低品位复杂难处理钨矿选—冶联合新工艺和技术经济评价模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上钨资源储量和钨原料生产、出口量最大的国家。柿竹园多金属矿为世界最大钨矿,钨资源占世界已探明储量的20.7%,但矿石含钨品位低,矿物成分及组成复杂,分选难度大,资源综合利用困难。长期以来,柿竹园钨矿的WO3选矿回收率一直在62.6%左右。针对其矿石特点,开展低品位复杂难处理钨矿选-冶联合工艺技术研究,意义重大。
     选矿研究部分,作者提出了常温浮选直接产出低品位黑白钨混合精矿的“弱磁预脱铁-浮选预脱泥-黑白钨混浮新工艺”。实验室小型闭路试验和工业试验均获得了优于原工艺的试验指标,得出了钨精矿品位与钨选矿回收率之间的关系。新工艺采用常温精选产出30%WO3粗精矿方案,与原加温精选产出65%WO3精矿工艺相比,可增加WO3回收量482.1t/a。
     浮选新工艺机理研究方面,EDLVO理论计算表明在疏水体系下,钨矿物与矿泥作用的总EDLVO势能NEDTotal为负,说明钨矿物与细粒矿泥发生凝聚的行为是自动过程。矿物表面动电位理论分析和实测表明,钨矿物与萤石矿泥会发生静电吸附互凝。以上凝聚和互凝现象会影响钨矿浮选,所以预先脱泥是合理的。红外光谱分析表明,捕收剂GYB与黑钨矿的作用机理是发生表面化学吸附生成疏水难溶螯合物。
     水冶研究部分,针对低品位钨粗精矿和中矿原料,开发了钨粗精矿高碱压煮工艺和浓缩结晶-钨碱分离-碱回收工艺,得出了不同WO3品位钨精矿原料与单位W03处理溶出生产成本的关系。
     技术经济评价理论研究方面,作者分析导出了选-冶企业联合采用新工艺后效益变化E的评价模型。E与品位为100%WO3的产品金属价格Po相关波动,计算结果表明:原工艺采用65%WO3精矿方案,新工艺采用30%WO3粗精矿方案,当产品金属价格P0达到P0(30%WO3方案)=9.55×104(元/t WO3),E达到盈亏平衡点,具有应用可能性。当P0继续上升时,E随之急剧上升,新工艺有较大的综合盈利效益。建议采用。
     选-冶联合效益E与原工艺精矿品位为β1的矿产金属价格P1、新工艺精矿品位为β2的矿产金属价格P2无关,但P1、P2的取值会直接影响选-冶联合效益E在选矿效益Ed、冶金效益Em之间的分配比例。作者在综合平衡选-冶双方效益、由获利较多方让利回馈成本上升方的设定条件下,分析提出了新工艺β2精矿矿产金属价格的合理理论底线值P2的计算方法,由此提出了P0、P1、P2相关联计算选取方法。本方法有助于E在Ed、Em之间的平衡分配。
     柿竹园多金属矿实际案例计算结果表明,本论文研究提出的选-冶企业联合采用新工艺后效益变化E的评价模型是合理的,并可回用指导钨选-冶联合工艺实际生产过程的经济参数的拟定,协调钨选-冶双方的合理利益分配,从而有助于选-冶联合新工艺获得选-冶双方的认可和实施。
China's tungsten resources, production and export quantity are all in the first place of the world. Shizhuyuan Polymetallic Mine is the biggest one, which possesses20.7%explored tungsten resources of the world. However, its ores is hard to be separated and utilized comprehensively due to the low grade and the complicated composition. WO3beneficiation recovery in this mine was only62.6%for a long time. Thus, it is significant to do some research and thereby develop a new mineral-metallurgical processing for this low-grade, complicated and refractory tungsten ore.
     In the aspect of beneficiation research, a novel flowsheet of "iron removal by weak magnetic separation-slimes removal by flotation-scheelite and wolframite bulk flotation" is designed, by which a low grade WO3scheelite and wolframite bulk concentrate could be directly produced by normal temperature flotation. The relationship between tungsten concentrate WO3grade and WO3recovery was determined. Compared with the present process for warming flotation to preduce65%WO3concentrate, the better test index was obtained by the new process for normal temperature flotation to preduce30%WO3rough concentrate in small-sized closed circuit test and industrial test, and WO3total recovery was increased for482.1t/a.
     In the research field of flotation new process mechanism, EDLVO theory is introduced for the calculation. which shows that, in the case of hydrophobic system, the value of total EDLVO potential energy of fine grain sludge ore acting on tungsten minerals VEDTotal is negative. This means that fine grain sludge ore would be flocculated with tungsten minerals in an automatic way. Based on the theoretical calculation and the actual detection on Zeta potential, it suggests that the fine minerals of fluorite, scheelite and wolframite might electrocoagulate together. These phenomena are harmful for the fine grain sludge ore in the case of tungsten ore flotation separation. Therefore, the predesliming is necessary and reasonable. Analysis with infrared spectroscopy showed that the effect mechanism of collector GYB on wolframite is generating a hydrophobic dissolvable chelate through surface chemical absorption
     In the research field of hydrometallurgy, the tungsten rough concentrate high alkali autoclaving process and the condense crystallizing-tungsten alkali separating-alkali recycling process were developed for low grade rough concentrate and middling raw material. The relationship of different WO3grade concentrates and unit production costs of WO3dissolution was determined.
