极低品位高钙氧化锌矿“冶—选”新技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济和社会的高速发展,对锌金属的需求量快速增长,锌矿资源紧缺的问题日益凸现。到目前为止,每年约有三分之一的锌原料依靠进口。可是,在另一方面,我国储量相对丰富的低品位氧化锌矿资源,却又未能得到合理利用。矿石难于选矿和冶炼的主要原因是品位低、氧化程度深、含泥量大和矿物组成复杂等。大量的这种类型的矿石开采出来只能长期堆存甚至废弃。因此,针对该类资源,研发高效加工新技术,对保障我国锌资源的有效供给,实现锌冶炼产业的可持续发展具有重要意义。
     为了解决低品位高钙氧化锌矿的有效利用难题,以本文作者的导师—张文彬教授为首的研究团队提出了一个全新的冶-选联合流程,即“氨浸-萃取-电积-浸渣浮选”流程。其主要特色是先氨浸,后浮选。这样,既可以用氨浸的办法解决高钙矿石中难于浮选的氧化锌矿物的回收问题,又可以用浮选的办法解决矿石中难于浸出的硫化锌矿物的回收问题。
     本论文的研究目的,不是对上述新流程进行全面深入的工艺条件试验,获取最佳技术经济指标,而是着重进行该流程关键步骤的基础理论研究,为该流程提供理论支撑。同时,通过初步的工艺条件试验,证明该流程的主要环节和全流程的可行性。
     本论文的研究共采用了两个试料,均为低品位高钙氧化锌矿。矿石的主要特点是品位极低(含锌分别为6.5%和7.52%)、钙含量高(CaO22%以上)、含泥量大、铅锌矿物结构复杂和嵌布粒度微细等。
     在基础理论方面,通过本论文的深入研究,得到了如下主要结果:
     (1)氧化锌矿氨浸体系的基础理论
     采用沉淀法揭示了氧化锌矿的溶解度与氨-铵总氮浓度、碳酸氢铵的加入量和溶液的pH的关系。发现稳定的锌氨配位离子析出的pH范围为6.5-11,氨与碳酸氢铵配比组成的复合浸出剂的pH值在10-11之间时,可获得较高的浸出率。
     试验表明,氨-铵盐体系的浸出效果优于单独使用氨水体系或铵盐浸出体系,因此,选择了氨-碳酸氢铵作为浸出体系;在热力学方面,推导计算了各溶液体系中锌可能存在的物种形式,证明了在Zn(Ⅱ)-NH3-NH4HCO3-H2O体系中锌主要以[Zn(NH3)4]2+形式存在。
     氨浸动力学研究阐明了搅拌强度、总氨浓度、搅拌时间和反应温度均对锌浸出率有影响,明确了浸出反应符合“未反应核减缩模型”。动力学方程满足1-(1-α)1/3=kt,浸出反应受外扩散控制,反应的表观活化能Ea=6.489KJ/mol。
     (2)M5640萃取体系基础理论
     氨浸溶液中锌的萃取是难点,也是国内众多研究尚未很好解决的问题,亦是所提出的整个工艺流程的关键环节。本论文研究结果表明:在M5640萃取体系中,萃合物分子式为ZnR2;有机相中锌的最大负载量与M5640浓度呈线性关系,单位体积浓度(1V/0) M5640在氨-碳酸氢铵体系中锌的饱和容量为0.16g/L;M5640萃取锌过程是一个放热的过程,等压反应热为-5.66J/mol。提高体系温度不利于萃锌,萃取过程适宜在常温条件下进行;锌的萃取平衡等温线表明应采用错流法进行萃取;采用恒界面池法对M5640萃取体系进行定性的动力学分析,初步判定了在恒界面池中萃取反应为化学反应控制类型。
     (3)氨浸对浸出渣浮选的活化效应
     研究从氨浸出渣中浮选硫化锌矿物,本论文是首次。发现经过氨浸,渣中的硫化矿物得到了显著的活化,并提出了“溶解活化浮选”的新概念。
     本论文通过初步条件试验,验证了包括氨浸、萃取-电积、浸渣浮选单元过程以及全流程的技术可行性,即:
     (1)氨浸过程的可行性
     通过初步的条件试验及其优化试验,以NH3-NH4HCO3为复合浸出剂,处理极低品位高钙氧化锌矿石,取得了较好的技术指标,验证了氨浸的可行性。
     证明在Zn(Ⅱ)-NH3-NH4HCO3-H2O体系中,氨及铵盐用量对锌的浸出率均有一定的影响,增大磨矿细度、延长浸出时间、增大液固比、提高反应温度和增大搅拌强度等均可提高锌的浸出率。
     利用响应曲面法对氨法浸出条件进行初步优化的结果表明,在C(NH3)4.95mol/L,液固比6:1,反应温度323.05K,磨矿细度-74μm占95%,C(NH4HCO3)2.5mol/L,浸出时间2h,搅拌转速400rpm最优条件下,原矿中锌的浸出率达到了83.07%。
     (2)萃取-电积的可行性
     本文研究证明,用醛肟类萃取剂M5640可以从氧化锌矿氨浸液中有效萃取锌。该萃取技术已经获的国家发明专利授权。
     在M5640萃取体系中,萃取剂浓度、溶液的pH值、总氨浓度等是锌萃取的主要影响因素。对萃取和反萃进行的初步条件试验表明,对含锌9.72g/L、pH=9.71的氨浸出液,其最佳萃取条件为:有机相中萃取剂浓度为35%,相比(O/A)2:1,萃取时间3min,单级萃取得到锌的萃取率为65.18%;反萃的最佳条件为:硫酸浓度40g/L,相比1:1,3min时锌的反萃率可达100%。
     利用错流萃取流程研究了锌的富集过程。研究表明,在萃取剂浓度为35%,相比为2:1,萃取原液锌浓度为9.57g/L,pH=9.56,萃取时间3min;洗涤剂为去离子水,pH=1.3~1.5,相比1:1,洗涤时间3min;反萃相比为1:1,硫酸浓度为150g/L,反萃为时间3min的条件下进行七段错流萃取-洗涤-反萃富锌试验,反萃液锌含量可达55.84g/L,达到了电积锌液质量要求。
     锌的电解沉积方面,由于其是成熟工艺,论文仅考查了有机物对电积的影响。研究发现,电积前须用15gm的活性炭脱除反萃液夹带的有机物。
     (3)浸渣浮选的可行性
     通过初步的锌-铅混合浮选试验表明,在相同流程和相同条件下,与原矿相比,浸渣中的硫化矿物,表现出了良好的浮游性能。仅通过3min的浮选,铅和锌矿物的作业回收率分别达到49.34%和57.03%;氨的“溶解活化效应”明显,混选粗精矿中硫化锌矿物的相回收率达到了76.5%。
