到了较大抑制。太湖底泥原样经剂量13kGy的Y-射线辐照处理后,采用BG11培养基培养60d,培养液中Chl-a、Chl-b和PC含量仅为对照样的18.8%、14.8%和20.5%,说明γ-射线对底泥中越冬藻类复苏有一定抑制。
The eutrophication of natural water in lakes and drinking water reservoirs has led to an incease in the incidence of blue-green algae. The presence and excessive growth of algae in water poses a significant risk to drinking water treatment. To minimize the threat posed by algae, they have been removed from water by various methods. However, the existing methods are proved to be inefficient or secondary environmental pollution. Thus, new methods are needed to prevent algae from fast and excessive growth in the water sources effectively.
     As advanced oxidation technologies, gamma-ray irradiation and dielectric barrier discharge have been widely used in environmental protection field. The two technologies have the advantages of easy operation (room temperature and pressure) as well as high availability and no secondary pollution. They are appropriate to remove the environmental pollutants which are difficult to treat by conventional techniques.
     This thesis explored the suppression effectiveness of typical bloom algae growth under gamma-ray irradiation. Cyanobacteria microcystis aeruginosa and anabaena sp. were selected. The effects of gamma-ray irradiation on chlorophyll, carotenoid, phycocyanin and several antioxidative enzymes (SOD, POD and CAT) were discussed. The changes of surface and cellular ultrastructure in microcystis aeruginosa and anabaena sp. cells befor and after gamma-ray treatment were investigated to probe into the mechanism of algal suppression effect. Meanwhile, the removals of cyanobacteria in natural water by gamma-ray irradiation and dielectric barrier discharge were also discussed. The research results would provide the theoretical basis for the application of this technology. According to the physiological characteristics of cyanobacteria, the inhibition of overwintering cyanobacteria recovery in Lake Taihu by gamma-ray irradiation was also discussed, which provide us a new approach to the control of cyanobacterial bloom. The main results are showed as follows:
     (1) It was found that the chlorophyll a concentration of microcystis aeruginosa (the initial concentration of chl-a was5.62mg/L) suspensions decreased as the dose increased at five days after gamma irradiation, and the removal efficiency of chlorophyll a was98%when a dose of9kGy was administered. The solution pH influenced the removal of microcystis aeruginosa, with a higher removal efficiency being observed under acidic conditions than in neutral or alkaline conditions. The OH and H2O2derived from the irradiated water play an important role in microcystis aeruginosa removal. Gamma irradiation had an adverse effect on photosynthetic pigments in microcystis aeruginosa cells. Specifically, the levels of Carotenoid and phycocyanin in microcystis aeruginosa cells were reduced considerably in response to increasing doses of radiation. The gradually increased MDA in irradiated microcystis aeruginosa cells following lipid peroxidation indicated oxidative stress in the cells. During oxidative stress, active oxygen species (AOS) trigger the activity of several antioxidative enzymes (SOD, POD and CAT). Relatively low gamma irradiation doses enhanced the activity of antioxidative enzyme. However, high doses of gamma irradiation reduced the activity of antioxidative enzyme in microcystis aeruginosa cells. Based on the SEM and TEM images, the thylakoid in microcystis aeruginosa cell was lysised after gamma-ray irradiation treatment, which disrupted the absorption and transportation of light energy, affected energy transformation and electron transportation, even terminated these process. That induced insufficient supply of both energy and organic materials in microcystis aeruginosa cells. Therefore algal metabolic activities might be reduced and led to the growth suppression.
     (2) The chlorophyll a concentration of anabaena sp.(the initial chl-a concentration was5.62mg/L) suspensions decreased as the dose increased at five days after gamma irradiation, and the removal efficiency of chlorophyll a was98.7%when a dose of11kGy was selected. Gamma irradiation had an adverse effect on photosynthetic pigment and protein system in anabaena sp. cells. The activity of several antioxidative enzymes (SOD, POD and CAT) increased with relatively low gamma irradiation doses. However, the activity of these enzymes significantly decreased with relatively high gamma irradiation doses. The concentration of MDA increased with the increase of irradiation dose. As shown in the SEM and TEM images, some irradiated anabaena sp. cells atrophied, and the thylakoid lysised. So, the normal physiological function of cell was damaged.
     (3) The bloom cyanobacteria in Taihu Lake could be effectively removed by gamma-ray irradiation. The removal efficiency of cyanobacteria was95.5%at five days after gamma-ray irradiation when a dose of lOkGy was selected. The contents of photosynthetic pigment and protein considerably decreased as the increase of radiation dose. The low gamma irradiation doses enhanced the activity of SOD and POD in cyanobacterial cells. However, the relatively high gamma irradiation doses reduced the activity of these enzymes. The increase of MDA concentration in irradiated cyanobacterial cells indicated the lipid peroxidation by gamma-ray irradiation.
     (4) The non-thermal plasma produced by dielectric barrer discharge could remove the bloom cyanobacteria in Taihu Lake. The effects of discharge power, air flow rate, various additives on the removal efficiency of cyanobacteria were discussed. When100W discharge power,1.0L/min air flow rate,18min discharge time,20001x light intensity and4d culture time at25℃were selected, the removal efficiency of bloom cyanobacteria was over87.8%(the initial Chl-a concentration of cyanobacteria was9.58mg/L). The removal efficiency was increased with the increase of discharge power and air flow rate. The contents of Carotenoid and malondialdehyde, the activity of SOD and POD in cyanobacterial cells were changed, and the intracellular materials of cyanobacteria were damaged after treatment.
     (5) Gamma-ray irradiation significantly inhibited the recovery of overwintering cyanobacteria in Taihu water. The increase of absorbed dose enhanced the inhibition effect. The ratio of chlorophyll a, chlorophyll b and phycocyanin in water with the dose of5kGy were8.66%、16.8%and17.2%to that in contrast sample after40days culture. The recovery of overwintering cyanobacteria in surface sediments was also inhibited by gamma-ray irradiation. When a13kGy dose of irradiation was selected, the ratio of chlorophyll a, chlorophyll b and phycocyanin in culture medium were18.8%、14.8%and20.5%to that in contrast sample after60days culture.
引文
[1]Cairns S.H. Eutrophication monitoring and prediction, Ph. D Dissertation. University of North Texas,1993.
    [2]OECD. Eutrophication of waters. Monitoring, assessment and control. Final report, OECD cooperative program on monitoring of inland waters (eutrophication control). Environment Directorate, OECD, Paris, 1982.
    [3]Khan F.A., Ansari A.A. Eutrophication:An ecological vision. Botanical Review,2005,71(4):449-482.
    [4]Ingrid C, Jamie B. Toxic cyanobacteria in water. London and New York:E & FN Spon Publisher,1999.
    [5]中华人民共和国环境保护部.2010中国环境状况公报http://www.zhb.gov.cn.
    [6]Oliver R.L., Ganf G.G. Freshwater blooms.//Whitton B.A. and Potts M., ed. The ecology of cyanobacteria-their diversity in time and space. The Netherlands:Kluwer Academic Publishers,2000: 149-194.
    [7]Dokulil M.T., Teubner K. Cyanobacterial dominance in eutrophic lakes:causes- consequences-solutions. Journal of Lake Science,1998,10:357-370.
    [8]Dokulil M., Chen W., Cai Q. Anthropogenic impacts to large lakes in China:the Tai Hu example. Aquatic Ecosystem Health and Management,2000,3(1):81-94.
    [9]Tilzer M.M., Geller W. Global water supply and threats to global water supply. In:Sund H., ed. Environmental protection and lake ecosystem. Beijing:China Science & Technology Press,1993.
    [10]Jin X., Liu H., Tu Q., et al. Eutrophication of lakes in China. Beijing:Chinese Research Academy of Environmental Sciences,1990.