     In the research field of technological economy evaluation theory, an assessment model is set up by the author for a changed economic benefit E of the new mineral-metallurgical processing. E is fluctuated relative to Po, where Po is the metal price of the100%WO3product. The concentrate grade of the present process is65%WO3and the rough concentrate grade of the new process is30%WO3. Calculated result of E showed that if the new process is used and if Pois fluctuated to Po (3o%WO3process)-9.55×104(RMB/t WO3), E should come up to breakeven point, therefore bringing applicability of the new processing. When Po continues to rise, E should rise rapidly. The new processing has great comprehensive profit benefits and is recommended.
     The economic benefit E of the mineral-metallurgical processing has no concerns to mineral product metal price Pi with a β1grade concentrate under the existing process and to the mineral product metal price P2with a β2grade concentrate under the new process. However, the values of P1and P2would directly influence distributive proportion of E between mineral processing benefit Ed and metallurgical processing benefit Em. One condition is set up based on the comprehensive balance between the mineral processing benefit and the metallurgical processing benefit, and some benefits given by the more profitable side to the side whose cost is rolling up. Under this condition, a calculating method was derived for P2, the reasonable theoretical base line price of mineral product metal produced by new process with β2grade concentrate; thereby a correlating calculation method was derived for P0, P1and P2, which should be contributed to a balanced distribution of E between Ed and Em.
     Calculated results in the case of Shizhuyuan Polymetallic Mine show that the assessment model of E research is reasonable. This evaluation model of E can be used back to guide drawing up economic parameters in actual production of tungsten under the mineral-metallurgical processing, and to coordinate profit distribution of the mineral processing side and the metallurgical processing side, so as the two sides to be conducive to the acceptance and implementation of the new procesing in production.
引文
[1]中国冶金百科全书编辑委员会.中国冶金百科全书·金属材料卷[M].北京:冶金工业出版社,2001
    [2]胡岳华,冯其明.矿物资源加工技术与设备[M].北京:科学出版社,2006:270~271
    [3]周乐光.矿石学基础(第三版)[M].北京:冶金工业出版社,2007:135
    [4]李俊萌.中国钨矿资源浅析[J].中国钨业,2009,12(6):9-13
    [5]中国钨业协会.中国钨工业“十二五”发展规划2011-2015[J].中国钨业,2011,26(3):50~55
    [6]中国钨业协会.中国钨工业“十一五”发展规划2006-2010[J].中国钨业,2007,22(1):54~59
    [7]世界钨矿山的现状[J].矿业快报,2003,(3):50~52
    [8]祝修盛.2005我国钨品进出口分析[J].中国钨业,2006,21(1):7
    [9]刘良先.出口下降,进口增长—2008我国钨品进出口分析[J].中国钨业,2009,24(1):8-11
    [10]祝修盛.国内钨消费与供应[J].中国金属通报,2009,(47):28~31
    [11]祝修盛.我国的钨资源与钨工业[J].中国钨业,2003,18(5):24~29
    [12]矿产资源综合利用手册编辑委员会.矿产资源综合利用手册[M].科学出版社,2000:79~81
    [13]孔昭庆.钨价回归与资源危机[J].中国钨业,2005,20(3):1-5
    [14]王薇.我国钨资源的生产与出口[J].中国有色金属,2010,(21)::64~65
    [15]刘良先.2009年我国钨品进出口分析[J].中国钨业,2010,25(1):15~17
    [16]赵磊,邓海波,李仕亮.白钨矿浮选研究进展[J].现代矿业,2009(9):7-11
    [17]Kuzovlev, A.K. Analysis of Flotation of Scheelite Ore Using A Three-Dimensional Diagram [J]. Soviet Mining Science, v 9, n 4, p 434-437, Jul-Aug 1973
    [18]Xu, X.; Zhang, X.; Lin, R., et al. Experimental study on the mineral processing of a large-scale scheelite mine in jiangxi province[J]. Australasian Institute of Mining and Metallurgy Publication Series, p 483-486,2008
    [19]孙伟,胡岳华等.钨矿回收工艺研究进展[J].矿产保护与利用,2000,(1):42~46
