固溶态AM60B镁合金高速撞击变形及损伤行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了固溶态AM60B镁合金高速撞击条件下的变形及损伤行为。采用火药炮、一级轻气炮和二级轻气炮进行高速撞击试验,研究了不同撞击速度和不同碰撞副下镁合金靶板的成坑过程;通过光学显微镜、扫描电子显微镜、透射电子显微镜等分析手段对高速撞击条件下弹坑附近不同深度、不同区域的变形组织进行了表征;同时利用显微压痕、霍普金森压杆和热模拟试验机对撞击后弹坑附近材料的力学性能进行了测试,并利用原位拉伸试验研究了高速撞击诱发的缺陷对主裂纹扩展过程的影响规律。
     研究表明钢弹/镁靶碰撞副的成坑过程不同于铝弹/镁靶碰撞副。随着撞击速度的增加,钢弹/镁靶碰撞副形成的弹坑形貌经历了球冠形→半球形→圆柱形+半球形→半球形过渡,而铝弹/镁靶碰撞副在撞击成坑过程中弹坑形貌由球冠形逐渐过渡到半球形。在弹道撞击速度范围内,弹坑深度是钢弹/镁靶碰撞副的主要侵彻形式,而弹坑体积是铝弹/镁靶碰撞副的主要侵彻形式。当撞击速度达到超高速撞击时,弹坑体积是镁合金靶板的主要侵彻方式,与碰撞副的类型无关。高速撞击的成坑过程明显不同于准静态压缩成坑,撞击成坑过程所消耗的弹丸动能始终大于准静态压缩成坑所做到的功,且随着弹坑深度的增加,两者的差距增大。撞击成坑过程计算表明撞击瞬间弹靶接触界面形成的冲击波压力和温升随着撞击速度的增加显著增大,当撞击速度达到5000 m/s,形成的冲击波压力超过材料强度2个数量级,冲击波温升超过材料的熔点,甚至沸点。撞击成坑过程中撞击方向上的材料承受了最严重的动态变形,45°撞击方向的材料次之,垂直撞击方向上的材料变形程度最轻。
     弹坑周围变形组织研究表明撞击方向上变形组织分布区域最宽,45°撞击方向上分布次之,垂直撞击方向上变形组织分布最窄,形成了椭球状组织分布。随着撞击速度的增加,弹坑周围变形组织的分布区域均有展宽的现象。相近撞击速度下,钢弹/镁靶碰撞副弹坑周围变形组织的分布区域宽于铝弹/镁靶碰撞副。弹道撞击条件下,弹坑周围的变形组织可划分为三个区域:高密度孪晶区、中等密度孪晶区和低密度孪晶区,而超高速撞击条件下,弹坑周围出现了细晶区,其变形组织可划分为四个区域:细晶区、细晶+高密度孪晶区、高密度孪晶区和低密度孪晶区,其中低密度孪晶区贯穿整个30 mm厚的靶板。由于高速撞击可在弹坑底部提供梯度性的应变、应变速率载荷变化,通过弹坑周围不同区域变形组织的表征,揭示了弹坑附近细晶的形成过程,建立了弹坑附近细晶形成的物理模型。
     绝热剪切带研究表明高速撞击条件下绝热剪切带的形成需要一定的临界撞击速度,随着撞击速度的增加,弹坑附近材料经历了均匀塑性变形→应变局部化(形变带)→白色侵蚀带(转变带)→裂纹的演化过程,即形变带和转变带是不同变形阶段、变形程度的产物。通过转变带在两种侵蚀剂下呈现的光学形貌发现,转变带的光学形貌与侵蚀剂的类型密切相关,因而基于光学显微镜下白色侵蚀的特征来辨别转变带的类型存在一定偏差。高速撞击条件下弹坑附近材料由于应变局部化的差异,一定撞击速度下弹坑附近可同时形成形变带和转变带。形变带内部以严重变形、碎化的晶粒为主,而转变带内部以细小等轴的再结晶晶粒为主。孪生和位错滑移在转变带内部细晶的形成过程中起着重要的作用。高速撞击条件下镁合金转变带内细晶的形成应归结于孪晶诱发的旋转动态再结晶机制。
     弹坑附近典型的微观结构研究表明高速撞击条件下镁合金中主要形成了{1012}拉伸孪晶和{1 0 11}压缩孪晶,孪生方向分别为< 1011>和< 1012>。高的应力应变水平、低的临界剪切应力、小的切变量是两类变形孪晶形成的主要原因。高速撞击条件下弹坑附近超细晶Mg晶粒内部存在高密度的位错结构,位错滑移是超细晶Mg晶粒进一步塑性变形的主要方式。高速撞击条件下弹靶界面材料在冲击高温、高压的共同作用下形成了多种与熔化相关的微观组织,如铝晶粒、镁铝化合物以及非晶组织。非晶组织的形成是熔化、快速凝固的结果。
     撞击后弹坑附近材料的力学性能研究表明随着撞击速度的增加,撞击后弹坑附近材料的动态屈服强度逐渐增大,而材料的动态抗压强度在一定的撞击速度下存在极大值。钢弹/镁靶碰撞副撞击后弹坑附近材料达到最大动态抗压强度的临界撞击速度为590 m/s,铝弹/镁靶碰撞副为2500 m/s。超过临界撞击速度,撞击后材料的动态抗压强度随着撞击速度的继续增加而降低。随着与弹坑边沿距离的增加,撞击后材料的动态屈服强度逐渐降低,而材料的动态抗压强度则存在临界变形程度,超过临界值时,材料的动态抗压强度在弹坑底部一定距离上存在极大值。原位拉伸试验研究表明撞击诱发的微裂纹、微孔洞、绝热剪切带及孪晶界是主裂纹形核和扩展的主要路径,大量缺陷的形成降低了材料抵抗继续变形的能力。
Deformation and damage behaviors of solution treated AM60B Mg alloy under high velocity impact have been investigated in this paper. High velocity impact experiments were carried out on power gun, one-stage and two-stage gas guns, and the cratering processes in Mg alloy target impacted by different projectiles under different impact velocities were studied. The deformed microstructure at different zones and depth levels adjacent to the crater under high velocity impact were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The mechanical properties of the materials near the crater after impact were measured by indentation test, Hopkinson bar and thermal simulation test, and the in-situ tensile tests were used to investigate the influence of defects induced by high velocity impact on the primary crack propagation.