     (4)全流程的可行性
     在联合流程的主要关键环节的可行性都得到验证的基础上,全流程验的可行性也得到了验证。整体技术已申报了国家发明专利,并已进入实审阶段。其主要优势在于,既能充分回收氧化锌矿物,又能充分回收硫化锌矿物,同时也排除了钙对湿法冶金过程的影响。
The shortage of zinc supply in china is becoming a serious problem with the increasingly rising demand for zinc metal. In recent years, one third of zinc supply per year has to be imported from abroad. Although the zinc oxide ore resources are relatively abundant and available in many mines in China, their low quality for processing, such as low grade, high oxidation degree, high content of slime and complex mineral composition, prevent them from being economically and effectively beneficiated and smelted, leading the mined ores always to be only stacked and even discarde as wastes. Thus, it is quite urgent to develop a new technology to treat and use this kind of zinc reserves, supporting a sustainable development of china's zinc industry.
     In this thesis, a newly developed combined flowsheet,"ammonia leaching-extraction-electrolytic deposition-leaching residue flotation (LEEF Process)", for treating extremely low-grade zinc oxide ores with high content of calcium was studied. The main characteristics of the ores studied mainly include low zinc grade (<8%zinc), high content of calcium and (CaO:>22%), high content of slime, complex ore structure and fine dissemination of the minerals.
     In this study, the basic theory aspects of the key steps of the flowsheet are investigated as emphases, and feasibilities of individual unit operations and the whole flowsheet of the LEEF Process has been confermed by primary condition tests. The main conclusions can be summarized as follows.
     (1) Basic theory of the ammonia leaching system of the zinc oxide ores
     The solubility of zinc oxide ores is dependent on total nitrogen (ammonia-ammonium) concentration, dosage of ammonium hydrogen carbonate and pH values of the solution. The pH range is varied from6.5to11according to stable precipitation of coordination ions formed by zinc and ammonia. Higher leaching rates can be reached at pH values of10to11of the leaching solution.
     The results of comparison experiments show that the leaching efficiency for an ammonia-ammonium complex system is superior to that for an ammonia water-only or ammonium-only system. So, an ammonia-ammonium system was adopted as the leaching system for the leaching tests. The possible existence forms of zinc of various solution systems were determined by thermodynamic calculation. The results indicate that zinc in Zn(II)-NH3-NH4HCO3-H2O system is mainly in the form of [Zn(NH3)4]2+.