    [20]Bel'kova, O.N.;Leonov, S.B.;Shcherbakova, E.V, et al. Intensification of flotation benefaction of scheelote ores[J]. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, n 5, p 98-103, Sep-Oct 1992
    [21]Greaves, J.N.; McDonald, W.R.; Maysilles, J.H, et al. Tungsten and gold recovery from Alaskan scheelite-bearing ores[J]. Report of Investigations-United States, Bureau of Mines, n 9251,1989
    [22]胡为柏.浮选[M].北京:冶金工业出版社,1990:350~353,41
    [23]Mercade, Ven New Pathways to Tungsten Flotation[J]. Engineering and Mining Journal, v 184, n 8, p 52-53,55,57-58, Aug 1983
    [24]张忠汉,张先华.难选白钨矿选矿新工艺的研究[J].广州有色冶金学报,2000,10(2):84~87
    [25]周菁,朱一民.钨常温浮选脉石矿物抑制剂研究[J].有色金属(选矿部分),2008,(5):44~46
    [26]Yongxin, Li; Changgen, Li. Selective Flotation of Scheelite from Calcium Minerals with Sodium Oleate as A Collector and Phosphates as Modifiers. [J]. International Journal of Mineral Processing, v 10, n 3, p 205-218, Apr 1983
    [27]Beyzavi, Ali Naghi. Contribution to Scheelite Flotation, Taking into Account Calcite-bearing Scheelite Ores[J]. Erzmetall:Journal for Exploration, Mining and Metallurgy, v 38, n 11, p 543-549, Nov 1985
    [28]程琼,徐晓萍等.江西某白钨粗精矿加温精选试验研究[J].矿产综合利用,2007,8(4):3-6
    [29]叶雪均.白钨矿常温浮选工艺研究[J].中国钨业,1999,14(5~6):113~117
    [30]程新潮.白钨常温浮选工艺及药剂研究[J].有色金属(矿部分),2000,(03):35~38
    [31]邓丽红,周晓彤.白钨矿常温浮选工艺研究[J].中国钨业,2008,23(5):20~22
    [32]王秋林,周菁等.高效组合抑制剂Y88白钨常温精选工艺研究[J].湖南有色金属,2003,(5):11~12
    [33]Vedova, Ronald;Grauerholz; Norman LeRoy, et al. Method for recovering scheelite from tungsten ores by flotation, Union Carbide Corporation, Publication Number:US4054442. Publication date:10/18/1977
    [34]黄万抚.“石灰法”浮选白钨矿的研究[J].江西冶金,1989,(1):16~20
    [35]黄枢,肖金华.石灰浮选法在白钨精选中的应用[J].江西有色金属,1994,8(1):19~23
    [36]Huang, Guangyao; Feng, Qiming; Ou, Leming, et al. A comparative study of recovering fine scheelite in tailings by flotation cell and flotation column[J]. Journal of Solid Waste Technology and Management, v 36, n 2, p 61-68, May 2010
    [37]Kardanov, Kh.D.; Volyanskii, V.M.; Galich, V.M, et al. Flotation of Scheelite Ore by Various Brands of Oleic Acid[J]. Tsvetnye Metally, n 7, p 96-97, Jul 1975
    [38]李云,谢沁人.733与纸浆废液混合剂浮选白钨矿的小型实验[J].有色金属(选矿部分),1994,(5):41
    [39]曾庆军,林日孝,张先华.ZL捕收剂浮选白钨矿的研究和应用[J].材料研究与应用,2007,1(3):231~233
    [40]朱建光,赵景云.6RO-X系列捕收剂浮选含钙矿物[J].化工矿物与加工,1990,(06):32~34
    [41]朱建光,赵景云.RO-X系列捕收剂浮选含钙矿物[J].矿产综合利用,1991,(03):1-6
    [42]陆英英,林强,王淀佐.萤石白钨石榴石浮选分离的新型药剂—LP系列捕收剂[J].有色矿冶,1993,(1):20~25
    [43]邓丽红,周晓彤.新型捕收剂R_(31)浮选低品位白钨矿的研究[J].矿产保护与利用,2007,(4):19~22
    [44]周晓彤,邓丽红.新型复合捕收剂TA在湖南某钨矿浮选工艺的应用[J].矿产综合利用,2008(6):22~24
    [45]R. Arnold,E.E.Brownbill and S.W. Ihle. Hallimond tube flotation of scheelite and calcite with amines[J]. International Journal of Mineral Processing,1978, (2): 143-152
    [46]C. Hicyilmaz,U. Atalay and G. Ozbayoglu. Selective flotation of scheelite using amines[J]..Minerals engineering,1993(3):313-320
    [47]胡岳华,王淀佐.新型两性捕收剂浮选萤石、重晶石、白钨矿的研究[J].有色金属(选矿部分),1989,(4):10~14
    [48]胡岳华,王淀佐.α-胺基芳基膦酸对萤石、重晶石、白钨矿捕收性能的研究(英文)[J].中南大学学报(自然科学版),1990,21(4):375~381
    [49]Hu, Yuehua; Xu, Zhenghe. Interactions of amphoteric amino phosphoric acids with calcium-containing minerals and selective flotation[J]. Inter. J. Miner Process.2003:87-94
    [50]Bel'kova, O.N.; Leonov, S.B.; Kukharev, B.F, et al. Perspective reagents for flotation beneficiation of scheelite ores[J]. Fiziko-Tekhnicheskie Problemy Razraboiki Poleznykh Iskopaemykh, n 1, p 75-79, Jan-Feb 1995