    [11]Paerl H.W., Fulton R.S., Moisander P.H., et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Science World Journal,2001,1:76-113.
    [12]蔡启.太湖环境生态研究(一).北京:气象出版社.
    [13]华锦彪,宗志祥.洋河水库“水华”发生的实验研究.北京大学学报(自然科学版),1994,30(4):476-484.
    [14]Paerl H.W., Tucker J., Bland P.T. Carotenoid enhancement and its role in maintaining blue-green (Microcystis aeruginosa) surface blooms. Limnology & Oceanography,1983,28(5):847-857.
    [15]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25(3):589-595.
    [16]张运林,秦伯强,陈伟民,等.太湖水体光学衰减系数的分布及其变化特征.水科学进展,2003,14(4):447-453.
    [17]秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式.科学通报,2003,48(17):1822-1831.
    [18]范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算.中国科学(D辑),2003,33(8):760-768.
    [19]Steiberg C.E.W., Hartmann H.M. Plank tonic bloom forming cyanobacteria and the eutrophication of lake and rivers. Freshwater Biology,1988,20(2):279-287.
    [20]Schindler D.W. Evolution of phosphorus limitation in lakes. Science,1977,195(4275):260-262.
    [21]Smith V.H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science,1983,221(4611):669-671.
    [22]Xie L., Xie P., Li S., et al. The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Research, 2003,37(9):2073-2080.
    [23]Agusti S., Phlips E.J. Light absorption by cyanobacteria:Implications of the colonial growth form, Limnology & Oceanography,1991,37(2):434-441.
    [24]Ganf G.G., Oliver R.L. Vertical separation of light and available nutrients as a factor causing replacement of green algae in the plankton of stratified lake. Journal of Ecology,1982,70(3):829-844.
    [25]Brunberg A.K., Blomqvist P. Recruitment of Microcystis (Cyanophyceae) from lake sediments:the importance of littoral inocula. Journal of Phycology,2003,39(1):58-63.
    [26]Brunberg A.K., Blomqvist P. Benthic overwintering of Microcystis colonies under different environmental conditions. Journal of Plankton Research,2002,24(11):1247-1252.
    [27]Shi X.L., Kong F.X., Yu Y., et al. Survival of Microcystis aeruginosa and Scenedesmus obliquus under dark anaerobic condition. Marine and Freshwater Research,2007,58(7):634-639.
    [28]Yang Y, Yin C.T., Li W.Z., et al. a-tocopherol is essential for acquired chill-light tolerance in the Cyanobacterium synechocysti sp. strain PCC 6803. Journal of Bacteriology,2007,190(5):1554-1560.
    [29]徐旭东.水生所发现维生素E对于蓝藻越冬的作用.中国西部科技,2008,7(6):28.
    [30]Falion R.D., Brock T.D. Overwintering of Microcystis in lake Mendota. Freshwater Biology,1981,11(3): 217-226.
    [31]Jutta F., Geoffery A.C., James S., et al. An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Analytical and Bioanalytical Chemistry,2002,374(3):437-444.
    [32]陆开宏.蓝藻水华与2种藻食性水生动物的相互作用.青岛:中国海洋大学博士学位论文,2009.
    [33]Jochimsen E.M., Carmichael W.W., An J.S., et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. The New England Journal of Medicine,1998,338(26):873-878.
    [34]Chen J., Xie P., Guo L.G., et al. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China. Environmental Pollution,2005,134(3):423-430.
    [35]Chen J., Xie P. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins -LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon,2005,45(5):615-625.
    [36]Chen J., Xie P, Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic Lake Taihu of the subtropical China and the risk to human consumption. Environmental Toxicology,2005,20(6):572-584.
    [37]谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁.北京:科学出版,2006.
    [38]Pouria S., Andrade A., Barbosa J., et al. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet,1998,352(9121):21-26.
    [39]Faleoner L.R. Toxic cyanobacterial bloom Problems in Australian waters:risks and impacts on human health. Phycologia,2001,40(3):228-233.
    [40]Harada K. Recent advances of toxic cyanobacteria research. Journal of Health Science,1999,45(3): 150-165.
    [41]Camean A., Moreno I., VerdejoT., et al. Pyrolytic behaviour of microcystins and microcystin-spiked algal bloom. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):19-25.
    [42]Zimba P.V., Khoo L., Gaullt P.S., et al. Confirmation of catfish, Ictalurus puncatus (Rafinesque), mortality from Microcystis toxins. Journal of Fish Diseases,2001,24(1):41-47.
    [43]Martina A.D., Kathryn J.C., Johanna M.R.K., et al. Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting the Great Lakes-implication for HAB invasions. Harmful Algae,2007,6(4):519-530.
    [44]Zhang G.M., Zhang P.Y., Wang B., et al. Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry,2006,13(5):446-450.
    [45]Lee T.J., Nakano K. Matsurnara ultrasonic irradiation for blue-green algae bloom control. Environmental Technology,2001,22(4):383-390.
    [46]Liang H., Nan J., He W.J., et al. Algae removal by ultrasonic irradiation-coagulation. Desalination,2009, 239(1-3):191-197.
    [47]王波,张光明,王慧.超声波去除铜绿微囊藻研究.环境污染治理技术与设备,2005,6(4):47-49.
    [48]郑少波,杜鹤桂.光子和磁场对矿泉水协同处理技术研究.水处理技术,1997,23(6):337-340.
    [49]王翠花,李国锋,李杰,等.脉冲放电对铜绿微囊藻灭活效果研究.大连理工大学学报,2009,49(1):38-43.
    [50]顾晓婧,刘书宇,吴明红.电子束辐射对铜绿微囊藻生长过程的影响研究.高校化学工程学报,2010,24(3):503-508.
    [51]Gao S.S., Yang J.X., Tian J.Y., et al. Electro-coagulation-flotation process for algae removal. Journal of Hazardous Materials,2010,177(1-3):336-343.
    [52]Andrea A.L., Marcos S., Artur J. M., et al. Electrocombustion of humic acid and removal of algae from aqueous solutions. Journal of Applied Electrochemistry,2008,38(5):721-727
    [53]Lei G.Y., Ma J., Guan X.H., Song A.K., et al. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water. Desalination,2009,247(1-3):518-529.
    [54]Bernhardt H., Clasen J. Investigations into the coagulation mechanisms of small algal cells. Journal of Water Supply:Research & Technology-AQUA,1994,43(5):222-232.
    [55]Yan Q.Y., Yu Y.H., Feng W.S., et al. Plankton community succession in artificial systems subjected to cyanobacterial blooms removal using chitosan-modified soils. Environmental Microbiology,2009,58(1): 47-55
    [56]Pan G., Zhang M.M., Chen H., et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environmental Pollution,2006,141(2):195-200.
    [57]Zou H., Pan G., Chen H., et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅱ. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environmental Pollution,2006,141(2):201-205.
    [58]Pan G., Zou H., Chen H., et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution,2006,141(2):206-212.
    [59]Pieterse A.J.H., Cloot A. Algae cells and coagulation, flocculation and sedimentation process. Water Science and Technology,1997,36(4):111-118.
    [60]Roha S.H., Kwakb D.H., Jungb H.J., et al. Simultaneous removal of algae and their secondary algal metabolites from water by hybrid system of DAF and PAC sdsorption. Separation Science and Technology, 2008,43(1):113-131.
    [61]石静,刘春光,王君丽,等.壳聚糖-高岭土复合体去除铜绿微囊藻的试验研究.农业环境科学学报,2009,28(9):1914-1918.
    [62]邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除.环境科学,2004,25(6):40-43.
    [63]翟玥,杨哲,安阳,等.壳聚糖凝聚去除景观水中微囊藻的研究.净水技术,2009,28(6):58-60.