     Kinetics study of the ammonia leaching process is affected by stirring intensity, the total ammonia concentration, stirring time and reaction temperature. The leaching process follows a shrinking unreacted core model, which can be described by the kinetic equation, i.e.1-(1-α)1/3=k·t. The leaching process is controlled by the external diffusion. The apparent activation energy of the leaching reaction is6.489KJ/mol.
     (2) Basic theory of M5640extraction system
     The extraction of zinc is the key procedure in the process. The basic theory of zinc ammonia solution extraction was studied. The results obtained show that the chemical formula of extraction complex can be expressed as ZnR2. A linear relation is found between the maximum capacity of zinc presented in organic phase and M5640concentration. The saturated capacity of zinc in NH3-NH4HCO3system containing1V/O M5640is determined as0.16g/L. The process of zinc extracted by M5640is exothermic and the isobaric enthalpy is equal to-5.66J/mol. Thus the extraction process should be better operated at normal temperature since increasing temperatures are unfavourable to zinc extraction. The equilibria isotherm of zinc extraction shows that the extraction process should adopt cross flow. Kinetics analysis of M5640extraction system has carried out, applying the method of invariable interface. The extraction process in an invariable interface pool has been preliminarily categorized into chemical reaction control.
     (3) Activating effect of ammonia leaching on leaching residue flotation
     For the first time, the effect of ammonia leaching on the residue flotaion was investigated. It has been discovered that the floatability of zinc and lead sulphide minerals remained in the residues have been apparently improved after being leached. The phenomena is referred to as "dissolution activation".
     In order to prove the feasibilityes of the individual steps of the process, including the ammonia leaching, the extraction-electrowinning, the leaching residue flotation, and the feasibility of the whole flowsheet, primary condition tests are also carried out, and the main conclusions can be drawn as follows:
     (1) The feasibility of ammonia leaching
     A complex agent of NH3-NH4HCO3was selected as leacing agent. The leaching performance is determined through preliminary tests and optimization tests, and the feasibility of ammonia leaching is confirmed.
     The leaching efficiency of zinc is dependent on the dosages of ammonia and ammonium for the Zn(Ⅱ)-NH3-NH4HCO3-H2O system. Increasing grinding fineness of the roe, extended leaching time, increasing reaction temperature and stirring speed can enhance the leaching efficiency of zinc.
     In order to supply reference data for technology tests in future, response surface design method was adopted to study the parameters of the zinc oxide ore ammonia leaching. The leaching efficiency of zinc is about83.07%under the optimized conditions, i.e. C(NH3) of4.95mol/L, liquid-solid ratio of6:1, reaction temperature of323.05K, grinding fineness of74μm accounting for95%, C(NH4HCO3) of2.5mol/L, leaching time of2h and stirring speed of400rpm.
     (2) The feasibility of extraction-electrowinning
     It has been proved that zinc can be extracted from ammonia leaching solution by aldehyde oxime extracting agent (M5640). The feasibility of the extraction technology has been confirmed and has been patented in China.
     The extractant, pH value of solution and total ammonia concentration are the dominant factors for the extraction operation. The extraction and strpping tests were carried out. The experimental results show that for the ammonia leaching solution with zinc concentration of9.72g/L and pH of9.71, the optimal extraction parameters are extractant concentration of35%in organic phase, phase ratio (O/A) of2:1, extraction time of3min. The zinc concentration through a single stage extraction is65.18%. The optimal parameters for stripping are:sulfuric acid concentration of40g/L, phase ratio (O/A) of1:1. The efficiency of strippng during three minutes can reach100%.
     The zinc enrichment process by cross-flow extrctions was also studied. The results indicate that under the conditions of extractant concentration of35%, phase ratio of2:1, zinc concentration in feeding solution of9.57g/L, pH of9.56, extraction time of3min, deionized water used as scrubbing, pH of1.3~1.5, phase ratio of1:1, scrubbing time of3min, stripping phase ratio of1:1and sulfuric acid concentration of150g/L, stripping time of3min, the zinc concentration presented in stripping solution can reach55.84g/L, and thus meeting the demand for zinc electrowinning after going through seven stages of cross-flow extraction-scrubbing-stripping.
     With regard to the developed electrowinning, the effect of organic matters on electrowinning was studied. The results show that the organic matters should be reduced to a certain degree by using15g/L activated carbon before the electrowinning process.
     (3) The feasibility of leaching residue flotation
     The feasibility of leaching residue flotation was also demonstrated by primary experiments.
     The results of zinc-lead bulk flotation tests indicate that the leaching residue exhibits a much better floatability. The recovery of the ammonia leached lead and zinc minerals are49.34%and57.03%, respectively. The recovery of zinc reported in the bulk concentrate from the rough concentrate can reach as haigh as76.65%. A new concept of "dissolution activation" was put forward and a patent has been applied for.