     The results show that the cratering process in the Mg alloy target impacted by steel projectile was different from that impacted by Al projectile. With the impact velocity increasing, several crater morphologies including spherical cap, hemispherical, columned + hemispherical and hemispherical crater were experienced sequentially in Mg alloy target impacted by steel projectile, while the crater morphologies transformed from the spherical cap to hemispherical crater were experienced sequentially in Mg alloy target impacted by Al projectile.Under ballistic impact, the crater depth was the main penetration behaviors in the Mg alloy target impacted by steel projectile, while the crater volume was the main penetration behaviors in the Mg alloy target impacted by Al projectile. When the impact velocity was speeded up to the hypervelocity impact, the crater volume was the main penetration behaviors in Mg alloy target impacted by various projectiles. The impact cratering process was different from quasistatic compressive cratering, and kinetic energy of projectile dissipated by the impact cratering was always larger than the work dissipated by quasistatic compressive cratering. With the crater depth increasing, the dissipated energy gap between the impact and quasistatic cratering increased. The calculated impact cratering process shows that the formed shock pressure and temperature rising increased obviously at the interface between the projectile and target at impact moment as impact velocity increasing. When the impact velocity was reached 5000 m/s, the calculated shock pressure was two times magnitude higher than the materials strength, and shock temperature rising was exceeded the materials melting point, even boiling point. During the impact cratering process, the materials paralleled to the impact direction suffered the most severe plastic deformation, and the deformed levels of the materials 45°and vertical to impact direction decreased sequentially.
     The investigated deformed microstructures near the crater show that the microstructural distribution paralleled to the impact direction was widest, and the distribution scope 45°and vertical to impact direction decreased sequentially, and the ellipsoid-like microstructural distribution was formed. With the impact velocity increasing, the microstructural distribution zones near the crater became much wider. At almost same impact velocities, the microstructural distribution near the crater in Mg alloy target impacted by steel projectile was larger than that formed by Al projectile. Under ballistic impact, the deformed microstructure near the crater could be classified into three zones: high density twin zone, medium density twin zone and low density twin zone. Under hypervelocity impact, the ultrafine grain zone was appeared near the crater, and the deformed microstructure near the crater could be classified into four zones: ultrafine grain zone, ultrafine grain + high density twin zone, high density twin zone and low density twin zone. The low density twin zone was spread in the whole target with thickness of 30 mm. High velocity impact could provide a gradient variation of the strains and strain rates from the crater rim to the deep matrix, thus the ultrafine grain evolution adjacent to the crater could be obtained through the characterization of the deformed microstructure at different depth levels, and the physical model of the ultrafine grains formed near the crater was constructed.
