高硅氧化铅锌矿加压酸浸工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌矿是硫化锌矿床长期风化的产物,也可作为炼锌的一种原料。我国是氧化锌矿资源较为丰富的国家之一,开发应用此类矿石有很好的经济价值。由于所含矿物的特性,氧化锌矿的浮选回收迄今为止还是个难题;若采用火法处理,为了满足其渣型,需配入大量的熔剂及消耗大量燃料,能耗、成本高且污染环境;常压酸浸处理异极矿和硅酸锌矿的最大难点是酸浸过程生成难以过滤的硅胶;碱法浸出和氨法浸出对湿法炼锌工艺和设备提出了新要求,仅停留在实验室研究或半工业阶段。
     本论文研究了以空气为加压气体,对高硅氧化铅锌矿采用加压酸浸处理新工艺,并对其中的关键技术进行了理论和试验研究。概括为以下主要内容和结论:
     1、计算了主要酸溶反应的△Gθ与T关系方程,以及K值与T的关系式;并得出结论:当反应温度为50℃左右时,高硅氧化铅锌矿中含锌物质及其他矿物与硫酸的化学反应基本上都能自动向右进行;对于硅酸脱硅的反应,常温常压下,该反应很难向右进行,但当温度≥120℃时,反应可以自动向右进行。
     2、计算并绘制了不同温度下的Zn-H20系和Zn-Si-H2O系的ET-pH图。分析得出:在高温条件下,为了浸出锌,需控制相对较高的始酸浓度;为了确保控制在SiO2物相稳定区,需维持相对较高温度(≥120℃)条件。
     3、高硅氧化铅锌矿常压酸浸存在以下问题:浸出矿浆不好过滤;工艺条件要求严格控制;锌回收率不高,均小于92%;矿浆中的锌与硅、铁等杂质不能有效分离,后续还需进行脱硅及除铁工序处理;耗酸大;常压浸出液和浸出矿浆很容易转化成硅冻胶,从而无法液固分离。
     4、系统研究了加压浸出工艺条件对浸出效果和矿浆过滤性能的影响,得出了最佳工艺条件为:液固比3:1-4:1,始酸浓度120~140g/L,釜内压力0.4~0.6MPa,温度110~130℃,粒度-0.074mm占95%以上,时间60min,搅拌转速400~500r/min。在此条件下,Zn浸出率>97%,Si浸出率<1%,Fe浸出率<6%,铅入渣率>97%,产液速率>1030L·m-2·h-1,浸出液含Zn2+118~131g/L、Fe0.0087~0.026g/L、Si0.04~0.16g/L。与常压酸浸比较,加压酸浸工艺具有矿浆过滤性能良好、锌直接回收率高、反应速度快、工艺流程简洁、脱硅效果好、高效除铁、耗酸低、原料适应性强等优势。
     5、对于溶液脱硅的研究表明:为了避免硅胶的产生,可控制较高的反应温度以利于高温脱硅;或选择较低的始酸浓度、矿浆终点pH值在3~5.5范围,利用pH值、电解质等影响促使硅溶胶聚集沉淀。过滤性能良好的浸出渣在XRD图上显示出衍射线的强度与清晰度都较为显著,而过滤性差的浸出渣表现出X射线衍射强度较弱且模糊。SEM分析表明:难过滤的浸出渣中含有树枝状的硅胶,硅胶之间塞满了其它微小颗粒,没有太多缝隙空间利于液体的流通。
     6、人工合成硅酸锌加压酸浸过程的研究结果表明:升高温度能破坏硅溶胶的稳定性进而有利于硅酸的脱水过程;产液速率随终点pH值的升高而增大;浸出体系的水量超过了某个限度时,硅浸出率的升高幅度显著,促进了硅胶的生成;控制恰当的工艺条件,则荷负电的硅胶与荷正电的氢氧化铁溶胶在静电引力作用下会完全聚沉。
     7、系统研究了加压酸浸动力学,计算出了反应的表观活化能为14.3kJ/moL、始酸浓度和釜内压力影响的表观反应级数分别为1.139和0.277,酸浸过程受内扩散控制;建立了四个工艺条件共同对锌浸出影响的宏观动力学方程:1-2/3R-(1-R)2/32.9546×10-11×r0-2CH2SO41.139×PAir0.277×exp(-14330/RT)t
     8、跟踪考察了高硅氧化锌矿加压酸浸工艺工业化生产情况,优化了工艺技术条件,考察了连续化生产情况。结果表明该工艺具有锌回收率高,浸出料浆过滤性能好,工艺流程简短,反应条件易于实现和控制,浸出液含硅、含铁低无需额外除杂处理,生产成本低等优点。
Zinc oxide ore is the product of long-term weathering of sulfide lead-zinc deposits, it also can be used as a raw material for zinc. China is one of the countries which zinc oxide ore resources are more abundant, development and application of such ores have great economic value. As contained in the special properties of mineral, its flotation recovery is still a problem so far; If use of fire treatment, need with a lot of flux into and consume large amounts of fuel in order to meet its residue type, so high energy consumption high cost and no environmental; The greatest difficulty of sulfuric acid leaching of hemimorphite and zinc silicate ore in atmospheric pressure is leaching process generates silica gel is very difficult to filter; Alkaline leaching and ammonia leaching are put new demands on zinc hydrometallurgy technology and equipment, so only to remain in the laboratory or semi-industrial stage.