     (4) The feasibility of the whole flowsheet
     Using the LEEF Process, both the zinc oxide minerals and zinc sulfide minerals can be fully recovered due to the advantages of ammonia leaching and flotation. The feasibility of the whole flowsheet has been experimentally demonstrated,and a patent of the LEEF Process has also been applied for.
引文
[1]董英,王吉坤,冯桂林.常用有色金属资源开发与加工[M].北京:冶金工业出版社,2005,14-20.
    [2]石道民,杨敖.氧化铅锌矿的浮选[M].昆明:云南科技出版社,1996:4-53.
    [3]戴自希,盛继福,白冶.世界铅锌资源的分布与潜力[M].北京:地震出版社,2005:1-130.
    [4]Mineral Commodity Summaries 2009.
    [5]Mineral Commodity Summaries 2010,2011.
    [6]戴自希.世界铅锌资源的分布、类型和勘查准则[J].世界有色属,2005,3:15-23.
    [7]International Lead and Zinc Study Group, Press Release:15 June 2011.
    [8]柴静.过剩产能将抑制锌价的上涨空间[J].世界有色金属,201 1,O1:57
    [9]国土资源部信息中心.世界矿产资源年评2004-2005[M].北京:地质出版社,2006:163.
    [10]马茁卉.我国锌资源形势分析及可持续利用[J].当代经济,2010,20:94-96.
    [11]彭容秋.锌冶金[M].长沙:中南大学出版社,2005:2-118.
    [12]陈永海.低品位氧化锌矿直接提锌工艺研究[D].中南大学,2005.
    [13]安泰科研究http://www.metalchina.com/.
    [14]奚牲.世界铅锌资源开发现状及其利用[J].中国金属通报,2009(37):32-33.
    [15]刘璠.2009年锌市场分析及2010年展望[J].中国铅锌锡锑,2010,2:22-31.
    [16]上海金属网http://www.shmet.com/Comment/Detail.aspx?id=97837.
    [17]胡熙庚.有色金属硫化矿选矿[M].冶金工业出版,1992:198.
    [18]蔡有兴,杨倩.我国铅锌矿产资源开发综合利用现状及发展前景[J].矿产保护与利用,1991,2:16-20.
    [19]胡岳华,徐竞,罗超奇等.菱锌矿/方解石胺浮选溶液化学研究[J].中南工业大学学报,1995,05:589-594.
    [20]Marabini A M.氧化铅锌矿的浮选[J].国外金属矿选矿,1990,5(7):1-11.
    [21]段秀梅,罗琳.氧化锌矿浮选研究现状评述[J].矿冶,2000,9(4):47-51.
    [22]M.Irannajad. The effect of reagents on selective flotation of smithsonite-calcite-quartz[J].Minerals Engineering,2009,22(9-10),766-771.
    [23]胡岳华,王淀佐.孔雀石/菱锌矿浮选溶液化学研究[J].有色金属,1996,48(2):40~44.
    [24]刘开宇,张平民.CSFA对锌氧化矿物的捕收性能及其机理研究[J].矿冶工程,2001,10(1):31-35.
    [25]李江涛,刘全军.某氧化锌矿浮选试验研究[J].有色金属(选矿部分),2002,(2):23-25.
    [26]邱允武等.新型螯合捕收E-5浮选氧化锌的研究[J].有色金属,2007,(4):43-46.
    [27]王仁东等.氧化锌矿全泥浮选新药剂工业试验研究[J].有色金属,2008,(3):46-48.
    [28]M. Baibaro. Comparison of Pb-Zn selective collectors using statistical methods[J]Mnerals Engineering, 1999,12,(4),355-366.
    [29]孙传尧.当代世界的矿物加工技术与装备—第十届选矿年评[M].北京:北京科学出版社,2006.
    [30]冯其明,张国范.氧化锌矿原浆浮选新技术[J].中国基础科学,2011,1:25-27.
    [31]蒋继穆.我国锌冶炼现状及近年来的技术进展[J].中国有色冶金2006,(5):19-23.
    [32]郭天立,高良宾.当代竖罐炼锌技术述评[J].中国有色冶金,2007,2(1):5-7.
    [33]陈锐,李淑艳,郭天立.竖罐炼锌生产的强化途径分析[J].有色冶炼,2003,32(3):6-9.
    [34]高良宾.葫芦岛锌厂竖罐炼锌70年回望[J].中国有色冶金,2007,2(1):1-4.
    [35]杜德军.竖罐炼锌炉的改进[J].有色矿冶,2004,20(1):43-46.
    [36]傅志华,蒋绍坚.竖罐蒸馏炼锌的节能技术[J].冶金能源,1995,14(2):32-35.
