低品位石英矿提纯制备高纯度石英的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石英是一种物理性质和化学性质均十分稳定,用途十分广泛的矿产资源。普通石英砂应用在玻璃、陶瓷、橡胶、铸造等领域。而高纯度的石英砂SiO2含量在99.95%以上或者更高,主要应用在高新技术产业如航空航天、生物工程、高频率技术、电子技术、光纤通信和军工等领域。自然界中只有优质水晶(一级、二级水晶)可以满足要求,而本身储量有限,加上全球光纤通讯和半导体工业的飞速发展,使之逐渐趋向枯竭。因此利用各种分选提纯的手段从石英砂资源中分离高纯度的石英砂日前成为研究的重点。
     石英的提纯是一项重要的浮选理论与实践课题。石英常与其它硅酸盐矿物伴生,主要为长石类矿物,由于同属于架状硅酸盐矿物,解离后的表面特性也很相似,因此长石和石英之间的浮选分离技术难度较大。目前,对这一体系的浮选研究主要侧重于阴阳离子混合捕收剂在酸性条件下对长石捕收作用研究,和混合酸对石英矿的浸出研究,而对于获得较高纯度的石英,均需要挑选高品位的原矿用于提纯,这样就限制了高纯度石英的原料。为了从普通石英砂中制备高纯度石英,就需要对这一体系进行系统的试验研究。
     研究中首先通过大量的试验,以长石和石英的纯矿物为研究对象,在阳离子捕收剂十二胺体系中,寻找长石和石英的选择性活化剂和抑制剂。主要针对有机小分子抑制剂进行了筛选,找到了十二胺体系下,长石和石英分选的高效选择性抑制剂——草酸。并在单矿物以及人工混合矿浮选分离中取得了较好的指标。
     在试验中首次发现了细粒长石对长石和石英浮选分离的交互式影响,并通过合理的药剂制度减轻了这种交互式影响所带来的不利后果,提高了浮选的指标。对实际矿石的研究结果表明:以朝阳某地原矿SiO2品位93.01%的石英矿为原料,以草酸为调整剂,十二胺为捕收剂的简单药剂制度对于-0.5mm+0.1mm粒级物料,取得了SiO2品位>98.5%,回收率>93%的指标,对于-0.1mm+0.037mm粒级物料,取得了SiO2品位>99.3%,回收率>85%的指标,对于全粒级物料,在磨矿细度-0.044mm占85%的条件下,达到了SiO2品位>99.3%,回收率>75%的指标。以吉林某地原矿SiO2品位97.32%的石英矿为原料,通过棒磨擦洗-分级脱泥可除去大部分铁杂质,并在-0.074mm85%的磨矿细度下,以草酸做调整剂,十二胺做捕收剂,得到了SiO2品位>99.8%,回收率>85%的浮选精矿。以赤峰某地原矿SiO2品位97.45%的石英矿:在-0.044mm75%的磨矿细度下,以草酸做调整剂,十二胺做捕收剂,得到了SiO2品位>99.2%回收率>70%的浮选精矿。
     借助现代测试技术,首次发现了影响石英浮选精矿品位的原因是石英浮选精矿表面仍吸附有部分细粒级的长石颗粒。并利用石英纯矿物和细粒长石人工配制成石英浮选模拟精矿,进行了深度脱泥试验。以超声波与表面活性剂联合作用,消除了模拟精矿表面吸附的细粒长石,指导了实际石英矿的提纯。
     用上述开发的物理法提纯新工艺以及新开发的药剂制度对吉林、内蒙、辽宁三种不同产地的低品位石英矿进行了放大试验和深度脱泥试验,最大限度地提高了三种石英矿的品位。其中,吉林石英矿属于易选矿石,经过棒磨擦洗-磨矿-浮选-深度脱泥工艺,SiO2品位达到了99.9%以上,其他杂质含量也较低;辽宁朝阳石英矿嵌布粒度较细,经过磨矿-分级脱泥-浮选和深度脱泥工艺,SiO2品位达到了99.9%以上,其他杂质含量也较低;内蒙石英矿经过浮选和深度脱泥工艺,SiO2品位可达到了99.76%,仍有一部分杂质无法去除,推断有一部分微细粒长石包裹在石英颗粒内部,磨碎时没有充分解离,如果想进一步通过物理法提纯得到更高品位的SiO2存在较大的难度。
     对石英的浸出提纯进行了有益的探索,利用浓硫酸沸点高的特性,首次将浓硫酸常压高温酸浸引入石英提纯。取得了如下结果:常规浸出对-0.5mm+0.1mm粒级石英原矿的效果不理想,浸出精矿Al2O3品位在1%以上;对浮选精矿的常规浸出效果也不理想,最终优化条件试验得到SiO2品位在99.6%左右的石英精矿,Al2O3品位在0.3%左右;98.3%浓硫酸在沸点338℃以下对SiO2品位99.4%的石英浮选精矿中的杂质浸出有一定的效果,经过深度洗涤,可得到SiO2品位99.8%以上的石英砂产品。80%浓硫酸的强氧化性稍弱,对石英浮选精矿的浸出提纯也有一定的效果,也可得到SiO2品位99.8%以上的石英砂产品,可作为电子级石英砂产品。长石纯矿物的浸出试验表明,浓硫酸的常压高温酸浸不能完全将长石中的Al2O3完全浸出,其原因是长石颗粒表面的Al被浸出后,架状结构并没有被破坏,内部的Al并没有裸露出来,因此浸出不完全,但是经过浸出,降低了细粒级长石在石英表面的吸附能力,通过反复洗涤,可以最终提高石英精矿的品位。
