原位生物修复硝基苯污染地下水微生物群落结构及修复效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基苯是一种普遍的、高毒性的、地下水中常见的环境有机污染物,已被许多国家列为环境优先控制污染物。硝基苯进入地下水后,可对生态环境造成危害,破坏地下水资源,并通过饮用水或食物链进入人体,造成多种疾病,因此硝基苯污染地下水亟待有效修复。在众多的地下水修复技术中,原位生物修复技术被认为是最具有发展潜力的绿色地下水修复技术。众所周知,硝基苯在好氧环境下或厌氧环境下均可被相应的功能微生物降解。因此,本研究结合实际硝基苯污染地下水的场地特征及微生物群落特点,室内模拟研究了强化自然生物修复和强化人工生物原位修复硝基苯污染地下水效果,并利用变性梯度凝胶电泳(PolymeraseChain Reaction-Denaturing Gradient Gel Electrophoresis, PCR-DGGE)技术和实时荧光定量PCR(Real Time-Fluorescence Quantitative–PCR, RT-FQ-PCR)技术研究了地下水微生物群落结构与功能。
     首先,采样分析了实际硝基苯污染地下水微生物群落特性和地下水水化学因子,并用典范对应分析(Canonical CorrespondenceAnalysis, CCA)和相关性分析研究了环境因子与微生物群落间的关系。结果表明,硝基苯污染地下水中存在一定丰度的生物量,包括细菌、放线菌、酵母菌、霉菌以及真菌等,随着采样点不同微生物丰度存在着较大的差异性;地下水中微生物群落保持良好的多样性,个别物种保持一定的优势度,优势物种包括Acidovorax sp.、Flectobacillus lacus、Pseudomonas corrugata、Rhizobium sp.;在地下水水平方向不同位置,微生物群落结构保持较高的相似性,同时也存在一定的差异;硝基苯污染地下水中微生物含有硝基苯降解关键基因nbzA,除S2、S8、S9三个取样点的nbzA基因丰度较高外,其它各采样点的nbzA基因丰度基本保持同一个水平;nbzA基因的存在亦说明了该地下水中含有硝基苯降解菌。CCA分析结果表明,硝基苯污染地下水中的微生物空间分布与总氮(TN)、硝基苯呈明显的相关性。相关性分析结果表明,可培养微生物丰度与总有机碳(TOC)、pH、SO_4~(2-)和硝基苯等因子呈正相关关系,与F~-、Cl~-、NO_~(2-)以及Cd呈负相关关系;nbzA基因丰度与F~-、Cl~-、硝基苯呈正相关关系,与TOC、pH、NO_~(2-)、SO_4~(2-)、Cd呈负相关关系。
     其次,研究了强化自然生物原位修复硝基苯污染地下水的修复效果及微生物群落结构。激活剂筛选结果表明,乳糖磷酸盐、蛋白胨、牛肉膏对硝基苯污染地下水中的土著微生物具有一定的激活作用,刺激了微生物的生长,硝基苯得到了有效降解和去除。室内模拟激活土著微生物修复硝基苯污染地下水结果表明,自然条件下(未激活)模拟地下水下游硝基苯浓度比原地下水降低了17.20%;乳糖磷酸盐激活后,硝基苯去除率达到62.05%;蛋白胨激活后,硝基苯去除率为74.87%;牛肉膏激活后,硝基苯去除率达到71.27%。乳糖磷酸盐、蛋白胨和牛肉膏激活后,地下水微生物脱氢酶活性、生物量以及生物多样性均得到明显的提高;微生物群落结构发生了较大的变化,优势物种种类也发生了改变,但仍保持一定的同源性;硝基苯降解菌(携带nbzA基因)的相对丰度和生物量均得到明显的提高。以上研究结果表明,投加乳糖磷酸盐、蛋白胨和牛肉膏确实激活了硝基苯污染地下水中的土著微生物,尤其是硝基苯降解菌,并对地下水中硝基苯产生了有效的生物降解作用,激活剂的激活效率顺序为:蛋白胨>牛肉膏>乳糖磷酸盐,但是投加生物激活剂不能将地下水中的硝基苯彻底去除。
     然后,在采用强化人工生物修复硝基苯污染地下水之前,先从实际硝基苯污染地下水中筛选鉴定硝基苯高效降解菌,并对降解菌的降解特性、nbzA基因表达量及降解动力学进行了研究。结果表明,从硝基苯污染的地下水中筛选出一株以硝基苯为唯一碳源和氮源好氧硝基苯降解菌,命名为ZG菌,该菌为革兰氏阴性短杆细菌,初步鉴定为恶臭假单胞菌,含有硝基还原酶基因(nbzA),降解硝基苯遵循半还原代谢途径;ZG菌具有一定的环境变化耐冲击能力,在温度10~30℃、pH4~9、硝基苯初始浓度≤600mg/L的范围内,ZG菌均可有效地降解硝基苯,并且在20℃、pH为7、底物浓度≤300mg/L时,其降解效果最好,硝基苯降解率达到99%以上;随着环境条件(温度和pH)的变化,ZG菌降解硝基苯的关键功能基因nbzA的相对表达量亦随之变化,其变化趋势基本与硝基苯去除效果一致;地下水中铁和锰对ZG菌降解硝基苯效果以及nbzA基因相对表达量有着显著的影响,当Fe~(2+)为低浓度(<5mg/L)时,对nbzA表达基本无影响,高浓度(>25mg/L)时,nbzA表达明显受到抑制;Mn~(2+)浓度在0~15mg/L内,nbzA基因表达量持续上升,说明一定浓度的Mn~(2+)对nbzA基因表达具有促进作用;在实际硝基苯污染地下水环境中,ZG菌的nbzA基因相对表达量要明显高于无机盐培养基,说明该地下水没有抑制nbzA表达的因子,相反可能含有促进因子。动力学研究表明,在初始硝基苯浓度300mg/L以内,ZG菌降解硝基苯符合一级动力学,其半衰期为常数ln(1/2)/K,硝基苯浓度越高,其降解速率越大,否则相反。
     最后,在室内模拟研究了强化人工生物修复技术——投菌法原位修复硝基苯污染地下水效果及微生物群落结构与功能,投菌修复模式分为两种,单一投菌模式和曝气-投菌模式。结果表明,单一投菌修复模式下,修复后地下水硝基苯去除率可达到66.31%,硝基苯残留浓度为10.39mg/L;曝气-投菌修复以后,地下水硝基苯去除率达到89.92%,硝基苯残留浓度低于4.16mg/L;投加ZG菌后,地下水溶解氧浓度比未投菌平均降低了0.85mg/L,说明ZG消耗了地下水中的溶解氧,并且曝气供氧是投菌修复硝基苯污染地下水的关键性因素;ZG菌投加入地下水系统后,可向地下水各个方向迁移,尤其是沿地下水流向迁移趋势最大,水平迁移速率约为0.08m/d,但受水流冲刷和环境营养条件所限制,最终ZG菌在地下水中的生存量基本稳定在1.0×10~5~1.8×10~5cfu/mL;向硝基苯污染地下水单一曝气后,微生物脱氢酶活性提高了76.25%;单一投加ZG菌后,脱氢酶活性提高了82.50%;曝气同时投加ZG菌,微生物脱氢酶活性提高了138.75%~356.25%。PCR-DGGE结果表明,单一曝气明显改变了硝基苯污染地下水微生物群落结构,与天然地下水微生物群落结构相似性仅为42.6%,曝气激活了ZG菌和其它微生物并成为优势物种;单一投菌基本对地下水微生物群落结构影响不大,投菌前后微生物群落结构相似性可达61%;曝气-投菌修复后地下水微生物分布较为相似,并且大量检测到ZG菌的存在,这进一步说明ZG菌能够在地下水中各向迁移并在地下水中保持一定优势度,并且ZG菌的大量投加并没有明显表现出对其它物种的促进或抑制作用。RT-FQ-PCR结果显示,无论是曝气还是投加ZG菌,均能提高地下水微生物nbzA基因的相对丰度和相对表达量,并且硝基苯浓度可能是影响nbzA基因丰度和表达量的关键因素。
     总之,原位生物修复技术包括强化自然生物修复技术和强化人工生物修复技术,是一种经济、可行、有效、绿色的硝基苯污染地下水修复技术。在实际修复过程中,可根据实际情况选择直接强化人工生物修复技术或者采用先强化自然生物修复降低硝基苯浓度后强化人工生物修复的策略。