     This paper studied a new process of with air as the pressurized gas, pressure leaching of high silica lead-zinc oxide ore in sulfuric acid medium, theoretical and experimental research about the key technologies of the new process. The main elements and conclusions were summarized as follows.
     1、The relationship equation between standard Gibbs free energy ΔGθ and temperature T about the main sulfuric acid dissolved reaction and the relationship equation of the equilibrium constant K and the temperature T have been calculated. The following conclusions was obtained as follows:When the reaction temperature is50℃or so, the chemical reaction of lead-zinc oxide ore containing material with sulfuric acid can basically automatic right to; For the desilication reaction of silicic acid, the reaction is difficult to place at normal temperature in atmospheric condition, but when the temperature was higher than120℃, the reaction can be carried out automatically to the right.
     2、The ET-pH diagram of the Zn-H2O system and the Zn-Si-H2O system at different temperatures were calculated and plotted. The following conclusions was obtained as follows:in order to leach zinc compounds, the need to control the relatively high concentration of sulfuric acid when the high temperature condition; in order to ensure control in SiO2phase stable region, the need to maintain a relatively high temperature (≥120℃).
     3、The main problem about atmospheric acid leaching of high silica lead-zinc oxide ore in sulfuric acid medium are as follows:leach pulp is not easy to filter; requires strict control of process conditions; zinc recovery rate is not high, less than92%; zinc and silicon、iron or other impurities can not be effectively separated, so need to add the follow-up of silicon and iron removal treatment processes; large consumption of acid. Atmospheric leaching fluid and leaching pulp were easily converted into silica gel which can not be separated.
     4、The pressure leaching process conditions on the main component of lead-zinc oxide leaching effects and pulp filtration performance was systematic studied. The optimum condition was obtained as follows:liquid-solid ratio is3:1~4:1, sulfuric acid concentration120~140g/L, with air as the pressurized gas and pressure0.4-0.6MPa, leaching temperature110~130℃, ore particle size-0.074mm>95%, leaching time60min and stirring speed400~500r/min.Under this process conditions, Zn leaching rate>97%, Si leaching rate<1%, Fe leaching rate<6%, the rate of lead into slag>97%, the fluid production rate>1030L·m-2·h-1, leaching solution containing Zn2+118~131g/L, Fe0.0087~0.026g/L, Si0.04-0.16g/L. Compared with the acid leaching at atmospheric, pressure acid leaching process has the following advantages:good pulp filtration, high recoveries rate of zinc, fast speed of response, the process is simple, effective removal of silicon and iron, low acid consumption, strong adaptability of raw materials, etc.
     5、From solution desilicating study showed that:in order to avoid the production of silicone and ensure a better filter performance, need to controlling higher reaction temperature to facilitate the removal of silicon or lower acid concentration and the end pH range of slurry is3~5.5which can use of pH、electrolytes and other influence to bring together precipitated silica. The good filtration leaching residue in the XRD map showing the intensity and clarity of crystalline diffraction lines are more significant; But the poor filter residue showed X-ray diffraction intensity is weak and vague. SEM analysis showed that:the poor filter residue containing dendritic silica gel and filled with other small particles among them, so there is no much more space conducive to the flow of liquid.