    [51]胡岳华,孙伟,蒋玉仁,徐兢.柠檬酸在白钨矿萤石浮选分离中的抑制作用及机理研究[J].国外金属矿选矿,1998,(5):27~29
    [52]Ozcan, O.; Bulutcu, A.N.; Sayan, P., et al. Scheelite flotation:A new scheme using oleoyl sarcosine as collector and alkyl oxine as modifier[J]. International Journal of Mineral Processing, v 42, n 1-2, p 111-120, Oct 1994
    [53]胡岳华,王淀佐.烷基胺对盐类矿物捕收性能的溶液化学研究[J].中南矿冶学院学报,1990,(1):31~38
    [54]胡岳华,邱冠周,徐竞,王淀佐.白钨矿-萤石浮选行为的溶液化学研究[J].矿冶,1996,(1):28~33+84
    [55]Shin, B.S.; Choi, K.S. Adsorption of Sodium Metasilicate on Calcium Minerals[J]. Minerals and Metallurgical Processing, v 2, n 4, p 223-226, Nov 1985
    [56]林海清.近20年来我国钨选矿技术的进展[J].中国钨业,2001,16(5-6):69~75
    [57]林海清.中国钨矿选矿的百年变迁[J].中国钨业,2007,22(6):11~15
    [58]杨久流,罗家珂,王淀佐.微细粒矿物的分选技术[J].国外金属矿选矿,1995,(5):5-11
    [59]见百熙.浮选药剂[M].北京:冶金工业出版社,1981,8
    [60]朱玉霜,朱建光,江世荫.甲苄胂酸对黑钨矿和锡石矿泥的捕收性能.中南工业大学学报(自然科学版)[J],198x,(3):21~22
    [61]V.E.Wottger,矿石译文.1974,(6):46~53
    [62]东乃良.2-苯乙烯磷酸浮选黑钨矿和锡石的行为.国外金属矿选矿[J],1989,26(7):1-4
    [63]S.L.Kotlyareskii.etal.New phosphoro-organic Collectors for flotation of nonsulfide minerals.lrd.Pao[J],1984:17-19
    [64]Zhu, Yushuang. Rtudies of FXL-14 wolframite adsorption mechanism byan electrochemical method.Journal of Central-South Institute of Mining and Metallurgy[J],1987,18(3):257-262
    [65]Srinivas K. Studies on the application of alkyl phosphoric acid ester in the flotation of wolframite. Mineral Processing and Extractive Metallurgy Review[J],2004,25(4):253-267
    [66]Ram Pravesh Bhagat,P.N.Pathak. The effect of polymeric dispersant on magnetic separation of tungsten ore slimes. Inrernational Journal of Mineral Processing[J],1996,47:213-217
    [67]Jones and P.Gill eds. Proceedings of Mineral Processing and Extactive Metallurgy [J],1984
    [68]Srinivas, K.; Sreenivas, T.; Padmanabhan, N.P.H, et al. Studies on the application of alkyl phosphoric acid ester in the flotation of wolframite[J]. Mineral Processing and Extractive Metallurgy Review, v 25, n 4, p 253-267, October/December 2004
    [69]Marinakis.K.I. Adsorption of dodecyl sulfate and decyl phosphonate on wolframite,and their use in the two-liquid floatation of fine wolframite particles[J]. Journal of Colloid and Interface Science,1985,106(2):517-531
    [70]S.M.ASSIS, L.C.M.MONTENEGRO, A.E.C.PERES. Utilisation of hydroxamates in minerals froth flotation[J]. Minerals Engineering,1996,9(1):103~114.
    [71]Leonov, S.B.; Belkova, O.N.; Kukharev, B.F, et al. Oxazolidines as efficient reagents for flotation of non-ferrous and tungsten metal ores[J]. Mineral Processing and Extractive Metallurgy Review, v 16, n 3, p 175-184,1996
    [72]Hu, W.; Wang, D. Wolframite Flotation with Chelating Collector and Neutral Oil Synergist [J]. Preprint-Society of Mining Engineers of AIME,1985
    [73]孙伟,刘红尾,杨耀辉.F-305新药剂对钨矿的捕收性能研究[J].金属矿山,2009,(11):64~66
    [74]朱一民.柿竹园黑钨浮选用药初探及建议[J].湖南冶金,1993,(2):12~13
    [75]蒋玉仁,薛玉兰.甲基苯甲偕胺肟的合成及其捕收性能研究.应用基础与工程科学学报[J],2000,8(3):230~235.
    [76]王明细,蒋玉仁.新型螯合捕收剂ICOBA浮选黑钨矿的研究[J].矿冶工程,2002,22(1):56~60
    [77]王明细.新型捕收剂COBA对孔雀石、黑钨矿等的捕收性能研究[D].中南大学硕士学位论文,2002
    [78]蒋玉仁,胡岳华,曹学峰.新型螫合捕收齐IJCOBA结构与捕收性能的关系[J].中国有色金属学报,2001,11(4):703~706
    [79]Hu, Y.; Wang, D.; Xu, Z. Study of interactions and flotation of wolframite and octyl hydroxamate[J]. Minerals Engineering, v 10, n 6, p 623-633, Jun 1997
    [80]Xu, Jinqiu; Zhu, Jianguang. New collector for the flotation of wolframite [J]. Yu Se Chin Shu/Nonferrous Metals, v 41, n 2, p 28-32, May 1989
    [81]朱一民,周菁.萘羟肟酸浮选黑钨细泥的试验研究[J].矿冶工程,1998,(4):33~35.