    [37]王志刚.用铅锌密闭鼓风炉替代竖罐炼锌工程设计[J].四川有色金属,2003(1):32-35.
    [38]王华,田海军.密闭鼓风炉炼锌工艺实践[J].有色冶金设计与研究[J].2009,30(5):24-26.
    [39]舒见义.I.S.P工艺替代竖罐炼锌研究[J].湖南有色金属,2003,19(2):21-24.
    [40]杨大锦,朱华山,陈加希.湿法提锌工艺与技术[M].北京:冶金工业出版社,2007:59-61.
    [41]张乐如.铅锌冶炼新技术[M].湖南科学技术出版社,2006:25.
    [42]李龙生.电炉炼锌工艺及炉龄问题的探讨[J].有色金属,2001,(1):14-15.
    [43]陈德喜,段立强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003(2):20-25.
    [44]王振岭.电炉炼锌[M].北京:冶金工业出版社,2001:390-399.
    [45]梅光贵.湿法炼锌学[M].中南大学出版社,2001:1-279.
    [46]刘洪萍.锌湿法冶金工艺概述[J].金属世界,2009(5):53-57.
    [47]蒋继穆.我国铅锌冶炼现状与持续发展[J].中国有色金属学报,2004,14(5):52-62.
    [48]赵巨宏,金忠.高温高酸浸出-黄钾铁矾工艺改进实践[J].甘肃冶金,2003,25(增刊):79-81.
    [49]重有色金属冶炼设计手册:铅锌铋卷[M].北京有色冶金设计研究总院等编,1996:285.
    [50]金忠.热酸浸出-黄钾铁矾工艺的改进与实践[J].有色冶炼,2002(1):9-11.
    [51]何醒民.我国湿法炼锌技术的发展与展望[J].工程设计与研究,2005,(118):24-28.
    [52]胡鹏飞.湿法炼锌的热酸浸出工艺流程综述[J].工程设计与研究,1998,(99):12-16.
    [53]刘三平,王海北,蒋开喜等.中国湿法炼锌的新进展[J].矿冶,2009,18(4):25-28.
    [54]赵永,蒋开喜,王德全等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁[J].有色金属,2005(5):13-15.
    [55]梁田长康.饭岛冶炼厂浸出渣工序的增强[J].有色冶炼,1992,(4):44-49.
    [56]陈智和,何醒民.锌精矿氧压浸出技术[J].湖南有色金属,2002,18(1):26-28.
    [57]骆建伟.锌精矿氧压浸出工艺浅述[J].工程设计与研究,2006,(119):4-6.
    [58]高保军.锌冶炼技术现状及发展探讨[J].中国有色冶金2008,3:12-16.
    [59]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65.
    [60]陈锋.谈谈锌氧化矿的直接酸浸[J].有色金属设计,2002,29(3):4-7.
    [61]李存兄,魏昶,樊刚等.高硅氧化锌矿加压酸浸处理[J].中国有色金属学报,2009,19(9):1678-1684.
    [62]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金,2005,(4):32-35.
    [63]周德,林窦明,陈世明.高硅氧化锌矿全湿法冶炼工艺的研究,应用与发展[J].有色金属(冶炼部分)1995,3:1-6.
    [64]东北工学院有色重金属冶炼教研室等编著.锌冶金[M].北京:冶金工业出版社,1978:374-384.
    [65]徐鑫坤,魏昶.锌冶金学[M].昆明:云南科技出版社,1996:84-108.
    [66]Nasi J. Statistical Analysis of Cobalt Removal from Zinc Electrolyte Using the Arsenic-activated Process[J]Hydrornetallurgy,2004,73(1/2):123-132.
    [67]Lew R W, Dreisinger D B, Gonzales-Dominguez J A. The Removal of Cobalt from Zinc Silphate Electrolyte Using the Copper-Antimony Process:Kinetics. Mechanism and Morphological Characterisation [A]. Matthew I G. World Zinc'93:Proceedings of the international Symposium on Zinc[C] Hobart:Australasian Institute of Mining and Metallurgy,1993,227-240.
    [68]Nelson A. Novel Activators in Cobalt Removal from Zinc Electrolyte by Cementation[D].Montreal:McGill University,1999,15-22.
    [69]VanderPas V, Dreisinger D.B. A Fundamental Study of Cobalt Cementation by Zinc Dust in the Presence of Copper and Antimony Additives[J].Hydrometallurgy,1996,43(1/3):187-205.
    [70]Boyanov B, Konareva V, Kolev N. Purification of Zinc Sulfate Solutions from Cobalt and Nickel through Activated Cementation[J].Hydrometallurgy,2004,73(1/2):163-16.