     The investigated adiabatic shear bands show that the critical impact velocity was required for the formation of the adiabatic shear bands. With impact velocity increasing, the materials near the crater suffered uniform plastic deformation, strain localization (deformed bands), white-etching bands (transformed bands) and cracks sequentially, thus the deformed and transformed bands were the different stage products. The metallographic observation of the transformed bands etched by two etchants shows that the optical morphology of the transformed bands was closely related with etchants, thus the white-etching characteristic in metallographic observation to distinguish the transformed bands was inaccuracy. The different stain localization the materials suffered near the crater could lead to the formation of the deformed and transformed bands simultaneously in Mg alloy targets impacted at a critical velocity. The deformed bands composed of deformed, fragmental grains were confirmed, while the transformed bands composed of the ultrafine and equiaxed recrystallized grains were observed. The twinning and dislocation slipping played an important role for the formation of the ultrafine grains in the transformed bands, and its formation should be attributed to the twining-induced rotational dynamic recrystallization mechanism.
     The investigated typical microstructures near the crater show that the {1 0 12} extension twins with twinning direction along < 1011> and {1 0 11} contraction twins with twinning direction along < 1012> were the main twin modes in Mg alloy under high velocity impact. High stress and strain levels, low critical shear stress and small shear displacement should be responsible for the formation of two twin modes. High density dislocation structure have been confirmed in the ultrafine Mg grains formed near the crater under high velocity impact, which indicated that dislocation slipping was the main mechanism of the further plastic deformation of the ultrafine Mg grains. Under high velocity impact, high temperature and pressure the materials suffered at the interface between the projectile and target led to the formation of various molten-related microstructures, such as Al grains, MgAl compound and amorphous microstructure. The formation of the amorphous microstructure was a product of the melting and rapid solidification.
     The mechanical properties of the materials after impact show that dynamic yield strength of the materials near the crater after impact increased as the impact velocity increasing, and the maximum dynamic compressive strength of the materials was obtained at critical impact velocity. The critical values were obtained in Mg alloy target impacted by steel and Al projectiles at the velocities of 590 m/s and 2500 m/s, respectively. Beyond the critical values, the dynamic compressive strength of the materials after impact decreased as the impact velocity increasing. As the distance approaching to the crater rim, the dynamic yield strength of the materials after impact increased obviously, and the critical plastic deformation was existed for the dynamic compressive strength of the materials. Beyond the critical value, the maximum dynamic compressive strength of the materials was obtained at a certain distance from the crater rim. The situ tensile tests show that the microcracks, microvoids, ASBs and twin boundary induced by high velocity impact were the preferential sites for the nucleation and propagation of the primary cracks, and the formation of various defects led to the further deformability of the materials decreasing.