As a common, high toxicity environmental organic pollutant, nitrobenzene hasbeen detected frequently in organic contaminated groundwater and has been listed asthe environmental priority pollutant by many countries. Nitrobenzene in groundwaterwould result in the damage of ecological environment, destruction of groundwaterresources, and cause human diseases through drinking water or food chain. Based onthese reasons, it is significant to remediate nitrobenzene-contaminated groundwatereffectively. Among all the remediation technologies for groundwater, in-situbioremediation technology is considered as the most potential and green remediationtechnology. As known to all, nitrobenzene can be biodegrade by the correspondingfunctional microorganisms both in aerobic or anaerobic condition. Therefore, thisresearch firstly investigate the microbial community characteristics in actualnitrobenzene-contaminated groundwater, and then study the biostimulation andbioaugmentation methods to bioremediate nitrobenzene-contaminated groundwater inlaboratory. Also PCR-DGGE and RT-FQ-PCR technology were applied to researchthe varieties of microbial community structure and function in groundwater.
     First of all, the microbial community characteristics and water chemical factorsof actual nitrobenzene-contaminated groundwater were investigated, and therelationships between microbial community characteristics and water chemical factorswere studied by CCA and correlation analysis. The results showed that a measuredamount of microorganisms including bacteria, actinomycetes, mould, yeast and fungi,were determined in nitrobenzene-contaminated groundwater and large differences ofbiomass existed among the sampling points. The microbial communities maintained agood diversity and the species including Acidovorax sp., Flectobacillus Lacus,Pseudomonas. Corrugata, Rhizobium sp., took large degrees of dominance in groundwater microbial communities. The similarities among all the microbialcommunities from different sampling points were high but some differences were stillexisted. As the key gene to degrade nitrobenzene according to the partial reductivepathway, gene nbzA were detected in all groundwater samples and the relativeabundances of nbzA were especially high in sample S2, S8and S9, which indicatedthat there existed nitrobenzene-degrading microbes in nitrobenzene-contaminatedgroundwater. The results of CCA showed that obvious correlation were maintainedbetween the distributions of microorganisms and TN, NB. Correlation analysisshowed that the abundances of cultured microbes were positively correlated with thevariables of TOC, pH, SO42-and NB, and negatively correlated with the variables of F-,Cl-, NO2-and Cd. The relative abundances of gene nbzA were positively correlatedwith F-, Cl-and NB, and negatively correlated with TOC, pH, NO2-, SO42-and Cd.
     Secondly, the removal effects of nitrobenzene and the changes of microbialcommunity in groundwater were investigated detailed. The results of screeningbiostimulants showed that lactose-phosphate, peptone, beef extract could enhance thegrowth of indigenous microbes, respectively, and the nitrobenzene in groundwaterwas removed effectively. The results of simulated experiments of in-situbioremediation by biostimulation showed that the removal rate of nitrobenzene ingroundwater could be17.20%under natural condition without adding anybiostimulant,62.05%with lactose phosphate,74.87%with peptone and71.27%withbeef extract. After biostimulation, the microbial dehydrogenase activities, biomassand biodiversities were all increased, microbial community structures changed butstill maintained some homology and the dominant species changed synchronously.The relative abundances of gene nbzA and biomass of nitrobenzene-degradingmicrobes (containing gene nbzA) were improved obviously. Above research resultsdemonstrated that adding lactose-phosphate, peptone and beef extract tonitrobenzene-contaminated groundwater could actually activate the indigenousmicroorganisms, especially nitrobenzene-degrading microbes that had biodegradednitrobenzene in groundwater effectively. The order of biostimulation effects waslactose-phosphate> peptone> beef extract. However, only biostimulation could not remove nitrobenzene completely and a measured amount of nitrobenzene was existedin groundwater.