    [71]李夏湘.硫酸锌溶液净化流程的选择与实践[J].湖南有色金属,2000,4:17-19.
    [72]颜炜.湿法炼锌中电解过程添加剂的选择[J].四川有色金属,2004,2:40-42.
    [73]李若贵.我国铅锌冶炼工艺现状及发展[J].中国有色冶金,2010,6:13-20.
    [74]周廷熙.兰坪氧化铅锌矿的处理工艺探讨[J].国外金属矿选矿,2004,4:10-18.
    [75]杜挺,邓开文.钢铁冶炼新工艺[M].北京:北京大学出版社,1994.
    [76]伊藤聪,阿座上竹四.资と源素材[M].1988,104(5):297-402.
    [77]Rankin WJ, Wright S. The reduction of zinc from slags by an Iron-carbon melt [J].Metallurgical and materials transactions B,1990,Vol.21B(10):885-897.
    [78]Donald J R, Pickles C A. A kinetic study of the reaction of Zinc oxide with iron powder[J].Metallurgical and Materials Transactions B,1996,Vol.27B(6):363-373.
    [79]张丙怀.钢铁厂含锌铅粉尘中锌铅分离理论及实践[J].有色金属(冶炼部分),2002,1:7-11.
    [80]郭光平,古文全,吴健.高炉含锌烟尘还原挥发处理技术[J].贵州科学,2010,28(4):105-107.
    [81]郭兴忠等.氧化锌矿火法处理新工艺-铁浴熔融还原法[J].有色冶炼,2002,2:18-22
    [82]Abdel-Aal E.A. kinetics of sulfuric acid of low-grade zinc silicate ore[J]. Hydrometallurgy,2000,55:247-254.
    [83]A.D.Souza etal. Effect of iron in zinc silicate concentrate on leaching with sulphuric acid[J] Hydrometallurgy,2009,95:207-214.
    [84]麦振海.低品位高硅氧化锌矿加压浸出试验研究[D].昆明,昆明理工大学,2006.
    [85]陈远望.氧化锌矿溶剂萃取-电积工艺实现工业化[J].世界有色金属,2003,9:66.
    [86]杨龙.溶剂萃取-传统湿法炼锌工艺联合处理氧化锌矿[J].中国有色冶金,2007,4:16-18,62.
    [87]Jean Frenay. Leaching of oxided zinc ores in various media[J]. Hydrometallurgy,1985(15): 243-253.
    [88]刘三军,欧乐明,冯其明.氧化锌矿的碱法浸出研究[J].矿产保护与利用,2004,(4):39-43.
    [89]CHEN Ai-liang,ZHAO Zhong-wei. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J].Hydrometallurgy,2009,97 (3-4):228-232.
    [90]刘清,赵由才,招国栋.氢氧化钠浸出-两步沉淀法制备铅锌精矿新工艺[J].湿法冶金,2010,29(1):32-36.
    [91]赵中伟等.氧化锌矿的碱浸出[J].中南大学学报(自然科学版),2010,1:39-43.
    [92]Hissel J, Frenay J, Herman J. Pilot study of a caustic soda treatment process for reducing the zinc and lead content of waste products of waste products from iron-steel and steel-making
    process[C].//Proceedings of the Process Technology Conference.Washington DE,1980:178-183.
    [93]张承龙,刘清,赵由才等.碱浸电解生产金属锌粉技术[J].有色金属,2008,60(3):66-69.
    [94]张保平,唐谟堂.氨浸法在湿法炼锌中的优点及展望[J].江西有色金属,2001,15(4):27-28.
    [95]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报(自然科学版),2003,34(6):619-623.
    [96]王瑞祥,唐谟堂,刘维等.NH3-NH4Cl-H2O体系浸出低品位氧化锌矿制取电锌[J].过程工程学报,2008,(8):221-224.
    [97]王成彦,江培海.云南中低品位氧化锌矿及元江镍矿的合理开发利用[J].中国工程科学,2005,7(增刊):147-150,206.
    [98]王延忠,朱云,胡汉.从氨浸出液中萃取锌的试验研究[J].有色金属,2004,56(1):37-39
    [99]Alguacil F J, M. Alonso. The effect of ammonium sulphate and ammonia on the liquid-liquid extraction of zinc using Lix54[J].Hydrometallurgy,1999,53(2):203-209.
    [100]蒋崇文,罗艺,钟宏.低品位氧化锌矿氨-碳酸氢铵浸出制备氧化锌工艺的研究[J].精细化工中间体,2010,3(40):53-56,69.
    [101]邵广全,李颖,张心平等.低品位复杂难处理氧化铅锌矿选矿工艺研究[J].矿冶,2006,15(3):21-26.