     6、The pressure acid leaching of synthetic silicate zinc was studied. The results showed that elevated temperatures can damage the stability of silica gel and thus conducive to the dehydration process of silicate; The rate of fluid production increased with the end pH increases; When the amount of water volume in leaching system is greater than a certain limit, the leaching rate of silica increased significantly and promote the formation of silica gel; The negatively charged silica and positively charged ferric hydroxide sol in the role of electrostatic forces will be completely coagulation when the right condition was control.
     7、The kinetics of pressure sulfuric acid leaching of high silica lead-zinc oxide ore was systematic studied. The apparent activation energy of the reaction is14.3kJ/moL and the apparent reaction order of sulfuric acid and pressure affect is1.139and0.277respectively; Acid leaching process is affected by the proliferation of control. The macro-kinetic equation of four process conditions common affect the leaching of zinc was created as follows:
     8、The technology of pressure sulfuric acid leaching of high silica zinc oxide ore has been tracking inspection. Technical process conditions have been optimized and continuous production was also examined. The results show that the process has the following advantages:high recovery of zinc、pulp had good filtration performance、 short process、easy to implement and control of reaction conditions、the leaching solution containing silicon and iron impurity low without additional processing、low production cost.
引文
[1]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003.
    [2]杨大锦,朱华山,陈加希,等.湿法提锌工艺与技术[M].北京:冶金工业出版社,2006.
    [3]梅光贵,王德润,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001.
    [4]华一新.有色冶金概论[M].北京:冶金工业出版社,2007.
    [5]彭容秋.锌冶金[M].长沙:中南大学出版社,2005.
    [6]彭容秋.铅冶金[M].长沙:中南大学出版社,2004.
    [7]陈国发,王德全.铅冶金学[M].北京:冶金工业出版社,2000.
    [8]王吉坤,周廷熙.硫化锌精矿加酸浸出技术及产业化[M].北京:冶金工业出版社,2005.
    [9]Yan GU, Ting-an ZHANG, Yan LIU. Pressure acid leaching of zinc sulfide concentrate. Transactions of Nonferrous Metals Society of China.2010,20: 136-140.
    [10]Toni Kaskiala. Determination of mass transfer between gas and liquid in atmospheric leaching of sulphidic zinc concentrates. Minerals Engineering, 2005,18 (3):1200-1207.
    [11]李若贵.常压富氧直接浸出炼锌[J].中国有色冶金,2009,(3):12-15.
    [12]孟波,王吉坤,张红耀.锌冶金技术的发展概况[J].云南冶金,2010,39(2):99-101.
    [13]董英,王吉坤,冯桂林.常用有色金属资源开发与加工[M].北京:冶金工业出版社,2005.
    [14]徐采栋,林蓉,汪大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979.
    [15]蒋继穆,王忠实.中国冶锌现状[J].有色冶炼,1996(6):1-5.
    [16]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金,2005,8(4):32-35.
    [17]伊藤聪.氧化锌的铁还原挥发反应[J].有色矿冶1901(4):33-40.
    [18]Rankin W J, Wright S. The reduction of zinc from slags by an iron -carbon melt[J]. Metallurgical and materials transactions B,1990,21B (10):885-897.
    [19]Donald J R, Pickles C A. A kinetic study of the reaction of zinc oxide with iron powder [J].Metallurgical and Materials Transactions B,1996,27B(6):363-373.
    [20]郭兴忠,张炳怀,阳海彬,等.熔融还原处理低品位氧化锌矿的研究[J].矿冶 工程,2003(2):57-60.
    [21]李时晨,朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌矿[J].云南冶金,1992(4):13-15.
    [22]梁杰,王华.低品位氧化铅锌矿的烟化富集工艺[J].有色金属(冶炼部分),2005(4):5-7.
    [23]徐红江,张延安.低品位氧化锌矿冶金进展[J].有色矿冶,2009(4):28-30.
    [24]熊秦.真空冶炼氧化锌矿生产工艺:中国,1814832A[P].2006-08-09.
    [25]张显生,石明忠,许永红,等.高硅天然氧化锌矿浸出新工艺的研究[J].有色金属(冶炼部分),2003(2):14-15.
    [26]谢美求,陈志飞,冯剑,等.氧化锌矿湿法浸出提锌工艺研究[J].矿冶工程,2004,24(1):67-68.