     最后,借助于晶体化学理论、浮选溶液化学理论以及现代表面测试技术(X射线光电子能谱分析、傅立叶红外光谱分析及ζ电位测定等),对长石和石英矿物解离后的表面特性进行了系统的研究,认为长石的主要解离面是(010),经过计算其零电点为1.2,次解离面为(001)面,断裂面为(100)面。主解离面与其他两面表面特性有较大的差异,主解离面电负性强,与十二胺的作用也最强;长石与石英表面特性的不同是造成浮选过程中长石石英交互式影响的主要原因。长石的(010)面负电性最强,在pH2.5时,细粒级长石可以与石英发生静电作用力为主导的吸附作用,这样使石英表面出现了活化点,活化了石英的浮选,造成石英回收率的降低;草酸主要在长石的(001)和(100)面形成络合物,而与长石的(010)面作用不大,在加入草酸后,十二胺可以继续吸附在长石的(010)面,而使长石上浮;而草酸在石英整体表面的Si·正电区均可以发生吸附,形成络合物,阻止了十二胺的吸附。另外草酸的缓冲作用也使溶液pH值保持在石英的抑制范围,提高了石英的回收率。而超声波对粗细颗粒作用的差异是石英深度脱泥的主要原因,且表面活性剂的加入,使石英表面电负性更强,并且形成空间位阻作用,更有利于矿泥微细粒与石英颗粒的静电排斥作用。
     本研究的结果丰富了硅酸盐矿物浮选原理的理论体系,为其它复杂矿物浮选体系中矿物交互式作用的研究创立了新方法,对低品位石英矿的提纯具有一定的指导意义。
Quartz is a kind of mineral resources with stably physical and chemical properties, used in very extensive fields. Ordinary quartz sand are used in glass, ceramics, rubber, foundry and other fields. The high purity quartz sand with SiO2 content more than 99.95%, is mainly used in high-tech industries such as aerospace, biotechnology, high-frequency technology, electronic technology, optical fiber communications, military and other fields. Only natural crystal (1,2 grade crystal) with limited reserves can meet their demands, additionally the rapid development of global semiconductor industry and optical fiber communication makes the resource trend to depletion. Therefore, it become the recent focus that to take use of various means to separation high purified quartz sand from common quartz sand.
     Quartz purification is an important flotation theoretical and practical task. Quartz often associates with other silicate minerals, mainly feldspars, both are silicate minerals with frame structure, and the surfaces of two minerals after dissociation have very similar characteristics, so the flotation separation of feldspar and quartz is difficult. Currently, the flotation researches of these two minerals are mainly focusing on cation/anion mixed collector to float feldspar from quartz under acidic condition and mixed acid leaching. To abtain high purity quartz, the selection of high grade ore for the purification is required, thus limiting the raw materials of high purity quartz. In order to abtain high purity quartz from ordinary quartz sand, systematic investigation is necessary.