    [102]Onal G, Bulut G Flotation of Aladag oxide lead-zinc ores[J]Mneral Engineering.2005.18:279-282.
    [103]Marabini A M, Ciriachi M. Chelating reagents for flotanon[J].Mineral Engineering,2007,20:1014-1025.
    [104]Hosseini S H,Forssberg E.Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector Mineral Engineering,2007,20:621-624.
    [105]蒋明华.兰坪低品位氧化铅锌矿矿冶新工艺研究[D].昆明,昆明理工大学,2007.
    [106]Yong Li, Ji-kun Wang, Chang Wei etal. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur[J].Minerals Engineering,2010,23(7):563-566.
    [107]王玉芳,谭欣,王海北等.低品位氧化锌矿处理新工艺研究[J].矿冶,2010,19(1):44-46,56.
    [108]李以圭,费维扬,杨基础.液-液萃取过程和设备(修订版)[M].北京:原子能出版 社,1993:1-39.
    [109]高自立,孙思修,沈静兰.溶剂萃取化学[M].北京:科学出版社,1991:1-275.
    [110]王开毅,成本诚,舒万银.溶剂萃取化学[M].长沙:中南大学出版社,1991:33-213.
    [111]马荣骏.萃取冶金[M].北京:冶金工业出版社,2009:5-571.
    [112]G.M. Ritcey and A.W. Ashbrook. Solvent Extraction: Principles and Applicationsto Process Metallurgy [M].2volumes,Elsevier, Amsterdam.1979,1984.
    [113]马荣骏.溶剂萃取在湿法冶金中的应用[M].冶金工业出版社,1979.
    [114]M.S. Prasad, V P Kenven and D.N. Assar. Dvelopment of SX-EW Process for Copper Recovery--An Overview [J].Mineral Processing and Extractive Metallurgy Review,1992,8:95-118.
    [115]Gary A. Kordosky. Copper Solvent Extraction.:The State of the Art[J]. Jom,1992(3):40-45.
    [116]Nathaniel Arbiter, Archie W.Fletcher. Copper hydrometallurgy evolution and milestones [J]. Mining Engineering,1994(2):118-123.
    [117]刘大星,蒋开喜,王成彦.铜湿法冶金技术的现状及发展趋势[J].有色冶炼,2000(8):1-5.
    [118]Akash Deep, Jorge M. R. de Carvalho. Review on the Recent Developments in the Solvent Extraction of Zinc[J]. Solvent Extraction and Ion Exchange,2008,26(4):375-404.
    [119]兰兴华.锌溶剂萃取进展[J].世界有色金属,2004(8):28-31.
    [120]B.Himmi,B.Messnaoui,S.Kitane,etal. Study of Zn(Ⅱ)xaction by 5-azidomethyl-8-hydroxyquinoline:Experiment and modelling [J].Hydrometallurgy,2008, 93(1-2):39-44.
    [121]N.A. Sayar, M. Filiz, A.A. Sayar. Extraction of Zn(Ⅱ) from aqueous hydrochloric acid solutions into Alamine 336-m-xylene systems. Modeling considerations to predict optimum operational conditions[J]. Hydrometallurgy,2007,86(1-2):27-36.
    [122]吴贤文,尹周澜,刘春轩等.LIX84和LIX54混合萃取剂从氨性溶液中萃取锌的研究[J].中南大学学报(自然科学版),2011,42(3):605-609.
    [123]何静,黄玲,陈永明.新型萃取剂YORS萃取Zn(II)-NH3配合物体系中的锌[J]中国有色金属学报,2011,21(3):687-693.
    [124]Nogueira E O, Regife J M, Blythe P M. Chem. and Ind.1980,19:63.
    [125]雷金玲,李洲,秦军.用P204萃取分离锌镉的工艺研究[J].有色金属(冶炼部分):1988,(5):37-40.
    [126]江涛.溶剂萃取在湿法炼锌中的应用及进展[J].有色金属(冶炼部分):1989,(2):37-39.
    [127]Lakshmanan V I.etal. Proc. Int. Solvent Extr.Conf,1974,2:1169.
    [128]Rice N M, Smith M R.Can.Met.Quart.,1973,12:341.
    [129]Lakshmanan V Letal. Proc. Int. Solvent Extr.Conf,1974,2:1169.
    [130]麦若夫.萃取手册(第二卷)用胺、胺盐和季胺盐的萃取.袁承业等译.[M].北京:原子能出版社,1982.
    [131]舒毓璋.锌溶剂萃取漫谈[C].//中国有色金属学会重有色金属冶金学术委员会.锌加压浸出工艺与装备国产化及液态铅渣直接还原专题研讨会论文集.云南省,昆明市:云南省科技出版社,2009:32
    [132]Rao K.S., Sahoo P.K., Jena P.K. Extractions of zinc from ammoniacal solutions by Hostarex DK-16[J]. Hydrometallurgy,1992,31(1-2):91-100.