    [64]罗岳平,施周,张丽娟,等.高岭土对铜绿微囊藻的PAC强化絮凝去除技术.湖南大学学报(自然科学版),2009,36(2):22-26.
    [65]王国华,李晨光,孙晓,等.高铁酸钾强化PAC去除景观水体中藻类的研究.中国给水排水,2010,26(9):83-85.
    [66]陈卫,李圭白,邹浩春.PPC强化混凝除蓝藻除色度效果及致因研究.河海大学学报(自然科学版),2006,34(2):140-143.
    [67]陈杰,王波,张光明,等.超声强化混凝去除蓝藻实验研究.环境工程学报,2007,1(3):66-69.
    [68]刘国锋,钟继承,张雷,等.有机改性粘土对铜绿微囊藻的絮凝去除.湖泊科学,2009,21(3):363-368.
    [69]施国键,乔俊莲,王国强,等.活化粉煤灰改性壳聚糖絮凝除藻的研究.环境污染与防治,2009,31(9):44-48.
    [70]陈灏,潘纲,张明明.藻细胞不同生长阶段的海泡石凝聚除藻性能.环境科学,2004,25(6):85-88.
    [71]Divakaran R., Sivasankara Pillai V.N. Flocculation of algae using chitosan. Journal of Applied Phycology, 2002,14(5):419-422.
    [72]邹华,潘纲,陈灏.离子强度对粘土和改性粘土絮凝去除水华铜绿微囊藻的影响.环境科学,2005,26(2):148-151.
    [73]Mario R.S., Aishao L., Kimberley T., et al. Removal of red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Marine Ecology Progress Series,2001,210:41-53.
    [74]田娟,宋碧玉,林燊,等.两种改性粘土去除群体铜绿微囊藻的比较.湖泊科学,2009,21(5):669-674.
    [75]陆贻超,王国祥,李仁辉.超声波和改性粘土集成技术在去除蓝藻水华上的应用.湖泊科学,2010,22(3):421-429.
    [76]Ma J., Liu W. Effectiveness and mechanism of potassium ferrate (Ⅵ) preoxidation for algae removal by coagulation. Water Research,2002,36(4):871-878.
    [77]张普,乔俊莲,王国强,等.聚二甲基二烯丙基氯化铵对铜绿微囊藻的去除效果研究.水处理技术,2010,36(11):15-20.
    [78]Han M.Y., Wontae K. A theoretical consideration of algae removal with clays. Microchemical Journal, 2001,68(223):157-161
    [79]Anderson D.M. Turning back the harmful red tide. Nature,1997,388(6642):513-514.
    [80]Yadidia R., Abeliovich A., Belfort G. Algae removal by high gradient magnetic filtration. Environmental Science & Technology,1977,11(9):913-916.
    [81]Gao Z.W., Peng X.j., Zhang H., et al. Montmorillonite-Cu(Ⅱ)/Fe(Ⅲ) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination,2009,247(1-3):337-345.
    [82]Jiang C., Wang R., Ma W. The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,369(1-3): 260-267.
    [83]柳丹,蔡冬清,王相勤,等.磁聚去除淡水藻华的研究.中国环境科学,2006,26(6):677-679.
    [84]蔡冬清,柳丹,季程晨,等.磁控改性复配物治理水华的研究.中国环境科学,2007,27(5):661-664.
    [85]Zeeshan M., Prasad S.M. Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. South African Journal of Botany,2009,75(3): 466-474.
    [86]郭美婷,胡洪营,陈健,等.紫外线对铜绿微囊藻的抑制效果及特性研究.环境科学,2011,32(6):1608-1613.
    [87]Ochiai T., Fukuda T., Nakata K., et al. Photocatalytic inactivation and removal of algae with TiO2-coated materials. Journal of Applied Electrochemistry,2010,40(10):1737-1742.
    [88]尹海川,柳清菊,林强.纳米Ti02掺杂贵金属Pt抑制蓝藻的生长.功能材料,2005,36(12):1934-1937.
    [89]廖兴盛.UV-C照射下纳米Ti02光催化对蓝藻生长影响的研究及其应用.华中科技大学博士学位论文,2009.
    [90]尹海川,林强,涂学炎,等.稀土改性Ag掺杂纳米Ti02对抑制蓝藻生长的研究.昆明理工大学学报(理工版),2004,29(6):1-4.
    [91]郭建伟,张永吉,曾果,等.H202与UV工艺对铜绿微囊藻灭活特点比较.环境科学,2010,31(8):1801-1806.
    [92]陶益.UV-C辐照对典型藻类生长抑制效果与机理研究.清华大学博士学位论文,2010.
    [93]Campinas M., Rosa M.J. Evaluation of cyanobacterial cells removal and lysis by ultrafiltration. Separation and Purification Technology,2010,70(3):345-353.
    [94]Roh S.H., Kwak D.H., Jung H.J., et al. Simultaneous Removal of Algae and Their Secondary Algal Metabolites from Water by Hybrid System of DAF and PAC Adsorption. Separation Science and technology,2008,43(1):113-131.
    [95]Teixeira M.R., Rosa M.J. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcysits aeruginosa. Part Ⅰ. the key operating conditions. Separation and Purification Technology,2006,52(1):84-94.
    [96]Adamson R.P., Sommerfeld M.R. Laboratory comparison of the effectiveness of several algicides on isolated swimming poll algae. Applied Environmental Microbiology,1980,39(2):348-353.
    [97]Chen J.J., Yehb H.H. The mechanisms of potassium permanganate on algae removal. Water Research, 2005,39(18):4420-4428.
    [98]Chen J.J., Yehb H.H., Tseng I.C. Effect of ozone and permanganate on algae coagulation removal-pilot and bench scale tests. Chemosphere,2009,74(6):840-846.
    [99]Petruevski B., Van Breemen A.N., Alaerts G. Effect of permanganate pretreatment and coagulation with dual coagulants on algae removal in direct filtration. Journal of water supply research and technology-AQUA,1996,45(6):316-326.
    [100]Plummer J.D., Edzwald J.K. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid. Environmental Science & Technology,2001,35 (18):3661-3668.
    [101]Plummer J.D., Edzwald J.K. Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation. Journal of water supply research and technology-AQUA,2002,51(6):307-318.
    [102]Steynberg M.C., Gugleilm M.M., Geldenhuys J.C., et al. Chlorine and chlorine dioxide:pre-oxidants used as algicide in potable water plants. Journal of water supply research and technology-AQUA,1996, 45(4):162-170.
    [103]Miao H.F., Tao W.Y. The mechanisms of ozonation on cyanobacteria and its toxins removal. Separation and Purification Technology,2009,66(1):187-193.
    [104]Ma J., Liu W. Effectiveness and mechanism of potassium ferrate (Ⅵ) preoxidation for algae removal by coagulation. Water Research,2002,36(4):871-878
    [105]Fitzgerald G.P. Use of potassium permanganate for control of problem algae. Journal of the American Water Works Association,1966,58(5):609-614.
    [106]Sukenik A., Teltch B., Wachs A.W., et al. Effect of oxidants on microalgal flocculation, Water Research, 1987,21(5):533-539.
    [107]张大丽,余国忠.次氯酸钠/过氧化氢法处理含铜绿微囊藻原水.河南大学学报(自然科学版),2007,37(3):245-249.
    [108]Yin P.H., Yu Q.M., Jin B., et al. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch water. Water Research,1999,33(8):1960-1963.
    [109]Angeline K.Y.L, Ellie E.P, David S., et al. Chemical control of hepatotoxic phytoplankton blooms: implication for human health. Water Research,1995,29(8):1845-1854.
    [110]李星,赵亮,杨艳玲.锰铜复合除藻剂灭活铜绿微囊藻效能研究.北京理工大学学报,2009,29(10):910-913.
    [111]张庭廷,郑春艳,何梅,等.亚油酸对铜绿微囊藻的抑制机理.中国环境科学,2009,29(4):419-424.