     Firstly, the search for selectivity activator and inhibitor between feldspar and quartz was carried out through a large number of trials in laurylamine collector system by pure feldspar and quartz minerals flotation. Organic small molecule inhibitors were targeted and screened in laurylamine collector system. Oxalic acid, the high-selective inhibitor for the separation of feldspar and quartz, was found. Good indicators were both achieved under this new reagent system in flotation of artificial minerals and actual ore.
     It was first discovered that the interactive effects of fine fraction feldspar to feldspar and quartz separation. Rational reagent system was managed to decline the adverse impact caused by interactive function, and the flotation index was improved. Results of actual ore showed that: For the silica from Chaoyang with SiO2 grade 93% under the reagent system of oxalic acid as the regulator, dodecylamine as collector, the index of concentrates achieved: SiO2 grade>98.5% recovery rate>93.01% for the simple-0.5mm+0.1mm size fraction material, SiO2 grade>99.3% recovery rate>85% for-0.1mm+0.037mm size fraction material, SiO2 grade>99.3% recovery rate>75% for the full fraction material, at the grinding fineness-0.044mm 85%; For the silica from Jilin with SiO2 grade 97.32% under the reagent system of oxalic acid as the regulator, dodecylamine as collector, the index of concentrates achieved:SiO2 grade>99.8% recovery rate>85% at the grinding fineness-0.044mm 85%; For the silica from Chifeng with SiO2 grade 97.45% under the reagent system of oxalic acid as the regulator, dodecylamine as collector, the index of concentrates achieved:SiO2 grade>99.2% recovery rate>70% at the grinding fineness-0.044mm 75%.
     With the help of modern surface testing technology, it was first discovered that the ultimate impact factor on concentrate grade of silica flotation was due to the some fine feldspar adsorpted on the surface of quartz particles still. And the pure quartz minerals and fine feldspar minerals were used for simulating the flotation concentrates to carry out deeply deslime investigation. Ultrasonic treating combined surface active agent eliminated the adsorption of fine feldspar on the mimical quartz concentrate and this novel flow sheet can guide purification for the actual low-grade ore.
     Quartz ores from Jilin, Inner Mongolia, Liaoning three different origins were purified using the new reagent system and flow sheet. Jilin quartz ore was easy to purify, with the flow sheet of rod mill scrub-grinding-flotation-deep deslime, SiO2 grade of final concentrate reached 99.9%; Chaoyang quartz ore involved in finer dissemination, with the flow sheet of grinding-classification-flotation-deep deslime the SiO2 grade of final concentrate reached 99.9%; Inner Mogolia quartz ore, with the flow sheet of grinding-flotation-deep deslime, the SiO2 grade of final concentrate reached 99.76%. There maybe still a part of impurities can not be removed by this flow sheet, it could be infered that fine grained feldspar included in quartz particles not fully dissociated at this grinding fineness, it is more difficult to further a higher grade of SiO2.
     The leaching of quartz purification was explored making use of high boiling point properties of concentrated sulfuric acid. For the first time, high-temperature sulfuric acid leaching at atmospheric pressure was introduced into quartz purification, the following results were achieved: result of conventional leaching for-0.5mm+0.1 mm size fraction of quartz ore was not satisfactory, Al2O3 grade of ore leached was over 1%; the result of flotation concentrate leaching under conventional condition was also not satisfactory, the final concentrate with SiO2 grade 99.6%, Al2O3 grade 0.3%; the leaching experiment using 98.3% concentrated sulfuric acid under the boiling point of 338℃for quartz flotation concentrate with SiO2 grade 99.4% was carried out and SiO2 grade of 99.8% quartz sand products was obtained after deep washing, so was the 80% concentrated sulfuric acid leaching, and more than 99.8% SiO2 grade quartz products were obtained. Pure feldspar mineral leaching experiment showed that the atmospheric temperature sulfuric acid leaching can not leach completely Al2O3 from feldspar and the reason may be that after the Al on the surface of feldspar particles were leached, the internal Al did not turn out because of frame structure remained, Therefore, leaching was not complete, but the absorption ability of fine feldspar was destroyed during leaching. They can be ultimately wiped out from quartz particles by repeated washing.