     Then, nitrobenzene-degrading bacteria were screened from actualnitrobenzene-contaminated groundwater before the experiments of simulatedbioremediation by bioaugmentation. The identification, degradation characteristics,level of nbzA gene expression and degradation kinetics of nitrobenzene-degradingbacteria was also investigated. The results showed that one strain of nitrobenzene-degrading bacterium named as ZG was screened successfully. The ZG strain wasgram-negative short rod bacterium and could utilize nitrobenzene as the sole carbonsource and nitrogen source. The results of16S rDNA sequence analysis showed thatZG strain was most probable Pseudomonas putida. In addition, ZG strain containedgene nbzA encoded nitroreductase and biodegraded nitrobenzene according to thepartial reductive pathway. ZG strain showed a relatively strong bearing capabilityagainst environmental variety. When temperature was maintained in the range of10~30℃, pH4~9, initial concentration of nitrobenzene less than600mg/L, ZG straincould biodegrade nitrobenzene effectively. The best condition for ZG strain degradingnitrobenzene was temperature20℃, pH7, initial concentration of nitrobenzene lessthan300mg/L,then the removal rate of nitrobenzene could be more than99%. Therelative expression of gene nbzA changed with the variety of environmentalconditions (temperature and pH) and the variation trends were same. The relativeexpression of gene nbzA and removal effects of nitrobenzene was influenced by ironand manganese significantly. When the concentration of Fe~(2+)was less than5mg/L,there was nearly no influence on the removal effects of nitrobenzene and the relativeexpression of gene nbzA. If the concentration of Fe~(2+)was more than25mg/L, theretook the opposite results. When the concentration of Mn~(2+)was rising from0mg/L to15mg/L, the removal effects of nitrobenzene and the relative expression of gene nbzAalso increased continuously, which indicated that Mn~(2+)in the range of0~15mg/Lwould enhance the relative expression of gene nbzA of ZG strain. In the actualnitrobenzene-contaminated groundwater, the relative expression of gene nbzA of ZGstrain was higher that in mineral medium, which suggested that there would be no inhibiting factor for the nbzA gene expression. On the contrary, there may be somepromoting factors. The results of degrading-kinetics showed that it corresponded tothe first-order kinetics for ZG strain to degrade nitrobenzene and the half-life was ln(1/2)/K, which indicated that nitrobenzene concentration is higher then the removaleffect is better.
     Finally, laboratory-scale study on in-situ bioremediation of nitrobenzene-contaminated groundwater by bioaugmentation was carried out and the remediationeffects and microbial communities were investigated detailed. Two modes ofbioaugmentation including adding ZG strain to groundwater solely and combinedaeration and adding ZG strain, were operated respectively. The results showed that theremoval rate of nitrobenzene in groundwater could reach66.31%and the residualnitrobenzene was about10.39mg/L after bioremediation with the mode of adding ZGsolely. While the removal rate of nitrobenzene could reach89.92%and the residualnitrobenzene was below4.16mg/L after bioremediation with the mode of combinedaeration and adding ZG strain. After adding ZG strain, the concentrations of dissolvedoxygen in groundwater were0.85mg/L less on average than that before adding ZGstrain, which meant that ZG strain consumed dissolved oxygen which was the keyfactor for in-situ bioremediation with bioaugmentation. ZG strain could migrate torandom direction, especially along the groundwater flow direction, the horizontalmigration rate could reach0.08m/d. The final concentration of ZG strain ingroundwater was about1.0×10~5~1.8×10~5cfu/mL because of groundwater scouringand limited microbial environmental nutrition condition. Compared with the naturalgroundwater, the microbial dehydrogenase activity in groundwater was increased by76.25%with single aeration,82.50%with single adding ZG strain,138.75%~356.25%with combined aeration and adding ZG strain. PCR-DGGE results showedthat the microbial community structure had been changed significantly by singleaeration, and the similarity of microbial community structure between before and aftersingle aeration was only42.6%. After single aeration, in indigenous ZG strain andother microbial species were activated and became the dominant species. There waslittle changes for groundwater microbial communities structure with adding ZG strain along, and the similarity of microbial community structure between before and aftersingle adding ZG strain could reach up to61%. After remediation by combinedaeration and adding ZG strain, the microbial distribution in whole simulatedgroundwater system was similar and a measured abundance of ZG strain was detected,which also indicated that ZG strain actually had migrated and kept certain abundancein groundwater. What’s more, there was no obvious promoting or inhabiting effect tothe other species in groundwater with adding large number of ZG strain. TheRT-FQ-PCR results showed that both aeration and adding ZG strain could improve therelative abundance of gene nbzA and its relative expressions. Moreover, theconcentration of nitrobenzene may be the key factor to affect the relative abundanceand expression of gene nbzA.
     In conclusion, in-situ bioremediation technology including biostimulation andbioaugmentation was an economic, practical, efficient and green remediationtechnology for nitrobenzene-contaminated groundwater. In the actual remediationprocess, according to the actual situation of contaminated site, it could choosebioaugmentation method directly or choose the sequencing batch craft of combinedbiostimulation and bioaugmentation.
引文
[1]王晓丽.硝酸盐污染地下水微生物原位修复模拟研究[D].合肥工业大学,2010.
    [2] Reddy K. J., Lin J. P. Nitrate removal from groundwater using catalyticreduction[J]. Water Research,2000,34(3):995-1001.
    [3]赵康.地下水中挥发性有机污染物的原位气相生物修复新型技术研究[D].华东理工大学,2011.
    [4] Chen Z., Huang G. H.,Chakma A. Hybrid fuzzy-stochastic modeling approach forassessing environmental risks at contaminated groundwater systems[J]. Journalof Environmental Engineering-ASCE,2003,129(1):79-88.
    [5]罗智锋.渗透反应格栅技术去除地下水氨氮模拟实验[D].中国地质大学(北京),2011.
    [6]李娜.零价铁还原处理模拟地下水中三氯乙烯研究[D].华东理工大学,2010.
    [7]徐慧.改性壳聚糖吸附地下水中重金属的试验研究[D].上海交通大学,2011.
    [8]李雅. Fe0-PRB修复地下水中铬铅复合污染的研究[D].西北农林科技大学,2011.
    [9]薛禹群,张幼宽.地下水污染防治在我国水体污染控制与治理中的双重意义[J].环境科学学报,2009,29(3):474-481.
    [10]于纪玉.水市场与水资源的优化配置[J].水资源保护,2004,(5):67-68.
    [11] Rajmohan Natarajan, Al-Futaisi Ahmed, Al-Touqi Said. Geochemical processregulating groundwater quality in a coastal region with complex contaminationsources: Barka, Sultanate of Oman[J]. Environmental Earth Sciences,2009,59(2):385-398.
    [12] Singh Raj Kumar, Datta Manoj, Nema Arvind Kumar. A new system forgroundwater contamination hazard rating of landfills[J]. Journal ofEnvironmental Management,2009,91(2):344-357.