    [133]陈浩,朱云,胡汉Zn-NH3-H2O体系中LIX54萃取锌[J].有色金属,2003,55(3):50-51.
    [134]Weng Fu,Qiyuan Chen,Qian Wu.etal.Solvent extraction of zinc from amrnoniacal/ammonium chloride solutions by asterically hindered P-diketone and its mixture with tri-n-octylphosphine oxide[J].Hydrometallurgy,2010,100(3-4):116-121.
    [135]饶天龙.云南铅锌资源基本特征及超大型铅锌矿床找矿前景[J].中国矿业,2008,3:107-110.
    [136]姚耀春,朱云,王平.难选氧化锌矿氨浸过程热力学分析[J].有色金属,2004,56(3):49-51
    [137]Limpo,J., Luis,A., Cristina, M. Hydrolysis of zinc chloride in aqueous ammoniacal ammonium chloride solutions[J].Hydrometallurgy,1995,38(3):235-243.
    [138]Harvey, T.G. The hydrometallurgical extraction of zinc by ammonium carbonate: A review of the Schnabel process[J].Mineral Processing and Extractive Metallurgy Review,2006.27(4): 231-279.
    [139]Zhiying Ding, Zhoulan Yin, Huiping Hu,et al. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution[J].Hydrometallurgy,2010,104(2):201-206.
    [140]Dean J A. Lange's handbook of chemistry(15thEd)[M]. New York:McGraw-Hill,1999
    [141]周小兵,代建清,陈辉等Me-NaHCO3NH3-H2O体系和Me-NaOH-NaHCO3-H2O体系的热力学分析[J].无机化学学报,2009,25(4):602-608.
    [142]邵学俊,董平安,魏益海.无机化学(第二版)[M].武汉:武汉大学出版社,2002:142-145.
    [143]傅献彩,沈文霞,姚天扬等.物理化学(第五版)[M].北京:高等教育出版社,2005:343-361.
    [144]李慧君NH3-(NH4)2sO4-H2O体系浸出异极矿的研究[D].长沙.中南大学.2009.
    [145]伊赫桑.巴伦.纯物质热化学手册[M].程乃良译.北京:科学出版社,2003..
    [146]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,2007:154-179.
    [147]王念卫,王成彦,尹飞等.高碱性脉石低品位氧化锌矿低浓度氨浸动力学研究[J].矿冶,2010,19(1):36-39.
    [148]朱云,胡汉,苏云生,杨保民.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,1:81-85.
    [149]WANG Ruixiang, TANG Motang, YANG Shenghai,et al. Leaching kinetics of low grade zinc oxide ore in NH3-NH4CI-H2O system[J] Journal of Central South University of Technology, 2008, (15):679-683.
    [150]《浸矿技术》编委会.浸矿技术[J].北京:原子能出版社,1994:64-65.
    [151]李洪桂等.湿法冶金学[M].长沙:中南大学出版社,1998:76-79.
    [152]科莱恩,麦卡锡.溶剂萃取在铜湿法冶金中的发展和应用[C].//中国有色金属学术铜镍湿法冶金技术交流及应用推广会.中国有色金属学术铜镍湿法冶金技术交流及应用推广
    会论文集.福建省,厦门市:冶金工业出版社,2001:85-110.
    [153]汪家鼎,陈家镛.溶剂萃取手册[M].北京,化学工业出版社,2001:53-430.
    [154]朱屯.国内外羟肟萃取剂与铜萃取工业进展[J].湿法冶金,1986,4:15-20.
    [155]沈庆峰.从低品位氧化锌矿浸出渣中回收锌的工艺研究及其产业化[D].昆明,昆明理工大学.2007.
    [156]F.J. Alguacil, A. Cobo.Extraction of nickel from amrnoniacal/ammonium carbonate solutions using Acorga M5640 in Iberfluid.[J].Hydrometallurgy,1998:143-151.
    [157]杨佼慵,刘大星.萃取[M].北京:冶金工业出版社,1988:7-22.
    [158]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社,1990:417-420.
    [159]朱屯.萃取与离子交换[M].北京:冶金工业出版社,2005:161-205.
    [160]王辉.TBP-煤油从硝酸介质中萃取七价锝的动力学研究[D].北京,中国原子能科学研究院.2007.
    [161]朱屯,李洲.溶剂萃取[M].北京:化学工业出版社,2008:4-35.
    [162]B.B.福明著,张帆译.萃取动力学[M].北京:原子能出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700