     Finally, by means of crystal chemistry, flotation solution chemical theory and modern surface testing technology (X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy andξpotential measurement, etc.), surface characteristics of feldspar and quartz after dissociation was investigated thoroughly. The main dissociation surface of feldspar was (010), its zero-power point was calculated to be 1.2, the second dissociation surface surface was (001), and the fracture surface was (100). The surface characteristics of main dissociation surface are quite different from the other two surfaces. The main dissociation involved in strong electronegative and strongest function with dodecylamine; different surface properties of feldspar and quartz resulted in the interactive effects between feldspar and quartz flotation separation. (010) surface of feldspar charged strongest negative, at pH2.5, the fine feldspar and quartz can adsorb with each other by electrostatic force, so that the quartz surface turned out activation point, which activated the quartz flotation, resulting in reduced recovery of quartz; oxalic acid functioned mainly on (001) and (100) of feldspar forming complex and functioned very limitedly on (010) of feldspar, after added oxalic acid, dodecylamine can still adsorb on (010) surface of feldspar to float it; and oxalic acid can adsorb on all locations quartz surface forming complex, preventing the adsorption of dodecylamine. Another role of oxalic acid was to buffer solution pH value to maintain the inhibition range of quartz, which could improve the recovery rate of quartz. The different functions of ultrasonic between coarse and fine particles was the main reason for the deep deslime of quartz concentrate, moreover, the addition of surfactant made a more negative surface potential of quartz and formed steric effects, more conducive to electrostatic repulsion between micro-fine particles slime and quartz.
     The results of this investigation enriched the framework of flotation principles on silicate minerals, set up a series novle method on the research of interactive effect between complicated mineral flotation systems, and can guide the purification of low-grade quartz ore.
引文
[1]波塔平科.石英岩、脉石英和砂岩[M].北京:地质出版社,1954,2-5.
    [2]普里亚尼什尼科夫.石英玻璃[M].北京:建筑材料工业出版社,1957,1-3.
    [3]廖宗廷,朱静昌,郭守国.珠宝鉴赏[M].北京:中国地质大学出版社,2002:84-86.
    [4]陈扬杰,吕朋菊,王宇林.沉积矿床学[M].北京:煤炭工业出版社,1994:37-44.
    [5]赵澄林等.沉积岩石学[M].北京:石油工业出版社.2001:103-107.
    [6]徐洪林.石英砂的工业利用及深加工技术.矿产保护与利用,1992(1):21-26
    [7]郑水林,袁继祖.非金属矿加工技术与应用手册[M].北京:冶金工业出版社,2005:413-420.
    [8]陈祖荫.矿石学[M],武汉:武汉工业大学出版社,1987:12-15
    [9]潘金龙.玻璃工艺学[M].北京:中国轻工业出版社.1996,5
    [10]郑水林,袁继祖.非金属矿加工技术与应用手册[M].北京:冶金工业出版社,2005:413-420.
    [11]郑水林,袁继祖.非金属矿加工技术与应用手册[M].北京:冶金工业出版社,2005:413-420.
    [12]孙宝歧等.非金属矿深加工[M].北京:冶金工业出版社.1995:6-9
    [13]孙成林等.石英深加工生产高纯石英粉[J].有色冶金(选矿部分),1995(1):37
    [14]杨军.美国尤尼明公司工厂及石英砂产品介绍[J],第二届高新技术用石英制品及相关材料技术与市场研讨会论文集,2004,1462-1467.
    [15]申士富.高纯石英砂研究与生产现状[J].中国非金属矿工业导刊,2006,(5):13-16.
    [16]金达表,张兄明,邹蔚蔚.高纯石英的加工工艺研究[J].中国非金属矿工业导刊,2004,4:44-49.
    [17]张士轩.石英矿物纯化研究[J].锦州师范学院学报,2001,22(4):28-31.