    [13] Boving Thomas B., Stolt Mark H., Augenstern Janelle, et al. Potential forlocalized groundwater contamination in a porous pavement parking lot setting inRhode Island[J]. Environmental Geology,2008,55(3):571-582.
    [14] Cui Xue-Hui, Li Bing-Hua,Chen Hong-Han. Contamination characteristics andpollutant sources analysis on PAHs in shallow groundwater in suburb of Taihuplain[J]. Journal of Environment Science,2008,29(7):1806-1810.
    [15] Jindal Tanu. Risk assessment of groundwater contamination by imidaclopridleaching in different types of soils[J]. Abstracts of Papers of the AmericanChemical Society,2006,(232):634-634.
    [16]刘菲,王苏明,陈鸿汉.欧美地下水有机污染调查评价进展[J].地质通报,2010,29(06):907-917.
    [17]赵勇胜.地下水污染场地污染的控制与修复[J].吉林大学学报(地球科学版),2007,(02):303-310.
    [18]刘秀丽.地下水中BTEX的迁移规律及其原位生物修复技术研究[D].天津大学,2010.
    [19] Juhler R. K., Felding G. Monitoring methyl tertiary butyl ether (MTBE) and otherorganic micropollutants in groundwater: Results from the Danish NationalMonitoring Program[J]. Water Air and Soil Pollution,2003,149(1-4):145-161.
    [20] Althoff K., Mundt M., Eisentraeger A., et al. Microcosms-experiments to assessthe potential for natural attenuation of contaminated groundwater[J]. WaterResearch,2001,35(3):720-728.
    [21]吕华,马振民.某研究区地下水石油类污染的调查与预测[J].有色金属,2005,(02):145-149.
    [22]马振民,于玮玮,吕华.地下水系统石油烃污染研究进展[J].矿冶,2008,17(04):64-68.
    [23]王志强,武强,邹祖光,等.地下水石油污染曝气治理技术研究[J].环境科学,2007,(04):4754-4760.
    [24]张加双,杨悦锁,杜新强,等.石油污染场地地下水污染健康风险评估[J].安徽农业科学,2010,38(36):20887-20890.
    [25]王玉梅,党俊芳.油气田地区的地下水污染分析[J].地质灾害与环境保护,2000,11(3):271-273.
    [26]冉德发,王建增.石油类污染地下水的原位修复技术方法论述[J].探矿工程(岩土钻掘工程),2005,(6):208.
    [27] Bau Domenico A., Mayer Alex S. Optimal design of pump-and-treat systemsunder uncertain hydraulic conductivity and plume distribution[J]. Journal ofContaminant Hydrology,2008,100(1-2):30-46.
    [28] Ko Nak-Youl, Lee Kang-Kun. Information effect on remediation design ofcontaminated aquifers using the pump and treat method[J]. StochasticEnvironmental Research and Risk Assessment,2010,24(5):649-660.
    [29] Singh Thangjam Somchand, Chakrabarty Dibakar. Multiobjective Optimizationof Pump-and-Treat-Based Optimal Multilayer Aquifer Remediation Design withFlexible Remediation Time[J]. Journal of Hydrologic Engineering,2011,16(5):413-420.
    [30] Karn Barbara, Kuiken Todd, Otto Martha. Nanotechnology and in situremediation: a review of the benefits and potential risks[J]. Environmental healthperspectives,2009,117(12):1813-1831.
    [31] Wang Li-Qun, Luo Lei, Ma Yi-Bing, et al. In situ immobilization remediation ofheavy metals-contaminated soils: a review[J]. Journal of Applied Ecology,2009,20(5):1214-1222.
    [32] Mater L., Sperb R. M., Madureira L. A. S., et al. Proposal of a sequentialtreatment methodology for the safe reuse of oil sludge-contaminated soil[J].Journal of Hazardous Materials,2006,136(3):967-971.
    [33] Alvarez Pedro J. J., Hunt Craig S. The effect of fuel alcohol on monoaromatichydrocarbon biodegradation and natural attenuation[J]. Revista latinoamericanade microbiologia,2002,44(2):83-104.
    [34] Serrano Antonio, Gallego Mercedes, Luis Gonzalez Jose. Assessment of naturalattenuation of volatile aromatic hydrocarbons in agricultural soil contaminatedwith diesel fuel[J]. Environmental Pollution,2006,144(1):203-209.
    [35] Zamfirescu D., Grathwohl P. Occurrence and attenuation of specific organiccompounds in the groundwater plume at a former gasworks site[J]. Journal ofContaminant Hydrology,2001,53(3-4):407-427.
    [36] Khan F. I., Husain T. Risk-based monitored natural attenuation—a case study[J].Journal of Hazardous Materials,2001,85(3):243-272.
    [37] McCray J. E. Mathematical modeling of air sparging for subsurface remediation:state of the art[J]. Journal of Hazardous Materials,2000,72(2-3):237-263.
    [38] Kabelitz Nadja, Machackova Jirina, Imfeld Gwenael, et al. Enhancement of themicrobial community biomass and diversity during air sparging bioremediationof a soil highly contaminated with kerosene and BTEX[J]. Applied Microbiologyand Biotechnology,2009,82(3):565-577.
    [39] Adams Jeffrey A., Reddy Krishna R., Tekola Lue. Remediation of ChlorinatedSolvent Plumes Using In-Situ Air Sparging-A2-D Laboratory Study[J].International Journal of Environmental Research and Public Health,2011,8(6):2226-2239.
    [40] Schubert Michael, Schmidt Axel, Mueller Kai, et al. Using radon-222asindicator for the evaluation of the efficiency of groundwater remediation by insitu air sparging[J]. Journal of Environmental Radioactivity,2011,102(2):193-199.
    [41] Lin Chen H., Kuo M. C. Tom, Fan Kai C., et al. Pilot study on contact efficiencyof gaseous and misty substrates through in situ sparging[J]. Journal of ChemicalTechnology and Biotechnology,2009,84(10):1456-1460.
    [42] Aivalioti Maria V.,Gidarakos Evangelos L. In-well air sparging efficiency inremediating the aquifer of a petroleum refinery site[J]. Journal of EnvironmentalEngineering and Science,2008,7(1):71-82.
    [43] Al-Maamari R. S., Hirayama A., Sueyoshi M. N., et al. The Application ofAir-sparging, Soil Vapor Extraction and Pump and Treat for Remediation of aDiesel-contaminated Fractured Formation[J]. Energy Sources Part a-RecoveryUtilization and Environmental Effects,2009,31(11):911-922.