引文
1丁强.空间碎片及其对策.国外空间动态. 1993, 4: 23
    2杨秀敏.空间站面临空间垃圾撞击的危险.国外空间动态. 1991, 1: 25
    3徐耀宗. Al_2O_3陶瓷在高速撞击条件下变形行为的研究.哈尔滨工业大学学士学位论文. 2009: 1
    4钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景.航空工程及维修, 2002, 4: 41-42
    5 Q.A.朱卡斯,张志云译.碰撞动力学.军事工业出版社. 1989
    6马晓青,韩峰.高速碰撞动力学.国防工业出版社. 1998
    7 R.J. Eichelberger, J.W. Gehring. Effects of Meteoroid Impacts on Space Vehicles. ARS J.. 1962, 32: 1583-1591
    8 V.S. Hernandez, L.E. Murr, I.A. Anchondo. Experimental Observation and Computer Simulations for Metallic Projectile Fragmentation and Impact Crate Decelopment in Thick Metal Targets. Int. J. Impact Eng.. 2006, 32: 1981-1999
    9 L.E. Murr, E.P. Garcia, E. Ferreyra T., C-S. Niou, J.M. Rivas, S.A. Quinones. Microstructural Aspects of Hypervelocity Impact Cratering and Jetting in Copper. J. Mater. Sci.. 1996, 31: 5915-5932
    10 L.E. Murr, C.S. Niou, E.P. Garcia, E. Ferreyra T., J.M. Rivas, J.C. Sanchez. Comparison of Jetting-related Microstructures Associated with Hypervelocity Impact Crater Formation in Copper Targets and Copper Shaped Charges. Mater. Sci. Eng. A. 1997, 222: 118-132
    11 P.H. Schultz, C.M. Ernst, J.L.B. Anderson. Expectations for Crater Size and Photometric Evolution from the Deep Impact Collision. Space Sci. Rev.. 2005, 117: 207-239
    12张伟,马文来,马志涛,庞宝君.弹丸超高速撞击铝靶成坑数值模拟.高压物理学报. 2006, 20 (1): 1-5
    13张伟,管公顺,贾斌,庞宝君.弹丸形状对超高速撞击厚合金铝靶成坑影响的数值模拟.高压物理学报. 2008, 22 (4): 343-349
    14马志涛,张伟,贾斌,庞宝君.弹丸超高速撞击半无限厚铝板数值模拟.材料科学与工艺. 2004, 12 (3): 283-286
    15马文来,张伟,庞宝君,陈海辉.超高速撞击弹丸形状效应数值模拟研究.宇航学报. 2006, 27 (6): 1174-1177
    16 J.B. Feldman. Volume-energy Relation from Shaped Charge Jet Penetration. Proceeding of 4th Symposium on Hypervelocity Impact, Elgin Air Force Base, Fla. April 26-28, 1960
    17孙庚辰,董家祥,张志深,朱清敏,郭瑞萍.金属靶材料密度对抗弹性能影响的实验研究.兵工学报. 1993, 4: 75-78
    18周劲松.在高速粒子撞击作用下几种金属的宏观和微观损伤行为.哈尔滨工业大学博士学位论文. 1997: 57-62
    19李国爱.高速撞击条件下几种金属材料的变形及组织演变行为.哈尔滨工业大学博士学位论文. 2006: 43-44
    20才鸿年,谭成文,王富耻,陈志勇.装甲用煤合金抗弹性能表证体系探讨.中国工程科学. 2006, 8 (2): 30-33
    21管公顺.航天器空间碎片防护结构超高速有撞击特性研究.哈尔滨工业大学博士学位论文. 2005: 17
    22 N.R.G. Shrine, M.J. Burchell, I.D. Grey. Velocity Scaling of Impact Craters in Water Ice over the Range 1 to 7.3kms-1. Icarus. 2002, 155: 475-485
    23 L.A. Merzhievsky. Crater Formation in a Plastic Target under Hypervelocity Impact. Int. J. Impact Eng.. 1997, 20: 557-568
    24 W. Harrison, C. Loupias, P. Outrebon, D. Turland. Experimental Data and Hydrocode Calculations for Hypervelocity Impacts of Stainless Steel into Aluminum in the 2-8 km/s Range. Int. J. Impact Eng.. 1995, 17: 363-374
    25 J.D. Cinnamon, A.N. Palazotto. Further Validation of a General Approximation for Impact Penetration Depth Considering Hypervelocity Gouging Data. Int. J. Impact Eng.. 2007, 34: 1307-1326
    26 A.C. Charters, J.L. Summers. Some Comments on the Phenomena of High Speed Impact. Norl-1238. 1959: 200-221
    27 B.G. Cour-Palais. Hypervelocity Impact Investigations and Meteoroid Shielding Experience Related to Apollo and Skylab. NASA conference publication 2360, Orbital debris, 1985: 247-275
    28 K.B. Hayashida, J.H. Robinson. Single Wall Penetration Equations. NASA TM-103565, 1991
    29孙庚辰,谈庆明,赵成修,葛学真.金属厚靶的超高速撞击开坑实验.兵工学报. 1994, 1: 27-31
    30周劲松,甄良,杨德庄.几种金属材料在2.6~7km/s弹丸撞击下的损伤行为.宇航学报. 2000, 21(2): 75-81