    [18]刘理根等.高纯石英砂选矿工艺研究[J].非金属矿,1996,(4):39-42.
    [19]沈九明.石英微粉提纯研究[J].非金属矿,2006,29(4):39-41.
    [20]张凌燕等.由高品位脉石英制取高纯石英粉试验研究[J].玻璃,1996,(2):6-9.
    [21]田金星.高纯石英砂的提纯工艺研究[J].中国矿业,1999,8(3):55-58.
    [22]蒋述兴.普通石英砂与高纯石英砂的生产技术研究[J].矿冶工程,2001,21(3):36-38.
    [23]孙成林.石英深加工生产高纯石英粉[J].有色金属(选矿部分),2000,(3):32-34.
    [24]李杨.用石英岩制备高纯石英的工艺研究[J].中国非金属矿工业导刊,1998,(2):26-27.
    [25]包申旭.超细高纯石英制备试验研究[D].武汉理工大学,2004.
    [26]洪璐.石英原料中杂质的高温去除方法研究[D].苏州大学,2006
    [27]潘国璋.中国石英玻璃工业现状和发展趋势[J].高新技术用石英制品及相关材料技术研讨会论文集,2003,9:25-32.
    [28]袁桐.电子材料发展现状及评述[J].高新技术用石英制品及相关材料技术研讨会论文集,2003,9:11-24.
    [29]潘国璋.2003年石英玻璃工业发展动态与经济分析[J].全国光电源材料科技研讨会论文集,2004,7:25-32.
    [30]潘国璋.2004年石英玻璃制造光电源市场的分析和经济分析以及石英玻璃的新品种、生产装备改进情况[J].2005年全国电光源材料科技研讨会会议资料汇编,2005,6:1-5.
    [31]范思莹.广东省沿海玻璃用石英砂矿类型及工业利用前景[J],中国非金属矿工业导刊,2004,(5):93-94.
    [32]方少木,於庄.矿物岩石学[M].北京:煤炭工业出版社,1989.
    [33]季群.水晶的应用和处理[M].石英玻璃技术资料汇编,1985:13-22.
    [34]潘国璋.2004年石英玻璃制造光电源市场的分析和经济分析以及石英玻璃的新品种、生产装备改进情况[J].2005年全国电光源材料科技研讨会会议资料汇编,2005,6:1-5.
    [35]赵洪力等.强磁选机用于石英砂除铁效果的比较[J].非金属矿,2005,28(3):39-40.
    [36]周灿伟.石英的高效精加工及其应用研究[D],中南大学,2006:13-15.
    [37]潘兆橹.结晶学与矿物学[M].北京:地质出版社,2004:145-147.
    [38]丘继存.选矿学[M],北京:冶金工业出版社,1987.
    [39]魏德洲.固体物料分选学[M],北京:冶金工业出版社,2000.
    [40]《非金属矿工业手册》编辑委员会.非金属矿工业手册(下册)[M].北京:冶金工业出版社.1996:105-106.
    [41]徐洪林.石英砂的工业利用及深加工技术[J].矿产保护与利用,1992,(1):21-26.
    [42]F.多豪瑟尔等.生产优质玻璃砂的选矿工艺[J].国外金属矿选矿,2001,(7):8-12.
    [43]汪仁政.硅石在玻璃工业中的应用[J].中国建材,2001,(4):71-72.
    [44]周永恒.透明石英玻璃原料及其加工[J].非金属矿,2000,(3):32-34.
    [45]陈志强等.硅质原料在陶瓷工业中的应用及前景[J].中国玻璃,2002,(6):14-18.
    [46]李哗等.石英砂选矿及深加工新技术[J].矿产保护与利用,1995,(5):23-26.
    [47]郭金福.安阳石英砂岩矿矿石精选净化新工艺研究[J].非金属矿,2000,(5):41-42.
    [48]唐甲莹.天然硅砂的无氟无酸浮选及副产品的综合利用研究[J].矿产综合利用,1988,(4):21-24.
    [49]赵洪力等.强磁选机用于石英砂除铁效果的比较[J].非金属矿,2005,28(3):39-40.