    [44] Lari K. Sookhak, Safavi H. A Simulation-Optimization Model for "Air Sparging"and "Pump and Treat" Groundwater Remediation Technologies[J]. Journal ofEnvironmental Informatics,2008,12(1):44-53.
    [45]邓海静.地下水石油烃生物降解特性及室内模拟修复效果研究[D].吉林大学,2011.
    [46] Ahmad Farrukh, Schnitker Stephen P., Newell Charles J. Remediation of RDX-and HMX-contaminated groundwater using organic mulch permeable reactivebarriers[J]. Journal of Contaminant Hydrology,2007,90(1-2):1-20.
    [47] Choi Jeong-Hak, Kim Young-Hun,Choi Sang June. Reductive dechlorination andbiodegradation of2,4,6-trichlorophenol using sequential permeable reactivebarriers: Laboratory studies[J]. Chemosphere,2007,67(8):1551-1557.
    [48] Kao C. M., Chen S. C., Wang J. Y., et al. Remediation of PCE-contaminatedaquifer by an in situ two-layer biobarrier: laboratory batch and column studies[J].Water Research,2003,37(1):27-38.
    [49] Lu Xiaoxia, Wilson John T., Shen Hai, et al. Remediation of TCE-contaminatedgroundwater by a permeable reactive barrier filled with plant mulch (Biowall)[J].Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances&Environmental Engineering,2008,43(1):24-35.
    [50]王显胜.组合型化学与生物反应带修复硝基苯、苯胺复合污染地下水研究[D].吉林大学,2011.
    [51] Lin C. H., Kuo M. C. Tom, Sip C. Y., et al. A nutrient injection scheme for in situbio-remediation[J]. Journal of Environmental Science and Health Parta-Toxic/Hazardous Substances&Environmental Engineering,2012,47(2):280-288.
    [52] McKeever Robert, Sheppard Diane, Nusslein Klaus, et al. Biodegradation ofethylene dibromide (1,2-dibromoethane EDB) in microcosms simulating in situand biostimulated conditions[J]. Journal of Hazardous Materials,2012,(209-210):92-8.
    [53] Aburto Arturo, Peimbert Mariana. Degradation of a benzene-toluene mixture byhydrocarbon-adapted bacterial communities[J]. Annals of Microbiology,2011,61(3):553-562.
    [54] Fayolle-Guichard Francoise, Durand Jonathan, Cheucle Mathilde, et al. Study ofan aquifer contaminated by ethyl tert-butyl ether (ETBE): Site characterizationand on-site bioremediation[J]. Journal of Hazardous Materials,2012,(201):236-243.
    [55] Guerin T. F., Horner S., McGovern T., et al. An application of permeable reactivebarrier technology to petroleum hydrocarbon contaminated groundwater[J].Water Research,2002,36(1):15-24.
    [56]苑文颖.地下水及土壤污染现场强化生物恢复技术[J].中国给水排水,2000,16(7):46-49.
    [57] Cunningham J. A., Rahme H., Hopkins G. D., et al. Enhanced in situbioremediation of BTEX contaminated groundwater by combined injection ofnitrate and sulfate[J]. Environmental Science&Technology,2001,35(8):1663-1670.
    [58] Anderson R. T., Vrionis H. A., Ortiz-Bernad I., et al. Stimulating the in situactivity of Geobacter species to remove uranium from the groundwater of auranium-contaminated aquifer[J]. Applied and Environmental Microbiology,2003,69(10):5884-5891.
    [59] Martinez-Pascual Eulalia, Jimenez Nuria, Vidal-Gavilan Georgina, et al.Chemical and microbial community analysis during aerobic biostimulationassays of non-sulfonated alkyl-benzene-contaminated groundwater[J]. AppliedMicrobiology and Biotechnology,2010,88(4):985-995.
    [60] Nyyssonen Mari, Kapanen Anu, Piskonen Reetta, et al. Functional genes revealthe intrinsic PAH biodegradation potential in creosote-contaminated groundwaterfollowing in situ biostimulation[J]. Applied Microbiology and Biotechnology,2009,84(1):169-182.
    [61] Farrell A.,Quilty B. The enhancement of2-chlorophenol degradation by a mixedmicrobial community when augmented with Pseudomonas putida CP1[J]. WaterResearch,2002,36(10):2443-2450.
    [62] Bastiaens Leen, Simons Q., Boenne W., et al. Bioaugmentation to remediateMethyl tert-Butyl Ether (MTBE) Contaminated groundwaters: from lab to pilotscale[C]. Remediation Concepts&Technologies,2008,219.
    [63] Maes Ann, van Raemdonck Hilde, Smith Katherine, et al. Transport and activityof Desulfitobacterium dichloroeliminans strain DCA1during bioaugmentation of1,2-DCA-contaminated groundwater[J]. Environmental Science&Technology,2006,40(17):5544-5552.
    [64] Smith A. E., Hristova K., Wood I., et al. Comparison of biostimulation versusbioaugmentation with bacterial strain PM1for treatment of groundwatercontaminated with methyl tertiary butyl ether (MTBE)[J]. Environmental HealthPerspectives,2005,113(3):317-322.
    [65] Wenderoth D. F., Rosenbrock P., Abraham W. R., et al. Bacterial communitydynamics during biostimulation and bioaugmentation experiments aiming atchlorobenzene degradation in groundwater[J]. Microbial Ecology,2003,46(2):161-176.
    [66] Teerakun Mullika, Reungsang Alissara, Lin Chien-Jung, et al. Coupling of zerovalent iron and biobarriers for remediation of trichloroethylene in groundwater[J].Journal of Environmental Sciences,2011,23(4):560-567.
    [67]沈吉敏,陈忠林,李学艳,等. O3/H2O2去除水中硝基苯效果与机理[J].环境科学,2006,27(9):1791-1797.
    [68] Partha Sarathi Majumder, S. K. Gupta. Hybrid reactor for priority pollutantnitrobenzene removal[J]. Water Research,2003,37:4331-4336.
    [69]邵云,高士祥,杨彬,等. HP-β-CD对不动杆菌降解高浓度硝基苯的影响[J].环境科学学报,2004,(04):690-695.
    [70] Qingdong Qin, Jun Ma, Ke Liu. Adsorption of nitrobenzene from aqueoussolution by MCM-41[J]. Journal of Colloid and Interface Science,2007,315:80-86.