    [112]Nakai S., Inoue Y., Hosomi M., et al. Growth inhibition of blue-green algae by allelopathic effects of marophytes. Water Science and Technology,1999,39(8):47-53.
    [113]丁惠君,张维昊,周伟斌,等.两种酚酸类化感物质对铜绿微囊藻生长的影响.环境科学与技术, 2007,30(7):1-4.
    [114]花铭,陈良燕,尹大强.邻苯三酚和咖啡酸对铜绿微囊藻的化感作用及其机理.环境化学,2008,27(3):331-334.
    [115]杨维东,张信连,刘洁生.酚酸类化感物质对塔玛亚历山大藻生长的影响.中国环境科学,2005,25(4):417-419.
    [116]黄廷林,柴蓓蓓.水源水库水质污染与富营养化控制技术研究进展.地球科学进展,2009,(6):588-596.
    [117]Baker K.H., Herson D.S. Interactions between the diatom thallasiosira pseudonanna and an associated pseudomonad in a mariculture system. Applied and Environment Microbiology,1978,35(6):791-796.
    [118]Lovejoy C., Bowman J.P., Hallegraeff G.M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the Genera Chattonella, Gymnodinium and Heterosigma. Applied and Environment Microbiology,1998,64(8): 2806-2813.
    [119]王进.微囊藻水华的微生物控制.南京:南京师范大学,硕士学位论文,2005.
    [120]裴海燕,胡文容,曲音波,等.一株溶藻细菌的分离鉴定及其溶藻特性.环境科学学报,2005,25(6):796-802.
    [121]何鉴尧,潘伟斌,林敏.溶藻细菌对富营养化水体藻类群落结构的影响.环境污染与防治,2008,30(11):70-74.
    [122]Lee S.O., Kato J., Takiguchi N., et al. Involvement of an extracellular protease in algicidal activity of the marine bacterium pseudoalteromonas sp. strain A28. Applied and Environmental Microbiology,2000, 66(1):4334-4339.
    [123]Carignan R., Kalff J. Phosphorus sources for aquatic weeds:water or sediments? Science,1980, 207(4434):987-988.
    [124]金送笛,李永函,倪彩虹,等.范草(Potamogeton crispus)对水中氮磷的吸收及若干影响因素.生态学报,1994,14(2):168-173.
    [125]Proctor L.M., Fuhrman J.A. Viral mortality of marine bacteria and cynaobacteria. Nature,1990, 343(6253):60-62.
    [126]李保珍,冯佳,谢树莲.光合细菌对铜绿微囊藻生长的抑制效应.生态环境学报,2009,18(5):1736-1740.
    [127]马妍,石福臣,柴民伟,等.几种植物对铜绿微囊藻和莱茵衣藻的影响.南开大学学报,2010,43(3):82-87
    [128]谢平.鲢、鳙与藻类水华控制.北京:科学出版社,2003.
    [129]Horppila J., Peltonen H., Malinen T., et al. Top-down or bottom-up effects by fish:issues of concern in biomanipulation of lakes. Restoration Ecology,1998,6(1):20-28.
    [130]陆开宏,金春华,王杨才.罗非鱼对蓝藻的摄食消化及对富营养化水体水华的控制.水产学报,2005,29(6):811-818.
    [131]Datta S., Jana B.B. Control of bloom in a tropical lake:Grazing efficiency of some herbivorous fishes. Journal of Fish Biology,1998,53(1):12-24.
    [132]沈银武,刘永定,吴国樵,等.富营养湖泊滇池水华蓝藻的机械清除.水生生物学报,2004,28(2):131-136.
    [133]黄维,裴毅,陈飞勇.水体蓝藻清除的研究及其新型机械除藻初探.企业技术开发,2008,27(4):29-31.
    [134]朱广伟.太湖富营养化现状及原因分析.湖泊科学,2008,20(1):21-26.
    [135]郭匿春.浮游动物与藻类水华的控制.中国科学院水生生物研究所博士学位论文,2007.
    [136]钟云.辐照对腐殖酸及沉积物中六氯苯的降解研究.南京大学硕士学位论文,2007.
    [137]付淘,许甫荣,郑春开.核科学百年讲座-第五讲,辐射化学与辐射加工.2003,32(7):464-470.
    [138]Woods R.J., Pikaev A.K. Applied radiation chemistry:radiation processing. New York:John Wiley& Sons,1994.
    [139]Junko K. "Enhancement of wastewater and sludge treatment by ionizing radiation" proceeding of a workshop on the potential engineering-scale processing of waste treatment streams by electron-beam irradiation. Published by the University of Miami,1997.
    [140]包伯荣,吴明红,罗文芸,等.辐射技术在废水及污泥处理中的应用.核技术,1996,19(12):759-764.
    [141]Getoff N. Environmental radiation, Radiation Physics and Chemistry.1999,54(5):377-384.
    [142]Pikaev A., Shubin V. Radiation treatment of liquid wastes. Radiation Physics and Chemistry,1984,24(1): 77-97.
    [143]Hilarides R., Gray K. Innovative treatment of soil contamination:radiolytic destruction of dioxin and cocontaminants by cobalt-60. Proceedings of the 1994 National Conference on Environmental Engineering,1994.
    [144]Kang S.W., Shim S.B., Park Y.K., et al. Chemical degradation and toxicity reduction of 4-chlorophenol in different matrices by gamma-ray treatment. Radiation Physics and Chemistry,2011,80(3):487-490.
    [145]He Y.K., Liu J., Lu Y.D., et al. Gamma radiation treatment of pentachlorophenol,2,4-dichlorophenol and 2-chlorophenol in water. Radiation Physics and Chemistry,2002,65(4-5):565-570.
    [146]Gonzalez-Juarez J.C., Jimenez-Becerril J., Carrasco-Abrego H. Influence of pH on the degradation 4-chlorophenol by gamma radiocatalysis using SiO2, Al2O3 and TiO2. Journal of Radioanalytical and Nuclear Chemistry,2008,275(2):257-260.
    [147]Chitose N., Ueta S., Seino S., et al. Radiolysis of aqueous phenol solutions with nanoparticles.1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, y-ray and electron beams. Chemosphere,2003,50(8):1007-1013.
    [148]Liu S.Y., Chen Y.P., Yu H.Q., et al. Degradation of p-chlorophenol by y-radiolysis:radiolytic intermediates and theoretical calculations. Chemistry Letters,2005,34(4):488-489.
    [149]薛军,胡俊,王建龙.辐照降解水溶液中氯酚的研究.环境科学,2008,29(7):1919-1923.
    [150]王敏,杨睿媛,朱志远,等.4-氯酚的γ,射线辐照降解研究.辐射研究与辐射工艺学报,2005,23(1):19-24.
    [151]胡俊,王建龙,程荣.γ-辐照-O3氧化联合作用下4-氯酚的降解.中国科学B辑(化学),2005,35(6):520-525.
    [152]胡俊,王建龙.γ-射线辐照-H202联合技术降解3-氯酚的研究.环境科学,2009,30(10):936-939.
    [153]余少青,胡俊,王建龙.γ,辐照和H202联合作用下五氯酚(PCP)的降解.环境科学学报,2011,31(1):54-60.
    [154]Wen H.W., Hsieh M.F., Wang Y.T., et al. Application of gamma irradiation in ginseng for both photodegradation of pesticide pentachloronitrobenzene and microbial decontamination. Journal of Hazardous Materials,2010,176(1-3):280-287.
    [155]Bojanowska-Czajka A., Galezowska A., Marty J.L., et al. Decomposition of pesticide chlorfenvinphos in aqueous solutions by gamma-irradiation. Journal of Radioanalytical and Nuclear Chemistry,2010, 285(2):215-221.