    [50]顾帼华,锁军,柳建设.黄铁矿微生物浸出体系中的表面热力学和扩展DLVO理论[J].中国有色金属学报2006,16(8):1462-1467.
    [51]陈泉水,陈飞德.高纯粉石英产品全分析方法的研究[J].化工矿物与加工,2002,(2):9-10.
    [52]A.Vidyadhar, K.Hanumantha Rao. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system[J]. Journal of Colloid and Interface Science 2007,306:195-204.
    [53]张福存,李小静,周岳远.石英砂精制试验研究[J].非金属矿,2003,26(2):45-47.
    [54]贾木欣,孙传尧.几种硅酸盐矿物零电点、可浮性及键价分析[J],有色金属(选矿部分),2001,(6):1-9.
    [55]贾木欣,孙传尧.几种硅酸盐矿物晶体化学与浮选表面特性研究[J],矿产 保护与利用,2001,(5):25-29.
    [56]孙传尧,印万忠.硅酸盐矿物浮选原理[M],北京:科学出版社,2001,145-147.
    [57]戴强,唐甲莹,程正柄.石英-长石浮选分离的进展[J].非金属矿,1996,(2):16-21.
    [58]A.Vidyadhar, K.Hanumantha Rao. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system[J]. Journal of Colloid and Interface Science 2007,306:195-204.
    [59]Hanumantha Rao, K. and Forssberg, K.S.E., Solution chemistry of mixed Cationic/Anionic collectors andflotation separation of feldspar from quartz, XVIII International Mineral Processing Congress Sydney,1993,837-844.
    [60]拉奥等,阴/阳离子混合捕收剂的溶液化学及长石与石英的浮选分离[J].国外金属矿选矿,1994,10:30-45.
    [61]N. Shehu and E. Spaziani. Separation of feldspar from quartz using EDTA as modifier[J]. Mineral Engineering,1999,12 (11):1393-1397.
    [62]Shimoiizaka J., Nakatsuka K. and Katayangi T., Separation of feldspar from quartz by a new flotation process[J]. World Mining Metals Technology, Proc. MMIJ-AIME Joint Meeting,1976, (1):423-435.
    [63]雷绍民,龚文琪,张高科.阴/阳离子捕收剂反浮选制备高纯石英砂研究[J].金属矿山,2002,(9):25-29.
    [64]雷绍民,龚文琪,张高科.阴/阳离子捕收剂反浮选制备高纯石英砂研究[J].金属矿山,2002,(9):25-29.
    [65]阮汝直,等.用硫酸法浮选分离角干地区硅砂[J].中国玻璃,1990,(3):16.
    [66]张兄明,等.旭口硅砂棒磨-无氟浮选工艺研究[J].中国非金属矿工业导刊,2002,(3):23-25.
    [67]李保林,刘光天.硅砂”无氟浮选法”的原理及影响浮选主要因素的分析[J].中国玻璃,1999,(6):24.
    [68]刘亚川,龚焕高,张克仁.石英长石矿物结晶化学特性与药剂作用机理[J],中国有色金属学报,1992,(4):21-25.
    [69]刘亚川,龚焕高,张克仁.六偏磷酸钠的作用机理[J],东北工学院学报, 1993,(3):231-235.
    [70]刘亚川,龚焕高,张克仁.十二胺盐酸盐在长石石英表面的吸附机理及pH值对吸附的影响[J],中国矿业,1992,(10):89-93.
    [71]刘亚川.长石与石英浮选分离新技术及其机理研究[D],沈阳:东北大学,1993:85-95.
    [72]M.S.埃尔萨尔麦伟等.石英与长石浮选分离的新药剂制度[J].国外金属矿选矿,1997,(9):23-28.
    [73]碱土金属阳离子在石英与长石浮选分离中的作用[J].国外选矿快报,1994,(14):12-16.
    [74]张兄明,郭银祥,孙学成.硅砂浮选新工艺——中、碱性介质中分离长石和石英[J].中国非金属矿工业导刊,2004,(2):28-30.
    [75]向廷生,蔡春芳,付华娥.不同温度、羧酸溶液中长石溶解模拟实验[J].沉积学报,2004,22(4):597-601.