    [71]董娅玮,杨胜科,王文科,等.掺杂纳米TiO2光催化氧化处理硝基苯废水研究[J].人民长江,2008,39(18):35-37.
    [72] Wang Aimin, Hu Chun, Qu Jiuhui, et al. Phototransformation of nitrobenzene inthe Songhua River: Kinetics and photoproduct analysis[J]. Journal ofEnvironmental Sciences,2008,20:787-795.
    [73]郑金来,李君文,晁福寰.苯胺、硝基苯和三硝基甲苯生物降解研究进展[J].微生物学通报,2001,28(5):85-88.
    [74] zlem Selcuk Kuscu, Delia Teresa Sponza. Effect of increasing nitrobenzeneloading rates on the performance of anaerobic migrating blanket reactor andsequential anaerobic migrating blanket reactor/completely stirred tank reactorsystem[J]. Journal of Hazardous Materials,2009,168:390-399.
    [75] Itoh N., Morinaga N., Kouzai T. Oxidation of aniline to nitrobenzene bynonheme bromoperoxidase[J]. Biochemistry and molecular biology international,1993,29(4):785-791.
    [76] Ming Chen, Lei Cui, Chunhui Li, et al. Adsorption, desorption and condensationof nitrobenzene solution from active carbon: A comparison of two cyclodextrinsand two surfactants[J]. Journal of Hazardous Materials,2009,162:23-28.
    [77]胡学伟,李爱民,范俊,等.选择性吸附-高效生物降解法处理含硝基苯与苯酚混合废水[J].化工环保,2007,27(6):497-500.
    [78] L.Zampori, P.Gallo Stampino, G.Dotelli. Adsorption of nitrobenzene andorthochlorophenol on dimethyl ditallowyl montmorillonite: A microstructuraland thermodynamic study[J]. Applied Clay Science,2009,42:605-610.
    [79] J. Reungoat, J.S.Pic, M. H. Manero, et al. Adsorption of Nitrobenzene fromWater onto High Silica Zeolites and Regeneration by Ozone[J]. SeparationScience and Technology,2007,42:1447-1463.
    [80]徐仲艳,王晓蓉.改性土壤对模拟含硝基苯废水的吸附[J].环境化学,2002,21(3):235-239.
    [81] Hasmukh A. Patel, Hari C. Bajaj, Raksh V. Jasra. Sorption of Nitrobenzene fromAqueous Solution on Organoclays in Batch and Fixed-Bed Systems[J]. Ind. Eng.Chem. Res.,2009,48:1051-1058.
    [82] Jun Yin, Lei Liu, Liguo Zhang. Utilization of Furnace Ash and Slags forAdsorption of Nitrobenzene from Groundwater[J]. Environmental EngineeringScience,2008,25(5):643-648.
    [83]刘志生,尹军,于玉娟,等.受硝基苯污染地下水的村镇分散应急处理技术[J].哈尔滨工业大学学报,2008,40(12):1977-1980.
    [84] Yong Sun, Jin-Ping Zhang, Gang Yang. Production of Activated Carbon byH3PO4Activation Treatment of Corncob and Its Performance in RemovingNitrobenzene from Water[J]. Environmental Progress,2007,26(1):78-85.
    [85] Ramkrishna Mantha, Keithe Taylor, Nihar Biswasa, etal. Continuous System forFe0Reduction of Nitrobenzene in Synthetic Wastewater[J]. Environ. Sci.Technol.,2001,35:3231-3236.
    [86]张键,王子波,朱宜平,等. Fenton试剂-微电解预处理硝基苯类废水试验[J].扬州大学学报(自然科学版),2006,9(2):74-78.
    [87]李亚峰,赵娜,班福忱,等.三维电极法处理硝基苯废水[J].沈阳建筑大学学报(自然科学版),2009,25(1):148-151.
    [88]李海燕,黄延,安立超.含硝基苯类化合物废水处理技术研究[J].工业水处理,2006,26(7):40-43.
    [89] Xu Wenying, Fan Jinhong, Gao Tingyao. Electrochemical reductioncharacteristics and mechanism of nitrobenzene compounds in the catalyzedFe-Cu process[J]. Journal of Environmental Sciences,2006,18(2):379-387.
    [90] Fares Al Momani. Abatement and Degradation of Aqueous Solution ofNitrobenzene: Kinetic Parameters[J]. Environmental Engineering Science,2009,26(1):147-154.
    [91] Luciano Carlos, Debora Fabbri, Alberto L. Capparelli. Intermediate distributionsand primary yields of phenolic products in nitrobenzene degradation by Fenton’sreagent[J]. Chemosphere,2008,72:952–958.
    [92] Lei Zhao, Jun Ma, Xuedong Zhai. Synergetic Effect of Ultrasound with DualFields for the Degradation of Nitrobenzene in Aqueous Solution[J]. Environ. Sci.Technol.,2009,43:5094-5099.
    [93]康艳红,薛向欣,杨合,等.电化学深度氧化法处理硝基苯废水[J].材料与冶金学报,2009,8(2):156-160.
    [94] Ming-hao Sui, Li Sheng, Jun Ma, et al. Assistance of Magnesium Cations onDegradation of Refractory Organic Pollutant by Ozone: Nitrobenzene as ModelCompound[J]. Ozone: Science&Engineering,2010,32(2):113-121.
    [95] Lei Zhao, Jun Ma, Zhi-Zhong Sun. Oxidation products and pathway of ceramichoneycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueoussolution[J]. Applied Catalysis B: Environmental,2008,79:244–253.
    [96]康艳红,薛向欣,杨合.超声作用下含钛矿渣催化降解含硝基苯废水[J].硅酸盐学报,2009,37(4):536-542.
    [97]谭江月.双频超声/臭氧联用处理硝基苯类制药废水研究[J].环境工程学报,2010,4(3):590-594.
    [98]谢娟,屈撑囤,张琴.水中硝基苯的超声降解处理研究[J].西安石油大学学报(自然科学版),2009,24(3):76-79.
    [99] Jeff Bandy, Hilla Shemer, Karl G. Linden. Impact of Lamp Choice and H2O2Dose on Photodegradation of Nitrobenzene[J]. Environmental EngineeringScience,2009,26(5):973-980.
    [100]Qian-Rong Li, Cheng-Zhi Gu, Yan Di, et al. Photodegradation of nitrobenzeneusing172nm excimer UV lamp[J]. Journal of Hazardous Materials,2006,(133):68-74.