    [82]朱一民,周菁.萘羟肟酸浮选黑钨矿作用机理研究[J].有色金属,1991,51(4):31~34
    [83]戴子林,张秀玲,高玉德.苯甲羟肟酸浮选细粒黑钨矿的研究[J].矿冶工程,1995,(2):24~27.
    [84]叶志平.苯甲羟肟酸对黑钨矿的捕收机理探讨[J].有色金属(选矿部分),2000(5):35~39
    [85]高玉德.苯甲羟肟酸与黑钨矿作用机理的研究[J].广东有色金属学报,2001,11(2):92~95
    [86]陈万雄,叶志平.硝酸铅活化黑钨矿浮选的研究[J].广东有色金属学报,1999,(1):13~17
    [87]肖庆苏,李长根.柿竹园多金属矿CF法浮选钨主干全浮选矿工艺研究[J].矿冶,1996,(3):26~32.
    [88]徐晓军,刘邦瑞.黑钨矿细泥浮选时有机螯合剂的活化作用[J].中国矿业,1993,13(2):64~67.
    [89]张忠汉,周晓彤,叶志平等.柿竹园多金属矿GY法浮钨新工艺研究[J].矿冶工程,1999,19(4):22~25.
    [90]高玉德,李玉峰,常祝春.黑钨细泥浮选新的工艺流程及药剂研究[J].广东有色金属学报,1994,4(1):19~23.
    [91]方夕辉,钟常明.组合捕收剂提高钨细泥浮选回收率的试验研究[J].中国钨业,2007,22(4):26~28.
    [92]高玉德,邹霓,刘进.微细粒钨矿的选矿工艺[J].材料研究与应用,2007,1(4):307~308
    [93]Liu, P.; Wang, D. Combined Centrifugal Separation-Flotation-Magnetic Concentration Flowsheet for Treatment of Wolframite Slimes[J]. Institute of Scientific and Technical Information of China, Beijing., 10p,1987
    [94]Sun, S.;Chen, Q.;Yang, Y., et al. New Techniques in Processing Tungsten Ore Slimes[J]. Institute of Scientific and Technical Information of China, Beijing., 13p,1987
    [95]周晓彤,邓丽红.黑白钨细泥选矿新工艺的研究[J].材料研究与应用,2007,(4):303~306
    [96]李隆峰,肖苏庆,程新潮.钨矿物选矿的现状和进展[J].国外金属矿选矿1996,33(12):23~31
    [97]Pradip. Recent advances in the recovery of tungsten values in the fine and ultrafine size range[J]. Bulletin of Materials Science, v 19, n 2, p 267-293, Apr 1996
    [98]毛景文.超大型钨多金属矿床成矿特殊性—以湖南柿竹园矿床为例[J].地质科学,1997,32(3):351~362
    [99]刘义茂,王昌烈,胥友志,等.柿竹园超大型钨多金属矿床的成矿条件与成矿模式[J].中国科学(D辑),1998,4(28):49-56
    [100]陈军.柿竹园Ⅲ矿带钨矿物的形成及选矿工艺特征[J].有色金属,1993,45(4):69~76
    [101]张国平.柿竹园特大型钨多金属矿的科研与开发[J].湖南有色金属,1990,6(1):15-20
    [102]Bahr, Albert; Goldmann, Daniel; Xu, Shi; et al. Studies Regarding the Beneficiation of Tungsten Ores from the Deposit of Shizhuyuan, PR China[J]. Erzmetall:Journal for Exploration, Mining and Metallurgy, v 40, n 7-8, p 371-376, Jul-Aug 1987
    [103]覃秀萍,陈淳.柿竹园多金属矿选矿工艺[J].有色金属(选矿部分),1984,(3):14~20
    [104]文先炯.依靠科技进步攻克柿竹园矿选冶难点[J].中国钨业,1991,(10):17~18
    [105]张忠汉,张先华,叶志平,等.柿竹园多金属矿GY法浮钨新工艺研究[J].矿冶工程,1999,19(4):22~25
    [106]孙传尧,程新朝,李长根.钨铋钼萤石复杂多金属矿综合选矿新技术——柿竹园法[J].中国钨业,2004,19(5):8-14
    [107]余军,薛玉兰.新型捕收剂CKY浮选黑钨矿、白钨矿的研究[J].矿冶工程,1999,19(2):34~36.
    [108]叶雪均.柿竹园多金属矿资源综合利用选矿流程研究[J].矿产综合利用,2000(1):1-4
    [109]叶志平,何国伟.柿竹园浮钨尾矿综合回收萤石新工艺[J].有色金属,2005,,57(3):70~72.
    [110]叶志平,何国伟.柿竹园萤石综合回收浮选抑制剂的研究[J].有色金属(选矿部分),2005(6):44~46.
    [111]过建光,吕清纯,李晓东.柿竹园钨加温浮选工艺改造实践[J].有色金属(选矿部分),2002(6):13~14.