    [27]Shirin, E., Fereshteh, R., Sadmezhaad, S.K. Hydrometallurgical treatment of tailings with high zinc content[J]. Hydrometallurgy,2006,82:54-62.
    [28]Abdel Aal, E.A. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore[J]. Hydrometallurgy,2000,55:247-254.
    [29]Bodas,M.G. Hydrometallurgical treatment of zinc silicate ore from Thailand [J]. Hydrometallurgy,1996,40:37-49.
    [30]Vida Safari, Gilnaz Arzpeyma, Fereshteh Rashchi. A shrinking particle-shrinking core model for leaching of a zincore containing silica[J]. International Journal of Mineral Processing.2009,93(1):79-83.
    [31]刘红卫,蔡江松,王红军,等.低品位氧化锌矿湿法冶金新工艺研究[J].有色金属(冶炼部分),2005(5):29-31.
    [32]舒毓璋,宝国峰,张琦,等.硫化锌精矿焙砂与氧化锌矿联合浸出工艺:中国,1477216A[P].2004-02-25.
    [33]李树龙,杨丽周,杨晓冬,等.高硅氧化锌原矿湿法冶炼工艺:中国,101418377A[P].2009-04-29.
    [34]杨龙.溶剂萃取-传统湿法炼锌工艺联合处理氧化锌矿[J].中国有色冶金,2007,8(4):16-19.
    [35]杨大锦,谢刚,贾云芝,等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):5962.
    [36]Qin Wen-qing, Li Wei-zhong, Lan Zhuo-yue,et al. Simulated small-scale pilot plant heap leaching of low-grade oxide zinc ore with integrated selective extraction of zinc[J].Minerals Engineering,2007,20:694-670.
    [37]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,9(3):63-65.
    [38]Hua Yixin,Lin Zuoyan,Yuan Zhenlin.Application of microwave pirradiation to quick leach of zinc silicate ore[J]. Minerals Engineering,2002(15):451-456.
    [39]麦振海.低品位高硅氧化锌矿加压浸出试验研究[D],昆明理工大学:2006.
    [40]王凤琴.国内外氧化锌矿的处理方法[J].有色矿冶,1994(1):31-35.
    [41]徐斌,杨俊奎.高硅氧化锌矿制备活性氧化锌的研究[J].矿冶工程,2010,30(4):69-72.
    [42]孟庆铭.氧化锌矿冶炼工艺[J].有色金属(冶炼部分),1990(1):30-32.
    [43]唐谟堂,杨声海Zn(Ⅱ)-NH3-NH4Cl-H2O体系电积锌工艺及阳极反应机理[J].中南工业大学学报,1999,30(2):153-155.
    [44]刘三军,欧乐明,冯其明.氧化锌矿的碱法浸出研究[J].矿产保护与利用,2004,(4):39-43.
    [45]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报(自然科学版),2003,12(6):619-623.
    [46]Zhoulan Yin, Zhiying Ding, Huiping Hu, etal. Dissolution of zinc silicate hemimorphite with ammonia-ammonium chloride solution[J]. Hydrometallurgy, 2010,103 (2):215-220.
    [47]刘亚川,刘述平,李博,等.低品位氧化锌矿的氨-铵盐浸出研究[J].矿产保护与利用,2008,4(2):3-5.
    [48]Zhiying Ding, Zhoulan Yin, Huiping Hu, etal. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution[J]. Hydrometallurgy,2010,104 (2) :201-206.
    [49]张元福,梁杰,李谦.铵盐法处理氧化锌矿的研究[J].贵州工业大学学报(自然科学版),2002,31(2):37-40.
    [50]冯林永,沈庆峰,谢克强,等.块状低品位氧化锌矿浸出新技术研究[J].矿冶工程,2008,8(4):69-76.
    [51]Feng Linyong, Yang Xianwan, Shen Qingfeng, et al. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores[J]. Hydrometallurgy,2007,89 (5):305-310.
    [52]马启坤,李晓阳,陈世明,等.一种处理低品位氧化锌矿石的方法:中国,02133784.5[P].2002-09-17.
    [53]Fabiano M.F. Santos, Pablo S. Pina, Rodrigo Porcaro, etal. The kinetics of zinc silicate leaching in sodium hydroxide[J]. Hydrometallurgy,2010,102 (3):43-49.