    [101]Zhang Shu-Juan, Feng Shao-Hong, Yu Han-Qing, et al. Degradation ofnitrobenzene in wastewater by γ-ray irradiation[J]. Journal of EnvironmentalSciences,2004,16(3):364-366.
    [102]Hiroaki Tada, Tetsuji Ishida, Ayako Takao. Drastic Enhancement ofTiO2-Photocatalyzed Reduction of Nitrobenzene by Loading Ag Clusters[J].Langmuir,2004,20:7898-7900.
    [103]吉芳英,徐璇,范子红.疏水性可见光响应型纳米CuO/TiO2催化降解高浓度硝基苯[J].化工学报,2009,60(7):1680-1686.
    [104] zlem Sel uk Ku cu, Delia Teresa Sponza. Effect of Increasing NitrobenzeneLoading Rates on the Performance of AMBR and Sequential AMBR/CSTRReactor System[J]. J. Envir. Engrg.,2009,135(4):266-278.
    [105]Fubo Luan, William D. Burgos, Li Xie, et al. Bioreduction of Nitrobenzene,Natural Organic Matter, and Hematite by Shewanella putrefaciens CN32[J].Environ.Sci.Technol.,2010,44:184-190.
    [106]Wen Zhang, Ling Chen, Hao Chen, et al. The effect of Fe0/Fe2+/Fe3+onnitrobenzene degradation in the anaerobic sludge[J]. Journal of HazardousMaterials,2007,143:57-64.
    [107]L.S.Bell, J.F.Devlin, R.W. Gillham, et al. A sequential zero valent iron andaerobic biodegradation treatment system for nitrobenzene[J]. Journal ofContaminant Hydrology,2003,66:201-217.
    [108]Nishino S F, Spain J C. Degradation of nitrobenzene by a Pseudomonaspseudoalcaligenes[J]. Applied Environmental Microbiology,1993,59(8):2520-2525.
    [109]Park H S, Lim S J, Chang Y K, Livingston A G, Kim H S. Degradation ofchloronitrobenzenes by a coculture of Pseudomonas putida and Rhodococcussp.[J]. Applied Environmental Microbiology,1999,65(3):1083-1091.
    [110]Nishino S F, Spain J C. Oxidative pathway for the biodegradation ofnitrobenzene by Comamonas sp. strain JS765[J]. Applied EnvironmentalMicrobiology,1995,61(6):2308-2313.
    [111]Yi Li, Hong-ying Hu, Qian-yuan Wu, et al. Isolation and characterization of anitrobenzene degrading yeast strain from activated sludge[J]. Bull Environ.Contam. Toxicol.,2007,79:340-344.
    [112]Jing Wang, Hua Yang, Hong Lu, et al. Aerobic biodegradation of nitrobenzeneby a defined microbial consortium immobilized in polyurethane foam[J]. World JMicrobiol Biotechnol,200925:875-881.
    [113]Levin L, Viale A, Forchiassin A. Degradation of organic pollutants by the whiterot basidiomycete Trametes trogii[J]. Int. Biodeterior. Biodegrad.,2003,52:1-5.
    [114]Xuewei Hu, Aimin Li, Jun Fan, et al. Biotreatment of p-nitrophenol andnitrobenzene in mixed wastewater through selective bioaugmentation[J].Bioresource Technology,2008,99:4529-4533.
    [115]张向东,杨谦.酒精耐受性短小芽孢杆菌在硝基苯降解中的应用[J].化工进展,2009,28(增):548-551.
    [116]Thomas B. Hofstetter, Jim C. Spain, Shirley F. Nishino, et al. IdentifyingCompeting Aerobic Nitrobenzene Biodegradation Pathways byCompound-Specific Isotope Analysis[J]. Environ. Sci. Technol.,2008,42:4764-4770.
    [117]孙凌,李轶,胡洪营.活性炭固定耐冷菌对硝基苯的降解特性[J].中国环境科学,2009,29(9):941-945.
    [118]仲建强,张兰英,孙立波,等.模拟地下水原位修复高浓度硝基苯污染的研究[J].农业环境科学学报2007,26(3):920-924.
    [119]孟庆玲,任群,王显胜,等.组合材料渗透反应墙对硝基苯污染地下水的修复研究[J].北京大学学报(自然科学版),2009,46(3):413-416.
    [120]Balcke Gerd Ulrich, Paschke Heidrun, Vogt Carsten, et al. Pulsed gas injection:A minimum effort approach for enhanced natural attenuation of chlorobenzene incontaminated groundwater[J]. Environmental Pollution,2009,157(7):2011-2018.
    [121]Lee J. Y.,Jung K. H.,Choi S. H., Kim H. S. Combination of the tod and the tolpathways in redesigning ametabolic route of Pseudomonas putida for themineralization of abenzene, toluene and p-xylene mixture[J]. Appl EnvironMicrobio,1995, l61:2211-2217.
    [122]Mou J., Sun B. S., Chen Y. Microbial community structure in a membranebioreactor determined using PCR-DGGE[J]. Acta Scientiae Circum stantiae,2010,30(4):729-734.
    [123]R. D. Stapleton, G. S. Sayler. Assessment of the Microbiological Potential for theNatural Attenuation of Petroleum Hydrocarbons in a Shallow Aquifer System[J].Microbial Ecology,1998,36:349-361.
    [124]Xing De-feng, Ren Nan-qi, Song Jia-xiu, et al. Community of activated sludgebased on different targeted sequence of16S rDNA by denaturing gradient gelelectrophoresis[J]. Journal of Environmental Sciences,2006,27(7):1424-1428.
    [125]Flynn S. J., Loffler F. E., Tiedje J. M. Microbial community changes associatedwith a shift from reductive dechlorination of PCE to reductive dechlorination ofcis-DCE and VC[J]. Environmental Science&Technology,2000,34(6):1056-1061.
    [126]Fu Y. G., Wang F., He P. S., Xia S. Q., Zhao, J. F. Analysis of microbialcommunity structure with DGGE sludge compost technology[J]. ChinaEnvironmental Science,2005,25:98-101.
    [127]Ciric Lena, Griffiths Robert I., Philp James C., et al. Field scale molecularanalysis for the monitoring of bacterial community structures during on-sitediesel bioremediation[J]. Bioresource Technology,2010,101(14):5235-5241.
    [128]柳栋升,王海燕,杨慧芬,等. DGGE技术在废水生物脱氮系统中的应用研究进展[J].安徽农业科学,2011,(19):11695-11697.