    [112]黄易柳,柿竹园多金属矿1000t/d选厂选矿工艺设计与实践[J],湖南有色金属,2000,16(6):9-12
    [113]陈典助.柿竹园多金属矿选矿厂设计与生产实践[J].有色金属(选矿部分),2007(2):35~38
    [114]刘忠寿.柿竹园打破世界采矿爆破纪录[J].有色金属(矿山部分),2007(6):51
    [115]袁子钢.柿竹园公司成功实施井下821t装药量特大型爆破[J].中国钨业,2010,25(1):11
    [116]过建光,袁节平.柿竹园公司矿业科技进步及展望[J].中国钨业,2009,24(5):42~44
    [117]李洪桂,赵中伟.我国钨冶金技术的进步——纪念中国钨业100年[J].中国钨业,2007,22(6):
    [118]A.C.MeдBeдeB.酸分解白钨精矿的方法[J].中国钨业,1993,(4):27~29
    [119]廖利波,董伟.酸法工艺处理白钨精矿的最新进展[J].稀有金属与硬质合金,2005,33(3):29~31.
    [120]R.K.Paramguru.用纯碱焙烧-浸出法从白钨矿精矿中提取钨[J].湿法冶金,1992,(2)33~36
    [121]Topkaya, Y.A.; Eric, H. Laboratory Testing of Uludag Scheelite Concentrate for the Production of Ammonium Paratungstate [J]. Source:Council for Mineral Technology, v 2, p 557-564,1985;
    [122]何瑞庭.用黑钨精矿碱浸法生产钨酸钠降低用碱量的尝试[J].中国钨业,1993,(3):23~24
    [123]刘茂盛,孙培梅,李运姣.碱法热球磨分解高钙黑钨精矿[J].稀有金属,1993,(2)85~88
    [124]胡兆瑞.离子交换法冶炼钨工艺的诞生和发展[J].中国钨业,1997,12(7-8):41~43.
    [125]柯家骏,蒙星辉,龚建平.含钙的钨矿物料的处理方法:中国,86100031[P].1986-09-10.
    [126]李洪桂,刘茂盛,戴朝嘉,等.白钨精矿与黑白钨混合矿碱分解方法及设备:中国,85100350.8[P].1986-08-27.
    [127]李洪桂,刘茂盛,李运姣,等.白钨矿及黑白钨混合矿的NaOH分解法:中国,ZL00113250.4[P].2004-01-28.
    [128]方奇.苛性钠压煮法分解白钨矿[J].中国钨业,2001,16(5-6):80~81.
    [129]李洪桂,赵中伟,霍广生,等.紧密结合生产实践为新技术研发奠定基础——中国钨湿法冶金理论研究取得重大成果[J].中国钨业,2009,24(5):45~48
    [130]张贵清,张启修.一种钨湿法冶金清洁生产工艺[J].稀有金属,2003,22(2):254~257
    [131]Shamsuddin.M.; Sohn, H.Y. Extractive Metallurgy of Tungsten[J]. Source: Journal of Macromolecular Science-Physics, p 205-230,1980
    [132]K. Srinivas, T. Sreenivas, R. Natarajan, N.P.H. Padmanabhan. Studies on the recovery of tungsten from a composite wolframite-scheelite concentrate [J]. Hydrometallurgy,2000,58:43-50
    [133]Amer, A.M. Investigation of the direct hydrometallurgical processing of mechanically activated low-grade wolframite concentrate[J].Source: Hydrometallurgy, v 58, n 3, p 251-259, December 15,2000
    [134]王秀红,聂华平.钨冶金过程中锡的行为[J].稀有金属,2004,23(2):69~72
    [135]张子岩,简椿林.溶剂萃取法在钨湿法冶金中的应用[J].湿法冶金,2006,25(1):1~9
    [136]张贵清,关文娟,张启修,等.从钨矿苏打浸出液中直接萃取钨的连续运转试验[J].中国钨业,2009,24(5):49~52
    [137]李运姣,李洪桂,孙培梅,等.柿竹园钨细泥碳酸钠分解过程抑制杂质浸出的研究[J].稀有金属,1997,21(4):257~260
    [138]Meek T.T, et al. Microwave sintering of Al2O3-SiC whisker composites[C]. US:Ceram Eng Sci Proc,1987.861.
    [139]Das.S,et al. Microwave sintering of ceramics:can we save energy[J]. Am Ceram Soc Bull,1987,66(7):1093.