    [54]况正国.一种碱浸法电解锌的方法:中国,1807665A[P].2006-07-26.
    [55]唐谟堂,杨声海,王瑞祥,等.一种处理氧化锌矿或氧化锌二次资源制取电锌的方法:中国,101289706A[P].2008-10-22.
    [56]唐谟堂,张家靓,王博,等.低品位氧化锌矿在MACA体系中的循环浸出[J].中国有色金属学报,2011,21(1):214-218.
    [57]赵由才,易天晟.一种用氧化锌矿生产高纯度金属锌的方法:中国,03116754.3[P].2003-05-07.
    [58]张文彬,胡显智,字富庭,等.从氧化锌矿氨浸液中萃取锌的方法:中国,101503760A[P].2009-08-12.
    [59]冯志雄.高硅高铁低品位氧化锌矿锌的酸氨浸出法:中国,1632141A[P].2005-06-29.
    [60]张玉梅,李洁,陈启元,等.超声波辐射对低品位氧化锌矿氨浸行为的影响[J].中国有色金属学报,2009,5(5):960-966.
    [61]Zhongwei Zhao, Long Shuang, Chen Ai liang, et al. Mechanochemical leaching of refractory zinc silicate in alkaline solution[J]. Hydrometallurgy,2009,18(6): 1016-1027.
    [62]赵中伟,贾希俊,陈爱良,等.碱浸氧化锌矿中硅的浸出动力学[J].江西有色金属,2008(4):31-34.
    [63]Chen Ai-liang, Zhao Zhong-wei, Jia Xijun. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy,2009,97 (3):228-232.
    [64]Yuhu Li, Zhihong Liua, Zhongwei Zhao, etal. Removal of arsenic from Waelz zincoxide using a mixed NaOH-Na2S leach[J]. Hydrometallurgy,2011,108 (3):165-170.
    [65]郭兴忠,张炳怀,阳海彬,等.从氧化锌矿直接制取纳米氧化锌粉研究[J].化学工程,2003,12(6):47-50.
    [66]张安沅.复分解反应一步法生产碱式碳酸锌工艺:中国,93115628.9[P].1993-12-09
    [67]蒋崇文,罗艺,钟宏.低品位氧化锌矿氨-碳酸氢铵浸出制备氧化锌工艺的研究[J].精细化工中间体,2010,40(3):53-57
    [68]王险峰.物理化学[M].南京:东南大学出版社,2006.
    [69]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,2005.
    [70]王正烈,周亚平.物理化学[M].北京:高等教育出版社,2001.
    [71]王果庭.胶体稳定性[M].北京:科学出版社,1990.
    [72]邵光杰,王锐,董红星.物理化学(修订版)[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [73]张玉军.物理化学[M].北京:化学工业出版社,2007.
    [74]朱灵峰,路福绥.物理化学[M].北京:中国农业出版社,2003.
    [75]尚仰震.物理化学与胶体化学[M].成都:四川科学技术出版社,1986.
    [76]张玉亭,吕彤.胶体与界面化学[M].北京:中国纺织出版社,2008.
    [77]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,2002.
    [78]郑忠,李宁.分子力与胶体的稳定和聚沉[M].北京:高等教育出版社,1995.
    [79]李葵英.界面与胶体的物理化学[M]哈尔滨:哈尔滨工业大学出版社.1998.
    [80]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007.
    [81]刘军.氧化铅锌矿的浮选[J].矿业快报,2006,3(10):26-29.
    [82]周德林,窦明民,陈世明,高硅氧化锌矿全湿法冶炼工艺的研究、应用与发展[J].有色金属:冶炼部分.1995(3):1-6.
    [83]乔繁盛.浸矿技术[M].北京:原子能出版社,1994.
    [84]杨显万,邱定蕃.湿法冶金[M].冶金工业出版社,1998.
    [85]Habashi, F. Recent advances in pressure leaching technology. Proc XXIMPC, Aachen, September,1997,129-139.
    [86]邱定蕃.加压湿法冶金过程化学与工业实践[J].矿冶.1994,3(4):55-67.
    [87]T.J. Harvey, W.T. Yen, J.G. Paterson. Selective zinc extraction from complex copper/zinc sulphide concentrates by pressure oxidation[J]. Minerals Engineering,1992,5 (9):975-992.