    [156]Abdel Aal S.E., Dessouki A.M., Sokker H.H. Degradation of some pesticides in aqueous solutions by electron beam and gamma-radiation. Journal of Radioanalytical and Nuclear Chemistry,2001,250(2): 2329-2334.
    [157]Choi D.K., Lee O.M., Yua S., et al. Gamma radiolysis of alachlor aqueous solutions in the presence of hydrogen peroxide. Journal of Hazardous Materials,2010,184(1-3):308-312.
    [158]Riaz M., Bilal Butt S. Gamma radiolytic degradation of the endrin insecticide in methanol and monitoring of radiolytic degradation products by HPLC. Journal of Radioanalytical and Nuclear Chemistry,2010,285(3):697-701.
    [159]Zhao R.B., Bao H.Y., Xia L.Y. γ-irradiation degradation of methamidophos. Chinese Journal of Chemistry,2009,27(9):1749-1754.
    [160]Leitner N.K.V., Berger P., Gehringer P. y-irradiation for the removal of atrazine in aqueous solution containing humic substances. Radiation Physics and Chemistry,1999,55(3):317-322.
    [161]Mohamed K.A., Basfar A.A., Al-Shahrani A.A. Gamma-ray induced degradation of diazinon and atrazine in natural groundwaters. Journal of Hazardous Materials,2009,166(2-3):810-814.
    [162]Zona R., Solar S., Sehested K. OH-radical induced degradation of 2,4,5-trichlorophenoxyac-etic acid (2,4,5-T) and 4-chloro-2-methylphenoxyaceticacid (MCPA):A pulse radiolysis and gamma-radiolysis study. Radiation Physics and Chemistry,2012,81(2):152-159.
    [163]张继彪,郑正,叶林,等.γ-辐照对敌草隆的降解过程及毒性变化分析,环境科学,2008,29(5):1369-1375.
    [164]Sanchez-Polo M., Lopez-Penalver J., Prados-Joya G., et al. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Research,2009,43(16): 4028-4036.
    [165]Cao D.M., Zhang X.H., Zhao S.Y., et al. Appropriate dose for degradation of levofloxacin lactate: gamma radiolysis and assessment of degradation product activity and cytotoxicity. Environmental Engineering Science,2011,28(3):183-189.
    [166]Ocampo-Perez R., Rivera-Utrilla J., Sanchez-Poloa M., et al. Degradation of antineoplastic cytarabine in aqueous solution by gamma radiation. Chemical Engineering Journal,2011,174(1):1-8.
    [167]Zheng B.G., Zheng Z., Zhang J.B., et al. Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination,2011,276(1-3):379-385.
    [168]Liu Q., Luo X.Z., Zheng Z., et al. Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation. Environment Science and Pollution Research,2011,18(7): 1243-1252.
    [169]Abdou L.A.W., Hakeim O.A., Mahmoud M.S., et al. Comparative study between the efficiency of electron beam and gamma irradiation for treatment of dye solutions. Chemical Engineering Journal,2011, 168(2):752-758.
    [170]Solpan D., Guven O. Decoloration and degradation of some textile dyes by gamma irradiation. Radiation Physics and Chemistry,2002,65(4-5):549-558.
    [171]Abdel-Aal S.E., Dessouki A.M., Gad Y.H. Removal of some dyes from industrial effluents by polymeric materials. Journal of Radioanalytical and Nuclear Chemistry,2001,247(2):399-405.
    [172]Parwate D.V., Mankar, S.S. Gamma radiolysis studies of aqueous solution of brilliant green dye. E-journal of Chemistry,2011,8(2):680-684.
    [173]Itoa R., Miuraa N., Ushiroa M. Effect of gamma-ray irradiation on degradation of di(2-ethylhexyl)phthalate in polyvinyl chloride sheet. International Journal of Pharmaceutics,2009, 376(1-2):213-218.
    [174]Yoshida T., Tanabe T., Chen A., et al. Method for the degradation of dibutyl-phthalate in water by gamma-ray irradiation. Journal of Radioanalytical and Nuclear Chemistry,2003,255(2):265-269.
    [175]孙宏图,王建龙.高浓度丙烯腈废水的辐照处理.清华大学学报(自然科学版),2009,49(9):1524-1526.
    [176]冯海兵,胡湖生,杨明德,等.硫氰酸根及其复杂体系的辐照降解研究.环境科学,2008,29(11):3138-3142.
    [177]Guo Z.B., Tang D.Y., Liu X.G., et al. Gamma irradiation-induced Cd2+ and Pb2+ removal from different kinds of water. Radiation Physics and Chemistry,2008,77(9):1021-1026.
    [178]Wu X.Z., Takami T., Somekawa K., et al. Gamma ray-induced reduction and removal of heavy metal ions in aqueous solutions. Radioisotopes,2005,54(6):179-184.
    [179]Chu L.B., Wang J.L., Wang B. Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge. Biochemical Engineering Journal,2011,54(1):34-39.
    [180]Chu L.B, Wang J.L., Wang B. Effects of aeration on gamma irradiation of sewage sludge. Radiation Physics and Chemistry,2010,79(8):912-914.
    [181]Kim T.H., Lee M., Park C. Gamma ray irradiation for sludge solubilization and biological nitrogen removal. Radiation Physics and Chemistry,2011,80(12):1386-1390.
    [182]Kim T.H., Nam Y.K., Park C., et al. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification. Bioresource Technology,2009, 100(23):5694-5699.
    [183]袁守军,郑正,牟艳艳,等.γ射线辐照法改善城市污水厂剩余污泥厌氧消化特性的研究.环境污染治理技术与设备,2006,7(8):36-39.
    [184]郑正,袁守军,张继彪,等.γ射线辐照预处理加速污泥厌氧消化.环境化学,2006,25(3):297-300.
    [185]Hien N.Q., Phu D.V., Duy N.N., et al. Degradation of chitosan in solution by gamma irradiation in the presence of hydrogen peroxide. Carbohydrate Polymers,2012,87(1):935-938.
    [186]Duy N.N., Phu D.V., Anh N.T., et al. Synergistic degradation to prepare oligo chitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiation Physics and Chemistry,2011,80(7): 848-853.
    [187]Zainol I., Akil H.M., Mastor A. Effect of γ-irradiation on the physical and mechanical properties of chitosan powder. Materials Science and Engineering C,2009,29(1):292-297.
    [188]曾虹燕,夏葵,廖凯波,等.化学助剂协同γ,射线辐照制备低分子量壳聚糖.化学与放射化学,2010,32(4):247-251.
    [189]高德玉,李红,李锦书,等.γ射线辐照对壳聚糖相对分子质量影响.化学与粘合,2009,131(1):28-30.
    [190]Takac E., Wojnarovits L., Foldvary C., et al. Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiation Physics and Chemistry,2000,57(3-6):399-403.
    [191]Wang K.Q., Xiong X.Y., Chen J.P. Effect of gamma irradiation on microcyrstalline structure of phragmites cellulose. Wood and Fiber Science,2011,43(2):225-231.
    [192]杨革生,魏孟媛,邵惠丽,等.γ射线辐照对竹纤维素分子量及分子量分布的影响.2007,25(3):141-145.
    [193]杨春平,沈志强,喻国策,等.γ,射线辐照预处理对麦秸纤维素酶水解产糖的影响.原子能科学技术,2009,43(1):36-40.
    [194]Kim J.S., Kim J.K., Lee E.K., et al. Radiation hormesis on the growth of Chinese cabbage and radish. Korean Journal of Environmental Agriculture,1997,16(4):390-393.
    [195]Korystov Y.N., Narimanov A.A. Low doses of ionizing radiation and hydrogen peroxidase stimulate plant growth. Biologia (Bratislava),1997,52(1):121-124.