    31管公顺,庞宝君,迟润强,哈跃,朱耀.单层5A06铝合金板高速撞击实验研究.试验力学. 2006, 21(2): 144-150
    32 N.N. Smirnov, K.A. Kondratyev. Evaluation of Craters Formation in Hypervelocity Impact of Debris Particles on Solid Structures. Acta Astronaut.. 2009, 65: 1796-1803
    33 T. Kadono, A. Fujiwara. Caviti and Crater Depth in Hypervelocity Impact. Int. J. Impact Eng.. 2005, 31: 1309-1317
    34 J.R. Baker. Hypervelocity Crater Penetration Depth and Diameter-a Linear Function of Impact Velocity. Int. J. Impact Eng.. 1995, 17: 25-35
    35马上.超高速碰撞问题的三维物质点法模拟.清华大学硕士论文. 2005: 2
    36 L.E. Murr, S.A. Quinones, E. Ferreyra T., A. Ayala, O.L. Valerio, F. Horz, R.P. Bernhard. The Low-velocity-to-hypervelocity Penetration Transition for Impact Craters in Metal Targets. Mater. Sci. Eng. A, 1998, 256: 166-182
    37寇绍全.绝热剪切-一个值得重视的材料破坏问题.力学进展. 1979: 352-359
    38 M.J. Hadianfard, R. Smerd, S. Winkler, M. Worswick. Effects of Strain Rate on Mechanical Properties and Failure Mechanism of Structural Al-Mg Alloys. Mater. Sci. Eng. A. 2008, 492: 283-293
    39 D.G. Lee, S. Lee, C.S. Lee, S. Hur. Effects of Microstructural Factors on Quasi-static and Dynamic Deformation Behaviors of Ti-6Al-4V Alloys with Widmanstatten Structures. Metall. Mater. Trans. A. 2003, 34: 2541-2548
    40 R.L. Woodward. Metallographic Features Associated with the Penetration of Titanium Alloy Targets. Metall. Trans. A. 1979, 10: 569-573
    41 N. Ranc, L. Taravella, V. Pina, P. Herve. Temperature Field Measurement in Titanium Alloy during High Strain Rate Loading-Adiabatic Shear Bands Phenomenon. Mech. Mater.. 2008, 40: 255-270
    42 B.F. Wang. Adiabatic Shear Band in a Ti-3Al-5Mo-4.5V Titanium Alloy. J. Mater. Sci.. 2008, 43: 1576-1582
    43 S.C. Liao, J. Duffy. Adiabatic Shear Bands in a Ti-6Al-4V Titanium Alloy. J. Mech. Phys. Solids. 1998, 46: 2201-2231
    44 Y.Yang, B.F.Wang. Dynamic Recrystallization in Adiabatic Shear Band inα-Titanium. Mater. Lett.. 2006, 60: 2198-2202
    45 D.G. Lee, Y.G. Kim, D.H. Nam, S.M. Hur, S. Lee. Dynamic Deformation Behavior and Ballistic Performance of Ti-6Al-4V Alloy Containing Fineα2(Ti3Al) Precipitates. Mater. Sci. Eng. A. 2005, 391: 221-234
    46 H.T. Li, Y.M. Zhang, D.Z. Yang. Micro-damage of Ti-6Al-4V alloy under Hypervelocity Projectile Impact. Mater. Sci. Eng. A. 2000, 292: 130-132
    47 D.R. Chichili, K.T. Ramesh, K.J. Hemker. Adiabatic Shear Localization inα-Titanium: Experiments, Modeling and Microstructural Evolution. J. Mech. Phys. Solids. 2004, 52: 1889-1909
    48 A.K. Zurek. The Study of Adiabatic Shear Band Instability in a Pearlitic 4340 Steel Using a Dynamic Punch Test. Metall. Mater. Trans. A. 1994, 25:2483-2489
    49 J.F.C. Lins, H.R.Z. Sandim, H.-J. Kestenbach, D. Raabe, K.S. Vecchio. A Microstructural Investigation of Adiabatic Shear Bands in an Interstitial Free Steel. Mater. Sci. Eng. A. 2007, 457: 205-218
    50 A.J. Sunwoo, R. Becker, D.M. Goto, T.J. Orzechowski, H.K. Springer, C.K. Syn, J. Zhou. Adiabatic Shear Formation in Explosively Driven Fe-Ni-Co Alloy Cylinders. Scripta Mater.. 2006, 55: 247-250
    51 A.G. Odeshi, M.N. Bassim, S. Al-Ameeri. Effect of Heat Treatment on Adiabatic Shear Bands in a High-strength Low Alloy Steel. Mater. Sci. Eng. A. 2006, 419: 69-75
    52 M.A. Meyers, B.Y. Cao, V.F. Nesterenko, D.J. Benson, Y.B. Xu. Shear Localization-Martensitic Transformation Interactions in Fe-Cr-Ni Monocrystal. Metall. Mater. Trans. A. 2004, 35: 2575-2586