    [88]G.P. Demopoulos. Acid pressure leaching of a sulphidic uranium ore with emphasis on radium extraction[J].Hydrometallurgy,1985,15 (2):219-242
    [89]陈家镛、杨守志、柯家骏.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998.
    [90]Zhi-gan DENG, Chang WEI, Gang FAN, Min-ting LI, etal. Extracting vanadium from stone-coal by oxygen pressure acid leaching and solvent extraction[J].Transactions of Nonferrous Metals Society of China,2010,20 (3):118-122.
    [91]Ting-sheng QIU, Guang-hua NIE, Jun-feng WANG, etal. Kinetic process of oxidative leaching of chalcopyrite under low oxygen pressure and low temperature[J].Transactions of Nonferrous Metals Society of China,2007,4 (2):418-422.
    [92]D.H Rubisov, J.M Krowinkel, V.G Papangelakis. Sulphuric acid pressure leaching of laterites-universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends[J].Hydrometallurgy,2000,58 (1):1-11.
    [93]Dimitri Georgiou, Vladimiros G. Papangelakis. Behaviour of cobalt during sulphuric acid pressure leaching of a limonitic laterite[J].Hydrometallurgy, 2009,100 (1):35-40.
    [94]蒋开喜,王海北.加压湿法冶金:可持续发展的资源加工利用技术[J].中国创业投资与高科技,2004,12:73-75.
    [95]Kyung-Ho Park, Debasish Mohapatra, B. Ramachandra Reddy, etal. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte[J]. Hydrometallurgy,2007,86 (4):164-171.
    [96]S.Anand, S.C. Das, R.P. Das, P.K. Jena. Leaching of manganese nodules at elevated temperature and pressure in the presence of oxygen[J]. Hydrometallurgy,1988,20 (2):155-167.
    [97]A. Ghaderi Hamidi, H. Arabi, S. Rastegari.A feasibility study of W-Cu composites production by high pressure compression of tungsten powder [J].International Journal of Refractory Metals and Hard Materials,2011, 29 (1):123-127.
    [98]宋复伦.加压湿法冶金的过去、现在和未来[J].湿法冶金.2001,9(3):165-166.
    [99]柯家骏.湿法冶金中加压浸出过程的进展[J].湿法冶金,1996(2):1-7.
    [100]T.J. Harvey, W.T. Yen, J.G. Paterson.Superconductivity of molybdenum phosphides prepared at high pressure[J].Physica B:Condensed Matter,2000, 281 (1):1024-1025.
    [101]D. Sheila, C. Sankaran, P.R. Khangaonkar. Studies on the extraction of magnesia from low grade magnesites by carbon dioxide pressure leaching of hydrated magnesia[J].Minerals Engineering,1991,4 (1):79-88.
    [102]Radha Raghunath, K.S.V Nambi. Lead leaching from pressure cookers[J]. Science of The Total Environment,1998,224 (2):143-148.
    [103]A.M Amer. Alkaline pressure leaching of mechanically activated Rosetta ilmenite concentrate[J].Hydrometallurgy,2002,67 (2):125-133.
    [104]G. Zeibig, F. Kubanek, J. Luck. Pressure leaching of boron from argillaceous sediments for facies analysis[J].Chemical Geology,1989,74 (4):343-349.
    [105]C. Dorfling, G. Akdogan, S.M. Bradshaw, J.J. Eksteen. Determination of the relative leaching kinetics of Cu, Rh, Ru and Ir during the sulphuric acid pressure leaching of leach residue derived from Ni-Cu converter matte enriched in platinum group metals [J].Minerals Engineering,2011,24 (6):583-589.
    [106]F·哈伯锡.加压湿法冶金[J].国外金属矿选矿,2006,11(1):10-15.
    [107]李存兄,魏昶,樊刚,等.高硅氧化锌矿加压酸浸处理[J].中国有色金属学报,2009,9:1679-1683.
    [108]杨秀丽,魏昶.某难处理高硅氧化锌矿加压酸浸工艺[J].矿冶工程,2009,10:65-69.
    [109]叶大伦.冶金热力学[M].长沙:中南工业大学出版社.1987.
    [110]李洪桂.湿法冶金学[M].长沙:中南大学出版社,2005.