    [196]Wi S.G., Chung B.Y., Kim J.-H., et al. Ultrastructural changes of cell organelles in Arabidopsis stem after gamma irradiation. Journal of Plant Biology,2005,48(2):195-200.
    [197]Wi S.G., Chung B.Y., Kim J.S., et al. Effects of gamma irradiation on morphological changes and biological responses in plants, Micron,2007,38(6):553-564.
    [198]Morton S.D., Derse P.H. Use of gamma radiation to control algae. Environmental Science & Technology, 1968,2(11):1041-1043.
    [199]Zheng B.G., Zheng Z., Zhang J.B., et al. The removal of Microcystis aeruginosa in water by gamma-ray irradiation, Separation and Purification Technology,2012,85(2):165-170.
    [1]Stewart W.D.P. Some aspects of structure and function of N2 fixing cyanobacteria. Annual Review of Microbiology,1980,34,497-536.
    [2]韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社,2003.
    [3]廖兴盛.UV-C照射下纳米Ti02光催化对蓝藻生长影响的研究及其应用.华中科技大学博士学位论文,2009.
    [4]Woodall A.A., Britton G., Jackson M.J. Carotenoid and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals:relationship between carotenoid structure and protective ablility. Biochimica et Biophysica Acta,1997,1336(3):575-586.
    [5]王仲孚,赵谋明,彭志英,等.藻胆蛋白研究.生命的化学,2000,20(2):72-75.
    [6]Zeeshan M., Prasad S.M. Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. South African Journal of Botany,2009,75(3): 466-474.
    [7]Saito K., Ishii H., Nishida F. Purification of microcystins by DEAE and C18 cartridge chromatography. Toxicon,2002,40(1):97-101.
    [8]Richard W., Castenhol Z. Culturing methods for cyanobactria. Methods Enzymology,1988,3:68-95.
    [9]Jiang C., Wang R., Ma W. The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,369(1): 260-267.
    [10]Zheng B.G., Zheng Z., Zhang J.B., et al. The removal of Microcystis aeruginosa in water by gamma-ray irradiation, Separation and Purification Technology,2012,85(2):165-170.
    [11]Gao Z.W., Peng X.j., Zhang H., et al. Montmorillonite-Cu(Ⅱ)/Fe(Ⅲ) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination,2009,247(1-3):337-345.
    [12]Chen J.J., Yehb H.H. The mechanisms of potassium permanganate on algae removal. Water Research, 2005,39(18):4420-4428.
    [13]邹华,潘纲,陈灏.离子强度对粘土和改性粘土絮凝去除水华铜绿微囊藻的影响.环境科学,2005,26(2):148-151.
    [14]Yan Q.Y., Yu Y.H., Feng W.S., et al. Plankton community succession in artificial systems subjected to cyanobacterial blooms removal using chitosan-modified soils. Environmental Microbiology,2009,58(1): 47-55
    [15]Pan G., Zhang M.M., Chen H., et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environmental Pollution,2006,141(2):195-200.
    [16]Jensen A. Chlorophyll a and Carotenoid. In:Helebust J.A., Carigie T.S., eds. Handbook of physiological and biochemical method. New York:Cambridge University Press,1978.
    [17]KUster A., Schaible R., Schubert H. Light acclimation of photosynthesis in three charophute species. Aquatic Botany,2004,79(2):111-124.
    [18]Bennttt A., Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alge. Journal of Cell Biology,1973,58(2):419-435.
    [19]Bradford M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72(1-2):248-254.
    [20]Stoica B. A., Bordeianu G., Stanescu R., et al. A new method for the quantification of superoxide dismutase mimics with an allopurinol-xanthine oxidase-lucigenin enhanced system. Journal of Biological Inorganic Chemistry,2011,16(5):753-761.
    [21]Mitsuta K. The evaluation theory of free radical scavenging and the application to xanthine oxidase. Bulletin of the Chemical Society of Japan,2010,83(4):351-363.
    [22]徐东,赵建,黄汉昌,等.改良的黄嘌呤氧化酶法测定动植物组织中SOD比活力.食品科学,2011,32(6):237-241.
    [23]Andrews J., Malone M., Thompson D.S., et al. Peroxidase isozyme patterns in the skin of maturing tomato fruit. Plant Cell and Environment,2000,23(4):415-422.
    [24]Oncel I., Yurdakulol E., Keles Y., et al. Role of antioxidant defense system and bio-chemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecologica-International Journal of Ecology, 2004,26(3):211-218.
    [25]唐萍,吴国荣,陆长梅,等.凤眼莲根系分泌物对栅藻机构及代谢的影响.环境科学学报,2000,20(3):354-359.
    [26]Uchiyama M., Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry,1978,86(1):271-278
    [1]Teixeira M.R., Rosa M.J. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcysits aeruginosa. Part Ⅰ. the key operating conditions. Separation and Purification Technology,2006,52(1):84-94.
    [2]Miao H.F., Tao W.Y. The mechanisms of ozonation on cyanobacteria and its toxins removal. Separation and Purification Technology,2009,66(1):187-193.
    [3]Plummer J.D., Edzwald J.K. Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation. Journal of water supply research and technology-AQUA,2002,51(6):307-318.
    [4]Chow C.W.K., House J., Velzeboer R.M.A., et al. The effect of ferric chloride coagulation on cyanobacterial cells, Water Reseach,1998,32(3):808-814.
    [5]Lei G.Y., Ma J., Guan X.H., Song A.K., et al. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water. Desalination,2009,247(1-3):518-529.
    [6]Bernhardt H., Clasen J. Investigations into the coagulation mechanisms of small algal cells. Journal of Water Supply:Research & Technology-AQUA,1994,43(5):222-232.
    [7]Pieterse A.J.H., Cloot A. Algae cells and coagulation, flocculation and sedimentation process. Water Science and Technology,1997,36(4):111-118.
    [8]Mario R.S., Aishao L., Kimberley T., et al. Removal of red-and brown-tide cells using clay flocculation. Ⅰ. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Marine Ecology Progress Series,2001,210:41-53.
    [9]Pikaev A., Shubin V. Radiation treatment of liquid wastes. Radiation Physics and Chemistry,1984,24(1): 77-97.
    [10]包伯荣,吴明红,罗文芸,等.辐射技术在废水及污泥处理中的应用.核技术,1996,19(12):759-764.
    [11]Hilarides R., Gray K. Innovative treatment of soil contamination:radiolytic destruction of dioxin and cocontaminants by cobalt-60. Proceedings of the 1994 National Conference on Environmental Engineering,1994.
    [12]Getoff N. Environmental radiation, Radiation Physics and Chemistry.1999,54(5):377-384.
    [13]Kang S.W., Shim S.B., Park Y.K., et al. Chemical degradation and toxicity reduction of 4-chlorophenol in different matrices by gamma-ray treatment. Radiation Physics and Chemistry,2011,80(3):487-490.
    [14]廖兴盛.UV-C照射下纳米Ti02光催化对蓝藻生长影响的研究及其应用.华中科技大学博士学位论文,2009.
    [15]钟云.辐照对腐殖酸及沉积物中六氯苯的降解研究.南京大学硕士毕业论文,2007.
    [16]Zheng B.G., Zheng Z., Zhang J.B., et al. Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination,2011,276(1-3):379-385.
    [17]Wi S.G., Chung B.Y., Kim J.S., et al. Effects of gamma irradiation on morphological changes and biological responses in plants. Micron,2007,38(6):553-564
    [18]Wi S.G., Chung B.Y., Kim J.H., et al. Ultrastructural changes of cell organelles in Arabidopsis stem after gamma irradiation. Journal of Plant Biology,2005,48(2):195-200.
    [19]Woods R.J., Pikaev A.K. Applied radiation chemistry:radiation processing. John Wiley &Sons, New York, 1994.