    [140]卢友中,曾青云,陈庆根.微波辅助碱分解低品位黑(白)钨精矿[J].矿产综合利用,2009,(5):20~23
    [141]徐小龙.某微细粒浸染型金矿选冶工艺流程的探讨[J].有色冶金设计与研究,2004,25(2):1~8
    [142]王祥,任金菊,王勇海,等.某混合型金矿石选冶工艺试验研究[J].矿产保护与利用,2009,(5):27~30
    [143]王裕中,任春玉.红土型金矿选冶工艺研究[J].黄金,1993,14(2):39~43
    [144]钟平汝,李铁球,毛拥军,等.渗滤浸出法处理抚州铀矿矿石[J].铀矿冶,2004,23(1):13~18
    [145]王清良,刘玉龙,胡鄂明,等.江西某铀矿山矿石浸出性能试验研究[J].中国矿业,2010,19(5):68~70
    [146]梁冠杰.铀钼分离选冶试验研究[J].现代矿业,2010,(3):40~43
    [147]池汝安,王淀佐.稀土矿的分类和选别及冶炼[J].国外金属矿选矿,1991,(12):13~20
    [148]欧阳克氙,饶国华,姚慧琴,等.南方稀土矿抑铝浸出研究[J].稀有金属与 硬质合金,2003,31(4):1-3
    [149]姚香,臧忠江.紫金矿业低品位与难选冶矿产资源的开发利用[J].采矿技术,2006,6(3):178~181
    [150]陈春林,张旭,包红伟,等.低品位氧化铜矿石的硫酸浸出试验研究[J].湿法冶金,2008,27(3):154~157
    [151]伍耀明,黄进文,刘晨,等.红土镍矿资源全回收新工艺及清洁生产分析[J].江西有色金属,2010,24(3-4):152~155
    [152]王宏娟.拉尔玛金矿床碳质含砷矿石选冶工艺研究[J].有色矿冶,1997,(6):16~19
    [153]朱军,李欣,王毅,等.高磷低品位钒矿的选冶试验研究[J].矿冶工程,2010.30(4):61~64
    [154]黎军.含钒晶质石墨矿右选冶联合提取工艺研究[J].非金属矿,1990,(6):16~19
    [155]李维天,陈全福,吕俊程,等.广西凤凰山锰银氧化矿选冶工艺研究[J].中国锰业,2003,(8):3-8
    [156]丁玉根,赵文富.含铅辉锑矿选冶脱铅研究[J].湿法冶金,1988,(1):9-12
    [157]陈志忠.氧化秘矿选冶工艺研究及工业应用[J].有色金属(选矿部分),1992,(5):4-7
    [158]冯其明,卢毅屏,欧乐明,等.铝土矿的选矿实践[J].金属矿山,2008,(10):1-4
    [159]李育彪,龚文琪,辛桢凯,等.鄂西某高磷鲕状赤铁矿磁化焙烧及浸出除磷试验[J].金属矿山,2010,(5):64-67
    [160]柏少军,文书明,刘殿文,等.云南某高磷褐铁矿石选冶联合工艺研究[J].金属矿山,2010,(1):54-58
    [161]刘金长.从选矿技术发展看提高酒钢资源利用率[J].甘肃冶金,2010,32(4):67~70
    [162]罗立群,张泾生,高远扬,等.菱铁矿干式冷却磁化焙烧技术研究[J].金属矿山,2004,(10):28~31
    [163]封志敏,宁顺明,佘宗华.磁化还原焙烧工艺处理贫锰铁矿的研究[J].矿冶工程,2009,29(3):65~68
    [164]曹志成,孙体昌,杨慧芬,等.红土镍矿直接还原焙烧磁选回收铁镍[J].北京科技大学学报,2010,32(6):708~712
    [165]蔡丽娜,胡德文,李凯琦,等.高岭土除铁技术进展[J].矿冶,2008,17(4):51~54
    [166]詹信顺.铜冶炼混合渣选铜生产工艺技术探讨[J].铜业工程,2008,(4):15-17
    [167]陈雯,沈强华,王达建,等.铜转炉烟尘选冶联合处理新工艺研究[J].有色矿冶,2003,19(3):45~47
    [168]张博亚,王吉坤.用选冶联合流程处理铜阳极泥的生产实践[J].中国有色冶金,2007,(3):59~62
    [169]罗文蕊,李志强.锌浮渣选冶联合工艺试验研究[J].甘肃冶金,2010,32(5):50~53
    [170]杨梅金,王进明,郭克非.选冶结合从锌浸出渣中回收锌[J].矿业工程,2010,8(5):37~38
    [171]鲍超,唐三川,张寿年,等.铅锌混合精矿的沸腾焙烧研究[J].矿冶工程,1 991,11(1):55~58
    [172]李锋.铜锌混合矿选冶新工艺研究[J].矿冶,2003,12(4):58~60
    [173]李建英,彭济时,周昌,等.铜铅锌混合精矿的火法冶金工艺:中国,ZL 200710018066[P],授权公告日:2010年07月21日
    [174]王虹,邓海波,路秀峰.重要有色金属资源——红土镍矿的现状与开发[J].甘肃冶金,2009,31(1):20~24
    [175]梁杰,王华.低品位氧化铅锌矿的烟化法富集工艺[J].有色金属(冶炼部分),2005,(4):5-7
    [176]雷霆,王吉坤.熔池熔炼-连续烟化法处理低品位锑矿工业试验研究[J].云南冶金,2003,32(10):82~85
    [177]王充端.炼锡烟化炉的技术现状及改进[J].云南冶金,1989,18(1):23~26
    [178]李殿起,沈莉,杨万军.从低品位钼精矿中提取钼的新工艺新方法[J].中国钼业,2006,30(4):20~21
    [179]杨利群.苏打烧结法处理低品位钨矿及废钨渣的研究[J].中国钼业,2008,32(4):25~27