    53 K. Cho, Y.C. Chi, J. Duffy. Microscopic Observation of Adiabatic Shear Bands in Three Different Steel. Metall. Trans. A. 1990, 21:1161-1175
    54 C.L. Wittman, M.A. Meyers, H.-R. Pak. Observation of an Adiabatic Shear Band in AISI 4340 Steel by High-voltage Transmission Electron Microscopy. Metall. Trans. A. 1990, 21:707-716
    55 Q. Xue, G.T. Gray. Development of Adiabatic Shear Bands in Annealed 316L Stainless Steel: PartⅡ.TEM Studies of the Evolution of Microstructure during Deformation Localization. Metall. Mater. Trans. A. 2006, 37: 2447-2458
    56 M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, T.R. Mcnelley. Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel. Acta Mater.. 2003, 51: 1307-1325
    57 C. Yang, R.P. Liu, Z.J. Zhan, L.L. Sun, W.K. Wang. High Speed Impact on Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass. Mater. Sci. Eng. A. 2006, 426: 298-304
    58 W.H. Jiang, M. Atzmon. The Effect of Compression and Tension on Shear-band Structure and Nanocrystallization in Amorphous Al90Fe5Gd5: a High-resolution Transmission Electron Microscopy Study. Acta Mater.. 2003, 51: 4095-4105
    59 J.-J. Kim, Y. Choi, S. Suresh, A.S. Argon. Nanocrystallization during Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature. Science. 2002, 295: 654-657
    60 R.Q. Yang, S.X. Li, Z.F. Zhang. Study of Adiabatic Shear Bands in Fatigued Copper Single Crystals with Different Orientations under High Velocity Impact. Acta Metall. Sinica. 2006, 42: 245-250
    61 P.W. Leech. Observations of Adiabatic Shear Band Formation in 7039 Aluminum Alloy. Metall. Trans. A. 1985, 16: 1900-1903
    62 C.G. Lee, Y.J. Lee, S. Lee. Observation of Adiabatic Shear Bands Formed by Ballistic Impact in Aluminum-lithium Alloys. Scripta Mater.. 1995, 32: 821-826
    63 G.M. Owolabi, A.G. Odeshi, M.N.K. Singh, M.N. Bassim. Dynamic Shear Band Formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 Composites. Mater. Sci. Eng. A. 2007, 457: 114-119
    64 L.H. Dai, L.F. Liu, Y.L. Bai. Effect of Particle Size on the Formation of Adiabatic Shear Band in Particle Reinforced Metal Matrix Composites. Mater. Lett.. 2004, 58: 1773-1776
    65 L. Zhen, G.A. Li, J.S. Zhou, D.Z. Yang. Micro-damage Behavior of Al-6Mg Alloy Impacted by Projectiles with Velocities of 1-3.2km/s. Mater. Sci. Eng. A. 2005, 391: 354-366
    66 W.S. Lee, C.Y. Liu, T.N. Sun. Dynamic Impact Response and Microstructural Evolution of Inconel 690 Superalloy at Elevated Temperatures. Inter. J. Impact Eng.. 2005, 32: 210-223
    67 M.T. Perez-Prado, J.A. Hines, K.S. Vecchio. Microstructural Evolution in Adiabatic Shear Bands in Ta and Ta-W Alloys. Acta Mater.. 2001, 49: 2905-2917
    68 E. Hanina, D. Rittel, Z. Rosenberg. Pressure Sensitivity of Adiabatic Shear Banding in Metals. Appl. Phys. Lett.. 2007, 90: 021915
    69 D. Rittel, Z.G. Wang, M. Merzer. Adiabatic Shear Failure and Dynamic Stored Energy of Cold Work. Phys. Rev. lett.. 2007, 96: 075502
    70 M.A. Meyers,张庆明译. Dynamic Behavior of Materials.国防工业出版社.2006
    71 U.S. Lindholm, G.R. Johnson. In Material Behavior under High Stress and Ultrahigh Loading Rates. Eds. J. Mescall and V. Weiss, Plenum, New York, 1983: 61
    72卢维娴,王礼立,路在庆.β-钛合金在高应变率下的绝热剪切现象.金属学报. 1986, 22(4): 39-42
    73徐永波,白以龙.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展.力学进展. 2007, 37: 496-516
    74徐天平,王礼立.高应变率下钛合金Ti-6Al-4V的热粘塑性特性和绝热剪切变形.爆炸与冲击. 1987, 7(1): 1-7