    [129]张洪霞,谭周进,张祺玲,等.土壤微生物多样性研究的DGGE/TGGE技术进展[J].核农学报,2009,(04):721-727.
    [130]王俊钢,李开雄,卢士玲. PCR-DGGE技术在食品微生物中应用的研究进展[J].肉类研究,2009,(06):59-62.
    [131]徐敏娟,王志跃.变性梯度凝胶电泳及其在微生态领域应用的研究进展[J].家畜生态学报,2008,(06):147-150.
    [132]廉红霞,高腾云,傅彤,等.实时荧光定量PCR定量方法研究进展[J].江西农业学报,2010,(10):128-129.
    [133]陈旭,齐凤坤,康立功,等.实时荧光定量PCR技术研究进展及其应用[J].东北农业大学学报,2010,(08):148-155.
    [134]侯宇.荧光定量PCR技术研究进展及其应用[J].贵州农业科学,2009,(06):29-32.
    [135]胡孝丽,王铎. TaqMan实时荧光定量PCR技术在口腔微生物定量分析中的应用研究进展[J].牙体牙髓牙周病学杂志,2006,(11):652-654.
    [136]刘长海.实时荧光定量PCR技术研究进展及应用[J].中国实用医药,2011,(31):238-240.
    [137]任广睦,刘季,王英元.实时荧光定量PCR技术应用于核酸定量检测的研究进展及展望[J].山西医科大学学报,2006,(09):973-976.
    [138]Liu Xin-chun, Zhang Yu, Yang Min, et al. Analysis of bacterial communitystructures in two sewage treatment plants with different sludge properties andtreatment performance by nested PCR-DGGE method[J]. Journal ofEnvironmental Sciences-China,2007,19(1):60-66.
    [139]Moura Alexandra, Tacao Marta, Henriques Isabel, et al. Characterization ofbacterial diversity in two aerated lagoons of a wastewater treatment plant usingPCR-DGGE analysis[J]. Microbiological Research,2009,164(5):560-569.
    [140]Asakawa Susumu, Kimura Makoto. Comparison of bacterial communitystructures at main habitats in paddy field ecosystem based on DGGE analysis[J].Soil Biology&Biochemistry,2008,40(6):1322-1329.
    [141]Ying Yanling, Lv Zhenmei, Min Hang, et al. Dynamic changes of microbialcommunity diversity in a photohydrogen producing reactor monitored byPCR-DGGE[J]. Journal of Environmental Sciences,2008,20(9):1118-1125.
    [142]Sehringer B., Zahradnik H. P., Deppert W. R., et al. Evaluation of differentstrategies for real-time RT-PCR expression analysis of corticotropin-releasinghormone and related proteins in human gestational tissues[J]. Analytical andBioanalytical Chemistry,2005,383(5):768-775.
    [143]Yan Qing-yun, Yu Yu-he, Feng Wei-song, et al. Plankton communitycomposition in the Three Gorges Reservoir Region revealed by PCR-DGGE andits relationships with environmental factors[J]. Journal of EnvironmentalSciences,2008,20(6):732-738.
    [144]刘鹏,张兰英,焦雁林,等.高效液相色谱法测定水中硝基苯和苯胺含量[J].分析化学,2009,37(5):741-744.
    [145]刘娜,张兰英,杜连柱,等.高效液相色谱-电感耦合等离子体质谱法测定汞的3种形态[J].分析化学,2005(8):1116-1118.
    [146]Lee K. S., Parales J. V., Friemann R., et al. Active site residues controllingsubstrate specificity in2-nitrotoluene dioxygenase from Acidovorax sp strainJS42[J]. Journal of Industrial Microbiology&Biotechnology,2005,32(10):465-473.
    [147]赵凯,黄银燕,王倩,等.三价砷氧化细菌Acidovora x sp. GW2中As(Ⅲ)氧化酶基因和调控序列的克隆鉴定[J].华中农业大学学报,2011,30(1):23-29.
    [148]倪宏波,刘思国.空肠弯曲杆菌及其致病机制研究进展[J].中国人兽共患病学报,2010,26(10):970-973.
    [149]王振国,罗雁菲,肖成蕊,等.鸡肉中弯曲杆菌属的分离与鉴定[J].吉林农业大学学报,2000,22(2):83-85.
    [150]张小平,李阜棣.根瘤菌的遗传多样性与系统发育研究进展[J].应用与环境生物学报,2002,8(3):325-333.
    [151]钟文辉,何国庆,郑平,等.降解2,4-二氯酚的假单胞菌GT241-1的特性及其3,5-二氯儿茶酚1,2-双加氧酶基因定位[J].浙江大学学报(农业与生命科学版),2001,27(3):269-272.
    [152]任何军,刘娜,高松等.假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J].2009,39(2):312-316.
    [153]Johnson G. R., Spain J. C. Evolution of catabolic pathways for syntheticcompounds: bacterial pathways for degradation of2,4-dinitrotoluene andnitrobenzene[J]. Applied Microbiology and Biotechnology,2003,62(2-3):110-123.
    [154]顿咪娜,胡文容,裴海燕,等.脱氢酶活性检测方法及应用[J].工业水处理,2008,28(10):1-4.
    [155]Kuscu Oezlem Selcuk, Sponza Delia Teresa. Effect of Increasing NitrobenzeneLoading Rates on the Performance of AMBR and Sequential AMBR/CSTRReactor System[J]. Journal of Environmental Engineering-ASCE,2009,135(4):266-278.
    [156]刘海泉,赵强,孙晓红,等.多重PCR快速检测食品中的单核细胞增生性李斯特菌[J].中国农业科学,2010,(23):4893-4900.
    [157]Kadiyala V., Nadeau L. J., Spain J. C. Construction of Escherichia coli strainsfor conversion of nitroacetophenones to ortho-aminophenols[J]. Applied andEnvironmental Microbiology,2003,69(11):6520-6526.
    [158]牛明芬,赵明梅,郭睿,等.不同微生物菌剂对畜禽粪便堆肥效果的温度指标研究[J].环境保护与循环经济,2010,(05):51-52.
    [159]吴文菲,刘波,李红军,等. pH、盐度对微生物还原硫酸盐的影响研究[J].环境工程学报,2011,(11):2527-2531.
    [160]马恩,王刚.地下水除铁除锰技术的研究进展[J].环境保护与循环经济,2008,(07):36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700