    [180]余斌文,谢娟,万富强.湖南地区钨细泥及钨难选物料冶炼工艺研究[J].湖南有色金属,1986,(4):20-26
    [181]张有仁.选冶流程处理难选钨矿石[J].有色金属(选矿部分),1981,(5):53~54
    [182]张有仁.用选冶联合工艺综合回收钨矿中有价金属的研究[J].广东有色金属学报,1991,1(2):86~93
    [183]姚锦麟.从低品位钨矿制备仲钨酸铵的离子交换法[J].曲阜师范大学学报,1992,18(1):62~65
    [184]李青刚,张启修,李赞恩,等.离子交换法回收高钼钨中矿化选液中的钨钼[J].中国钨业,2009,24(5):56~59
    [185]戴元宁.水冶法分离钨锡难选共生矿制取仲钨酸铵[J].云南化工,1993,(2):52~56
    [186]曹乃贤.用选冶联合工艺分离锡钨铋硫矿物[J].有色金属,1980,32(1):37-41
    [187]林海清.选-冶联合工艺强化钨矿综合回收的研究[J].有色金属(选矿部分),1990,(3):15~21
    [188]贾培祥,王叙林.关于选矿效益的提出和应用[J].有色金属(选矿部分),1985,(1):52~58
    [189]马阳明,贾培祥.选矿效益岭回归模型的建立及应用[J].有色金属(选矿部分),1989,(1):36~39
    [190]陈高波.偏最小二乘回归在选矿效益建模中的应用[J].数理统计与管理,2006,25(3):18~22
    [191]韩旭里,李松仁.选矿效益的模糊积分评价法[J].冶金经济分析,1993,(2):18~20
    [192]韩旭里,李松仁.灰色聚类法在选矿效益综合评判中的应用[J].湖南有色金属,1993,9(1):23~25
    [193]张顺堂,李仲学.基于DEA的黄金矿山经济效益评价模型研究[J].中国矿业,2005,14(6):18~22
    [194]宋春生,杨庆文.选矿工艺改造项目经济效益分析[J].矿业工程,2004,2(4):25~26
    [195]陈敬阳,谭善沛.锌精矿品位对锌冶炼工艺经济运行的影响分析[J].有色冶金节能,2008,(4):29~31
    [196]徐传华.大洋多金属结核冶炼工艺技术经济评价[J].矿冶,1994,3(1):55~61
    [197]张德茗.我国铅锌冶炼产业规模经济初探[J].中国有色金属学报,1999,9(1):207~212
    [198]周顺科.论铀水冶工艺过程中(高耗酸矿石)酸耗、回收率与经济效益的关系[J].铀矿冶,1996,15(2):123~127
    [199]侯兴.新钢常用国内外烧结粉矿冶金价值技术经济分析[J].江西冶金,2010,30(4):45~48
    [200]李祥仪,李仲学.矿业经济学[M].北京:冶金工业出版社,2001:45~46
    [201]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1994:7-24,241~278,221~223
    [202]M.C.Fuerstenau浮选(上册)[M].北京:冶金工业出版社,1981:47~49
    [203]陈允魁.红外吸收光谱及其应用[M].上海:上海交通大学出版社,1993:80~90.
    [204]吴瑾光.近代傅立叶变换红外光谱技术及其应用[M].北京:科学技术文献出版社,1988:32~40.
    [205]Hu, Yuehua. Carrier flotation of ultrafine particle wolframite. Transactions of Nonferrous Metals Society of China [J],1994,4(4):10-15
    [206]宋少先.疏水絮凝理论与分选工艺[M].煤炭工业出版社,1993,12:69~70
    [207]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005,53-54
    [208]H.B.别洛夫,A.A.戈道维柯夫,B.B.巴卡金.齐进英等译.理论矿物学[M].北京:地质出版社,1988:6
    [209]邓海波,赵磊,李晓东,等.柿竹园预脱铁脱泥黑白钨混浮钨矿选矿新工艺研究[J].中国钨业,2011,26(4):36~39
    [210]赵磊.钨矿预脱铁-脱泥-黑白钨混浮新工艺及机理研究[D].中南大学硕士学位论文.2010
    [211]邓海波,赵磊.细粒矿泥与钨矿物凝聚行为和对浮选分离影响的机理研究[J],中国钨业,2011,26(3):19~22
    [212]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988
    [213]彭文世,刘高魁.矿物红外光谱图集[M].北京:科学出版社,1982:243.
    [214]付广钦.细粒级黑钨矿的浮选工艺及浮选药剂的研究[D].中南大学硕士学位论文.2010
    [215]朱海玲,邓海波,吴承桧,等.钨渣的综合回收利用技术研究现状[J],中国钨业,2010,25(4):15~18
    [216]中南大学,湖南柿竹园有色金属有限责任公司,郴州钻石钨制品有限责任公司.选、冶联合工艺提高柿竹园矿钨资源综合利用率的研究[R].长沙,中南大学,2009.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700