    75 D. Rittel. A Different Viewpoint on Adiabatic Shear Localization. J. Phys. D. 2009, 42: 214009
    76 D. Rittel. A New Pperspective on Adiabatic Shear Failure. 9th International Conference on Mechanical and Physical Behavior of Materials under Dynamic Loading. 2009. 2: 955-961
    77 Y.B. Xu, Y.L. Bai, M.A. Meyers. Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-strain Rate Loading in Titanium and Its Alloy. J. Mater. Sci. Technol.. 2006, 22: 737-744
    78 Y.B. Xu, J.H. Zhang, Y.L. Bai, M.A. Meyers. Shear Localization in Dynamic Deformation: Microstructural Evolution. Metall. Mater. Trans. A. 2008, 39: 811-843
    79 Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, M.A. Meyers. Shear Localization and Recrystallization in Dynamic Deformation of 8090 Al-Li Alloy. Mater. Sci. Eng. A. 2001, 299: 287-295
    80 G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, C.Y. Xu. Deformation Localization and Recrystallization in TC4 Alloy under Impact Condition. Mater. Sci. Eng. A. 2005, 395: 98-101
    81王礼立,余同希,李永池.冲击动力学进展.中国科学技术大学出版社. 1992
    82 X.B. Wang. Phenomenon of Transformed Adiabatic Shear Band Surrounded by Deformed Adiabatic Shear Band of Ductile Metal. Trans. Nonferrous Met. Soc. China. 2008, 18: 1177-1183
    83 Y.B. Xu, Z.G. Wang, X.L. Huang, D. Xing, Y.L. Bai. Microstructure of Shear Localization in Low-carbon Ferrite-pearlite Steel. Mater. Sci. Eng. A. 1989,114: 81-87
    84谭成文,王富耻,李树奎,苏铁建.绝热剪切带内微孔洞演化规律研究.兵工学报. 2004, 25 (2): 197-199
    85刘新芹,王富耻,王琳,路永胜.钢中绝热剪切带的动态损伤演化.兵器材料科学与工艺. 2004, 27 (3): 17-21
    86 A.G. Odeshi, M.N. Bassim, S. Al-Ameeri, Q.Li. Dynamic Shear Band Propagation and Failure in AISI 4340 Steel. J. Mater. Process. Technol.. 2005, 169: 150-155
    87段占强,程国强,李守新.高速冲击下钢板的微观组织及绝热剪切带.金属学报. 2003, 39 (5): 486-491
    88 L.E. Murr, E. Ferreyra T., S. Pappu, E.P. Garcia, J.C. Sanchez, W. Huang, J.M. Rivas, C. Kennedy, A. Ayala, C.-S. Niou. Novel Deformation Process and Microstructures Involving Ballistic Penetrator Formation and Hypervelocity Impact and Penetration Phenomena. Mater. Char.. 1996, 37: 245-276
    89 L.E. Murr, A. Ayala, C.S. Niou. Microbands and Shear-Related Microstructural Phenomena Associated with Impact Craters in 6061-T6 Aluminum. Mater. Sci. Eng. A. 1996, 216: 69-79
    90孙兵兵.某船体钢弹板侵彻行为研究.哈尔滨工程大学硕士学位论文. 2005: 8
    91陈振华.变形镁合金.化学工业出版社. 2005
    92 Q. Xue, E.K. Cerreta, G.T. Gray. Microstructural Characteristics of Post-Shear Localization in Cold-Rolled 316L Stainless Steel. Acta Mater.. 2007, 55: 691-704
    93 C.G. Lee, W.J. Park, S. Lee, K.S. Shin. Microstructural Development of Adiabatic Shear Bands Formed by Ballistic Impact in a Weldalite 049 Alloy. Metall. Mater. Trans. A. 1998, 29: 477-483
    94 E. Ei-Danaf, S.R. Kalidindi, R.D. Doherty, C. Necker. Dformation Texture Transition in Brass: Critical Role of Micro-scale Shear Bands. Acta Mater.. 2000, 48: 2665-2673
    95 Y.B. Xu, Z. Ling, Y.L. Bai. Evolution of Thermoplastic Shear Localization and Related Microstructures in Al/SiCp Composites under Dynamic Compression. J. Mater. Sci. Technol.. 2002, 18: 504-508
    96 M.A. Meyers, V.F. Nesterenko, J.C. Lasalvia, Q. Xue. Shear Localization in Dynamic Deformation of Materials: Microstructural Evolution and Self-organization. Mater. Sci. Eng. A. 2001, 317: 204-225
    97 Q. Xue, J.F.Bingert, B.L.Henrie, G.T. Gray. EBSD Characterization of Dynamic Shear Band Regions in Pre-shocked and As-received 304 Stainless Steel. Mater. Sci. Eng. A. 2008, 473: 279-289