    [76]R. E. Blake and L. M. Walter. Kinetics of feldspar and quartz dissolution at 70-80℃ and near-neutral pH:Effects of organic acids and NaCl [J], Geochimica et Cosmochimica Acta,1999,63 (13/14):2043-2059.
    [77]张实,张惠芬.关于长石-高岭石动态形成过程的讨论[J],矿物学报,1992,12(4):373-379.
    [78]刘钦甫,杨晓杰,丁述理.有机酸对高岭石形成影响的模拟试验研究[J],煤田地质与勘探,1998,26(2):6-9.
    [79]张生,李统锦.石英溶解动力学研究进展[J],世界地质,1996,15(4):8-13.
    [80]李福春,李莎,杨用钊等.原生硅酸盐矿物风化产物的研究进展——以云母和长石为例[J],岩石矿物学杂志,2006,25(5):440-448.
    [81]周跃飞,王汝成,陆现彩等.微生物-矿物接触模式影响矿物溶解机制的实验研究——以多粘芽孢杆菌参与下的微纹长石溶解为例[J],高校地质学报,2007,13(4):657-661.
    [82]段树桐.玻璃用硅质原料石英砂岩干法生产工艺的湿法改造实践[J].中国玻璃,2002,(5):16-20.
    [83]高德政,周开灿,胡治宪等.叙永石英砂岩资源及利用前景[J].矿产综合利用,1998,(3):37-41.
    [84]中国非金属矿工业协会硅质原料专业委员会.我国玻璃用硅质原料矿业现状及建议[J].中国建材,2001,(4):71-72.
    [85]杨涛,蒋述兴.高纯超细电子级石英粉的制备技术综述[J].化工矿产地质.2006,28,9(3):185-188.
    [86]申士富,苏宪君.用石英岩制备高纯石英砂[J].中国玻璃(年会专刊),2005,(6):31-33.
    [87]王泽航.用硅石生产高纯石英粉新技术[J].矿冶,1994,3(3):36-39.
    [88]周永恒.高纯度石英的酸浸实验研究[J].矿物岩石,2005,25(3):23-26.
    [89]印万忠,韩跃新,魏新超,等.一水硬铝石和高岭石可浮性的晶体化学分析[J],金属矿山,2001,(6):29-33.
    [90]骆兆军,胡岳华,王毓华等.铝土矿反浮选体系分散与凝聚理论[J],中国有色金属学报2001,11(4):680-683.
    [91]胡岳华,王毓华,王淀佐等.铝硅矿物浮选化学与铝土矿脱硅[M].北京:科学出版社.
    [92]卢寿慈,翁达.界面分选原理与应用[M].北京:冶金工业出版社,1992.
    [93]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南大学出版社,1993.
    [94]唐敏,张文彬.微细粒蛇纹石矿泥在含铂钯铜镍硫化矿浮选中的影响[J],中国矿业,2008,17(4):66-72.
    [95]I. Giilgoniil, C. Karaguzel, M.S. Celik. Surface vs. bulk analyses of various feldspars and their significance to flotation [J]. Int. J. Miner. Process.2008,86: 68-74.
    [96]张敏,刘焕彬,朱小林等.浮选柱混合气泡发生器的初步设计和性能分析[J].中国造纸,2009,(2):45-52.
    [97]刘炯天,王永田.自吸式微泡发生器充气性能研究[J].中国矿业大学学报,1998,27(1):27-30.
    [98]李小兵,郭杰,刘炯天.浮选气泡制造技术进展[J].选煤技术,2003,(6):60-62.
    [99]卢寿慈,翁达.界面分选原理与应用[M].北京:冶金工业出版社,1992.
    [100]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南大学出版社,1993.
    [101]刘明宝.东鞍山含碳酸盐难选铁矿浮选分离行为研究[D].沈阳:东北大学,2007.
    [102]李英堂,田淑艳,汪美凤.应用矿物学[M],北京:科学出版社,1995,27-68.
    [103]华中一,罗维昂.表面分析[M],上海:复旦大学出版,1989.
    [104]潘道皑,等.物质结构[M],北京:高等教育出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700