    [20]Basfar A.A., Khan H.M., Al-Shahrani A.A., et al. Radiation induced decomposition of methyltert-butyl ether in water in presence of chloroform:kinetic modeling. Water Research,2005,39(10):2085-2095.
    [21]Sanchez-Polo M., Lopez-Penalver J., Prados-Joya G., et al. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Research,2009,43(16): 4028-4036.
    [22]Buxton G.V., Greenstock C.L., Helman W.P., et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data,1988,17(2):513-886.
    [23]Ramnani S.P., Dhanya S., Bhattacharyya P.K. Pulse radiolysis of thiourea in aqueous solution, in: Proceedings of the International Symposium on Radiochemistry and Radiationchemistry. Department of Atomic Energy, Bombay, India,1991.
    [24]Horvath O., Stevenson K.L. Micellar effects on photoinduced redox reactions of Fe(bpy)2(CN)2. Journal of Photochemistry and Photobiology A:Chemistry,1999,120(3):185-190.
    [25]Lee B., Jeong S.W. Effects of additives on 2,4,6-trinitrotoluene (TNT) removal and its mineralization in aqueous solution by gamma irradiation. Journal of Hazardous Materials,2009,165(1-3):435-440.
    [26]Kovalchuk I., Filkowski J., Smith K. et al. Reactive oxygen species stimulate homologous recombination in plants. Plant Cell and Environment,2003,26(9):1531-1539.
    [27]Dat J., Vandenabeele S., Vranova E., et al. Dual action of the active oxygen species during plant stress responses. Cell and Molecular Life Science,2005,57:779-795.
    [28]Zeeshan M., Prasad S.M. Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. South African Journal of Botany,2009,75(3): 466-474.
    [1]Khan F.A., Ansari A.A. Eutrophication:An ecological vision. Botanical Review,2005,71(4):449-482.
    [2]宋秀凯,王蔚,刘云,等.理化因子对多变鱼腥藻溶血素活性的影响.安全与环境学报,2006,6(6):38-40.
    [3]黄道孝,肖军华,裴承新,等.鱼腥藻毒素(anatoxins)研究进展.中国海洋药物,2004,98(2):47-52.
    [4]徐海滨,严卫星.淡水湖泊微囊藻毒素的污染和毒理学研究.卫生研究,2002,3 1(6):477-480.
    [5]Onodera H., Oshima Y., Henriksen P., et al. Conformation of anatoxin-a(s), in the Cyanobacterium Anabaena lemmermanni, as the cause of bird kills in Danish Lakes. Toxicon,1997,35(11):1645-1648.
    [6]Nnegri A.P., Jones G.J., Hindmarsh M. Sheep mortality associated with paralytic shellfish poisons from the Cyanobacterium Anabaena circinalis. Toxicon,1995,33(10):1321-1329.
    [7]Kaas H., Henriksen P. Saxitoxins (PSP toxins) in Danish Lakes. Water Research,2000,34(7):2089-2097.
    [8]Henriksen P. Estimating nodularin content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments-a case study from the Baltic entrance area. Harmful Algae, 2005(4):167-178.
    [9]岳霞丽,张新萍,胡先文,等.甲磺隆和苄嘧磺隆对水华鱼腥藻生长的抑制作用研究.农业工程学报,2006,22(8):175-178.
    [10]胡先文,张新萍,岳霞丽,等.甲磺隆对水华鱼腥藻的抑制效应.农药,2003,42(12):39-42.
    [11]张新萍,胡先文,岳霞丽,等.甲磺隆对水华鱼腥藻作用机理初探.农药,2005,44(10):452-454.
    [12]胡先文,陈加荣,董元彦.3种磺酰胺除草剂对水华鱼腥藻的生长效应.农药,2005,44(7):326-330.
    [13]秦文弟,强继业,夏更寿.氨基甲酸酯类农药对水华鱼腥藻的毒性效应.安徽农业科学,2005,33(3): 391-392.
    [14]Zheng B.G., Zheng Z., Zhang J.B., et al. Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination,2011,276(1-3):379-385.
    [15]Basfar A.A., Khan H.M., Al-Shahrani A.A., et al. Radiation induced decomposition of methyltert-butyl ether in water in presence of chloroform:kinetic modeling. Water Research,2005,39(10):2085-2095.
    [16]Wi S.G., Chung B.Y., Kim J.S., et al. Effects of gamma irradiation on morphological changes and biological responses in plants. Micron,2007,38(6):553-564
    [17]Sanchez-Polo M., Lopez-Penalver J., Prados-Joya G., et al. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Research,2009,43(16): 4028-4036.
    [18]郭建伟,张永吉,曾果,等.H2O2与UV工艺对铜绿微囊藻灭活特点比较.环境科学,2010,31(8):1801-1806.
    [19]Woods R.J., Pikaev A.K. Applied radiation chemistry:radiation processing. New York:John Wiley & Sons,1994.
    [20]廖兴盛.UV-C照射下纳米TiO2光催化对蓝藻生长影响的研究及其应用.华中科技大学博士学位论文,2009.
    [21]Kovalchuk I., Filkowski J., Smith K. et al. Reactive oxygen species stimulate homologous recombination in plants. Plant Cell and Environment,2003,26(9):1531-1539.
    [22]Dat J., Vandenabeele S., Vranova E., et al. Dual action of the active oxygen species during plant stress responses. Cell and Molecular Life Science,2005,57:779-795.
    [1]程南宁.健康太湖的概念和内涵分析.水利发展研究,2011,11(10):50-53.
    [2]黄宣伟.太湖流域规划与综合治理.北京:中国水利电力出版社,2000.
    [3]林泽新.太湖流域水环境变化及缘由分析.湖泊科学,2002,14(2):111-117.
    [4]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25(3):589-595.
    [5]Carmichael W.W. Cyanobacteria secondary metabolites:the cyanotoxins. Journal of Applied Bacteriology, 1992,72 (6):445-459
    [6]Carmichael W.W. Health effects of toxin-producing cyanobacteria:"The CyanoHABs" Hum Ecol Risk Assess,2001,7(5):1393-1407.
    [7]Chen J., Xie P. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins -LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon,2005,45(5):615-625.
    [8]谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁.北京:科学出版,2006.
    [9]Faleoner L.R. Toxic cyanobacterial bloom Problems in Australian waters:risks and impacts on human health. Phycologia,2001,40(3):228-233.
    [10]Camean A., Moreno I., Verdejo T., et al. Pyrolytic behaviour of microcystins and microcystin-spiked algal bloom. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):19-25.
    [11]Martina A.D., Kathryn J.C., Johanna M.R.K., et al. Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting the Great Lakes-implication for HAB invasions. Harmful Algae,2007,6(4):519-530.
    [12]Pan G., Zhang M.M., Chen H., et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environmental Pollution,2006,141(2):195-200.
    [13]Zou H., Pan G., Chen H., et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅱ. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environmental Pollution,2006,141(2):201-205.
    [14]Pan G., Zou H., Chen H., et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. Ⅲ. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution,2006,141(2):206-212.
    [15]刘国锋,钟继承,张雷,等.有机改性粘土对铜绿微囊藻的絮凝去除.湖泊科学,2009,21(3):363-368.
    [16]陈卫,李圭白,邹浩春.PPC强化混凝除蓝藻除色度效果及致因研究.河海大学学报(自然科学版),2006,34(2):140-143.
    [17]Zheng B.G., Zheng Z., Zhang J.B., et al. Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination,2011,276(1-3):379-385.
    [18]Basfar A.A., Khan H.M., Al-Shahrani A.A., et al. Radiation induced decomposition of methyltert-butyl ether in water in presence of chloroform:kinetic modeling. Water Research,2005,39(10):2085-2095.
    [19]Singh A., Kremers W. Radiolytic dechlorination of polychlorinated biphenyls using alkaline 2-propanol solutions. Radiation Physics and Chemistry,2002,65(4-5):467-472.