    [111]田彦文,翟秀静,刘奎仁.冶金物理化学简明教程[M].北京:化学工业出版社,2007:46-82.
    [112]李大成,周大利,陈朝珍,等.电位-pH图及其在冶金中的应用[J].四川有色金属,1991,(2):47-51.
    [113]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986.
    [114]杨显万.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983.
    [115]傅崇说.冶金溶液热力学原理与计算[M].北京:冶金工业出版社,1989.
    [116]徐采栋,林蓉,汪大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979.
    [117]钟竹前,梅光贵.湿法冶金过程[M].长沙:中南工业大学出版社,1988.
    [118]G. Onal, G. Bulut, A. Gul, etal. Flotation of Aladag oxide lead-zinc ores[J]. Minerals Engineering,2005,18 (2):279-282.
    [119]Minghua JIANG, Bin YANG, Jijun WU, etal.Study on experiment and mechanism of thermal dissolved sulfuration of low grade lead-zinc oxide ore in lanpin[J].Acta Metallurgica Sinica (English Letters),2009,22 (4):291-296
    [120]罗仙平,严群,谢明辉,等.某氧化铅锌矿浮选工艺试验研究[J].有色金属(选矿部分),2005(1):7-10
    [121]周廷熙.兰坪氧化铅锌矿的处理工艺探讨[J].国外金属矿选矿,2004(4):10-14.
    [122]陈锦全,周德炎,魏宗武,等.高铁泥化氧化铅锌矿的浮选试验研究[J].矿业研究与开发,2007,10(5):91-93.
    [123]S. Moradi, A.J. Monhemius. Mixed sulphide-oxide lead and zinc ores:Problems and solutions[J].Minerals Engineering,2011,24 (10):1062-1076.
    [124]Srdjan M. Bulatovic.20-Flotation of Mixed Lead Zinc Sulphide Oxide and Oxide Lead and Zinc Ores [J]. Handbook of Flotation Reagents:Chemistry, Theory and Practice,2010,5 (3):67-86.
    [125]刘厚明,魏德洲,高邦牢.陇南某氧化铅锌矿石选矿工艺研究[J].金属矿山,2006(12):29-32.
    [126]萧有茂.深度氧化铅锌矿石利用前景分析[J].国外金属矿选矿,2000(5):17-21
    [127]库建刚,王安理,张文彬,等.四川某低品位氧化铅锌矿石浮选试验研究[J].金属矿山,2008(11):52-54.
    [128]Yong Li, Ji-kun Wang, Chang Wei. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur [J].Minerals Engineering,2010,23(7):563-566.
    [129]王化军,吴砚红,张强.锡铁山氧化铅锌矿选矿工艺研究[J].有色金属(选矿部分),2002(6):4-6.
    [130]张麟.青海宏源氧化铅锌矿可选性试验研究[J].湖南有色金属,2004(2):1-4.
    [131]林祚彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003(5):9-12.
    [132]杨守志,孙德堃,何方箴.固液分离[M].北京:冶金工业出版社,2003.
    [133]李洪桂,郑清远,张启修,等.湿法冶金学[M].长沙:中南大学出版社,2002.
    [134]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [135]Jin, B., Yang, X., Shen,Q. Pressure oxidative leaching of lead-containing copper matte[J].Hydrometallurgy,2009,96 (1),57-61.
    [136]李艳,华一新,林祚彦.硅酸锌合成新工艺[J].材料与冶金学报,2007,9(3):224-229.
    [137]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [138]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004.
    [139]徐志峰,邱定蕃,王海北.铁闪锌矿加压浸出动力学[J].过程工程学报,2008,2:28-34.
    [140]Bingjie Jin, Xianwan Yang, Qingfeng Shen.Kinetics of copper dissolution during pressure oxidative leaching of lead-containing copper matte [J]. Hydrometallurgy,2009,99 (2) 119-123.
    [141]胡天觉,曾光明,袁兴中.湿法炼锌废渣中硫脲浸出银的动力学[J].中国有色金属学报,2001,11(5):933—937.
    [142]姚耀春,王平.难选氧化锌矿氨浸的动力学研究[J].云南冶金,2001(6):22—24.
    [143]Minting Li, Chang Wei, Shuang Qiu, etal. Kinetics of vanadium dissolution from black shale in pressure acid leaching[J].Hydrometallurgy,2010,104 (2): 193-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700