    [1]徐学基,诸定昌.气体放电物理.1996,上海:复旦大学出版社.
    [2]Chang J.S. Recent development of plasma pollution control technology:a critical review. Science and Technology of Advanced Materials,2001,2(3-4):571-576.
    [3]Sun B., Sato M., Clements J.S. Optical study of active species produced by a pulsed streamer corona discharge in water. Journal of Electrostatics,1997,39(3):189-202.
    [4]Lukes P., Clupek M., Babicky V., et al. Generation of ozone by pulsed corona discharge over water surface in hybrid gas liquid electrical discharge reactor. Journal of Physics D:Applied Physics,2005,38(3): 409-416.
    [5]Sunla P., Babicky V, Clupek M., et al. Generation of chemically active species by electrical discharges in water. Plasma Sources Science and Technology,1999,8(2):258-265.
    [6]Giacomazzi S., Cochet N. Environmental impact of diuron transformation:a review. Chemosphere,2004, 56(11):1021-1032.
    [7]Sano N., Yamamoto D., Kanki T. Decomposition of phenol in water by a cylindrical wetted-wall reactor using direct contact of gas corona discharge. Industrial and engineering chemistry research,2003,42(22): 5423-5428.
    [8]Wang L., Jiang X.Z., Liu Y.J. Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions. Journal of Hazardous Materials,2008,154(1-3):1106-1114.
    [9]Wang Z.H., Xu D.X., Chen Y., et al. Plasma decoloration of dye using dielectric barrier discharges with earthed spraying water electrodes. Journal of Hazardous Materials,2009,162(2-3):906-912.
    [10]Wen Y.Z., Jiang X.Z. Pulsed corona discharge-induced reactions of acetophenone in water. Plasma Chemistry and Plasma Processing,2001,21(2):345-354.
    [11]Zhang R.B., Wu Y., Li G.F. Enhancement of the plasma chemistry process in a three-phase discharge reactor. Plasma Sources Science and Technology,2005,14(2):308-313.
    [12]李晶欣,李坚,何丽娟,等.变频介质阻挡放电去除甲苯的实验研究.环境工程学报,2011,4(8):1871-1876.
    [13]王卫平,郑正,罗艳,等.介质阻挡放电处理水中3,4---氯苯胺机理研究.环境科学学报,2010,30(3):524-529.
    [14]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理.生态学报,2005,25(3):589-595.
    [15]Chen Y.W., Qin B.Q., Teubner K, et al. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research,2003, 25(4):445-453.
    [16]王崇,孔海南,王欣泽,等.有害藻华预警预测技术研究进展.应用生态学报,2009,20(11):2813-2819.
    [17]Tarczynska M., Romanowska-Duda Z., Jurczak T., et al. Toxic cyanobacterial blooms in a drinking water reservoir-causes, consequences and management strategy. Water Sciences Technology and Water Supply, 2001,1(2):237-246.
    [18]Codd G.A., Morrison L.F., Metcalf J.S. Cyanobacterial toxins:risk management for health protection. Toxicology and Applied Pharmacology,2005,203(3):264-272.
    [19]Mcknight D.M., Chisholm S.W., Harleman D.R.F. CuSO4 treatment of nuisance algal blooms in drinking water reservoirs. Environmental Management,1983,7(4):311-320.
    [20]Baudoux A.C., Brussaard C.P.D. Characterization of different viruses infecting the marine harmful algal bloom species phaeocystis globosa. Virology,2005,341(1):80-90.
    [21]Yan Q.Y., Yu Y.H., Feng W.S., et al. Plankton community succession in artificial systems subjected to cyanobacterial blooms removal using chitosan-modified soils. Environmental Microbiology,2009,58(1): 47-55.
    [22]Zou H., Pan G., Chen H., et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅱ. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environmental Pollution,2006,141(2):201-205.
    [23]Pan G., Zou H., Chen H., et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. Ⅲ. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution,2006,141(2):206-212.
    [24]Buxton G.V., Greenstock C.L., Helman W.P., et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/O·-) in aqueous solution. Journal of Physical and Chemical Reference Date,1988,17(2):513-886.
    [25]Watts M.J., Linden K.G. Chlorine photolysis and subsequent OH radical products during UV treatment of chlorinated water. Water Research,2007,41(13):2871-2878.
    [1]黄漪平.太湖水环境及其污染控制.北京:科学出版社,2001.
    [2]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25(3):589-595.
    [3]阎荣,孔繁翔,韩小波.太湖底泥表层越冬藻类群落动态的荧光分析法初步研究.湖泊科学,2004,16(2):163-168.
    [4]Barbiero R.P., Kann J. The importance of benthic recruitment to the population development of aphanizomenon flos-aquae and internal loading in a shallow lake. Journal of Plankton Research,1994, 16(11):1581-1588.
    [5]Hansson L.A. Algal recruitment from lake sediments in relation to grazing, sinking, and dominance patterns in the phytoplankton community. Limnology and Oceanography,1996,41(6):1312-1323.
    [6]Hansson L.A., Rudstam L.G., Johns T.B., et al. Patterns in algal recruitment from sediment to water in a dimictic, eutrophic lake. Canadian Journal of Fisheries and Aquatic Science,1994,51(2):2825-2833.
    [7]Trimbee A.M., Harris G.P. Phytoplankton population dynamics of a small reservoir:Use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom forming blue-green algae. Journal of Plankton Research,1984,6(5):897-918.
    [8]Bostrom B., Pettersson A.K., Ahlgren I. Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow, eutrophic lake. Aquatic Science,1989,51(2):153-178.
    [9]Tsujimura S., Tsukada H., Nakahara H., et al. Seasonal variation of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia,2000,434(1):183-192.
    [10]Hansson L.A., Rudstam L.G., Johnson T.B., et al. Patterns in algal recruitment from sediment to water in a dimictic, eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences,1994,51(12):2825-2833.
    [11]Head R.M., Jones R.I., Bailey A.E. An assessment of the influence of recruitment from the sediment on the development of planktonic populations of cyanobacteria in a temperate mesotrohic lake. Freshwater Biology,1999,41(4):759-769.
    [12]Brunberg A.K., Blomqvist P. Recruitment of Microcystis from lake sediments:the importance of littoral inocula. Journal of Phycology,2003,39(1):58-63.
    [13]Jolanda M.H. Verspagen, Eveline O.F.M. Snelder, Petra M. Visser, et al. Recruitment of benthic microcystis (cyanophyceae) to the water column:internal buoyancy changes or resuspension. Journal of Phycology,2004,40(2):260-270.
    [14]Satoshi N., Yutaka H., Masaaki H., et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology,1999,39(8):47-53.
    [15]Lee T.J, Nakano K. Matsurnara ultrasonic irradiation for blue-green algae bloom control. Environmental Technology,2001,22(4):383-390.
    [16]Pan G., Zou H., Chen H., et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. Ⅲ. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution,2006,141(2):206-212.
    [17]Abalde J., Betancourt L., Torres E., et al. Purification and characterization of phycocyanin from marine cyanobacterium Synechococcus sp. Plant Science,1998,136:109-120.
    [18]张晓峰,孔繁翔,曹焕生等.太湖梅梁湾水华蓝藻复苏过程的研究.应用生态学报,2005,16(7):1346-135.
    [19]陶益,孔繁翔,曹焕生等.太湖底泥水华蓝藻复苏的模拟.湖泊科学,2005,17(3):231-236.
    [20]翟文川,潘红玺.太湖蓝藻中天然色素的分离提取及测定.湖泊科学,1997,9(3):284-285.
    [21]Basfar A.A., Khan H.M., Al-Shahrani A.A., et al. Radiation induced decomposition of methyltert-butyl ether in water in presence of chloroform:kinetic modeling. Water Research,2005,39(10):2085-2095.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700