    98汪冰峰.钛及钛合金中绝热剪切带微观结构演化及其集体行为研究.中南大学博士学位论文. 2006, 62-65
    99汪冰峰,杨扬.钛合金TC16种绝热剪切带的微观组织演化.中国有色金属学报. 20007, 17: 1767-1772
    100 L.M. Hsiung, D.H. Lassila. Shock-induced Omega Phase in Tantalum. Scripta Mater.. 1998, 38: 1371-1376
    101 M.W. Chen, J.W. Mccauley, K.J. Hemker. Shock-induced Localized Amorphization in Boron Carbide. Science. 2003, 299: 1563-1566
    102熊俊.爆炸复合界面内非(纳米)晶及ASB内组织形成机制.中南大学硕士学位论文. 2004, 23-29
    103 R.Z. Valiev, A.K. Mukherjee. Nanostructures and Unique Properties in Intermetallics, Subjected to Severe Plastic Deformation. Scripta Mater.. 2001, 44: 1747-1750
    104 R. Lapovok, L.S. Toth, A. Molinari, Y. Estrin. Strain Localization Patterns under Equal-Channel Angular Pressing. J. Mech. Phys. Solid. 2009, 57: 122-136
    105李保成,张星.镁合金冲击性能研究.新技术新工艺. 2005, 7: 54-55
    106吴秀玲,谭成文.冲击载荷作用下AZ31镁合金中的变形局部化.稀有金属材料与工程. 2008, 37(6): 1111-1113
    107 Y.B. Yang, F.C. Wang, C.W. Tan, Y.Y. Wu, H.N. Cai. Plastic Deformation Mechanisms of AZ31 Magnesium Alloy under High Strain Rate Compression. Trans. Nonferrous Met. Soc. China. 2008, 18: 1043-1046
    108 C.W. Tan, S.N. Xu, L. Wang, Z.Y. Chen, F.C. Wang, H.N. Cai, H.L. Ma. Deformation Behavior of AZ31 Magnesium Alloy at Different Strain Rates and Temperatures. Trans. Nonferrous Met. Soc. China. 2007, 17: 347-352
    109杨素媛,才鸿年,王富耻.动态加载条件下细晶镁合金的组织特征及形成机制.北京理工大学学报. 2009, 29 (2): 168-171
    110吴园园,谭成文,杨勇彪,王富耻,才鸿年.高应变率下AZ31B镁合金力学行为各向异性.稀有金属材料与工程. 2009, 38 (3): 404-408
    111杨勇彪,王富耻,谭成文,才鸿年.高应变率下AZ31镁合金板材变形局域化各向异性.南京大学学报. 2009, 45 (2): 264-268
    112杨勇彪,王富耻,谭成文,吴园园,才鸿年.不同取样方向AZ31B镁合金应变率效应.兵工学报. 2008, 29 (11): 1347-1351
    113纪伟,范亚夫.镁合金靶板在球形弹丸侵彻过程中的破坏分析.兵器材料科学与工程. 2009, 32 (2) 89-92
    114范亚夫,纪伟,陈捷,乔光利.挤压态Mg-Gd-Y系合金中的绝热剪切带.材料导报. 2008, 22 (7): 110-111
    115纪伟,范亚夫,陈捷,乔光利. Mg-Gd-Y系合金中绝热剪切带的特征.稀有金属材料与工程. 2009, 38 (4): 599-602
    116杨勇彪,王富耻,谭成文.镁合金动态力学行为研究进展.兵器材料科学与工程. 2008, 31(3): 71-73
    117宁俊生,范亚夫,彭秀峰.镁合金在大变形和高应变速率下塑性变形研究进展.材料工程. 2007, 9: 67-73
    118陈振华等.镁合金.化学工业出版社. 2004
    119田政.稀土添加及固溶处理对AM60镁合金组织及力学性能的影响.吉林大学硕士学位论文. 2006: 40-41
    120宋波. AM60镁合金的稀土改性及摩擦磨损行为研究.吉林大学博士学位论文. 2006: 36
    121张庭凤.压铸工艺对AM60B镁合金组织和性能的影响.兰州理工大学硕士学位论文. 2007: 12
    122张忠明,马莹,徐春杰,贾树卓.往复挤压Mg2Si增强镁铝基复合材料的组织与性能.铸造技术. 2007, 28(6): 808-811
    123 L.E. Murr, E.A. Trillo, A.A. Bujanda, N.E. Martinez. Comparison of Residual Microstructures Associated with Impact Craters in Fcc Stainless Steel and Bcc Iron Targets: the Microtwin Versus Microband Issue. Acta Mater. 2002, 50: 121-131
    124朱耀. AA7055铝合金在不同温度及应变率下力学性能的实验研究.哈尔滨工业大学博士学位论文. 2010: 11-13
    125 E.D.H. Davies, S.C. Hunter. The Dynamic Compression Testing of Solids by the Method of Split Hopkinson Pressure Bar. J. Mech. Phys. Solids. 1963, 11: 155–179
    126陈刚,陈忠富,陶俊林,牛伟,张青平,黄西成. 45钢动态塑性本构参量与验证.爆炸与冲击. 2005, 25(5): 451-456
    127陈刚,陈忠富,陶俊林,牛伟,何鹏. TC4动态力学性能研究.试验力学.2005, 20(4): 605-609
    128吕剑,何颖波,田常津,张方举,陈成军,邓宏见.泰勒杆实验对材料动态本构参数的确认和优化确定.爆炸与冲击. 2006,26(4): 339-344
    129赵光明,宋顺成,孟祥瑞.圆柱形弹体Taylor撞击方法研究.爆炸与冲击. 2006, 26(6): 498-504
    130 B. Wang, J. Zhang, G. Lu. Taylor Impact Test for Ductile Porous Materials-Part 2: Experiments. Inter. J. Impat Eng.. 2003, 28: 499-511
    131 P.J. Maudlin, J.F. Bingert, J.W. House, S.R. Chen. On the Modeling of the Taylor Cylinder Impact Test for Orthotropic Textured Materials: Experiments and Simulations. Inter. J. Plasticity. 1999, 15: 139-166
    132 X. Teng, T. Wierzbicki, S. Hiermaier, I. Rohr. Numerical Prediction of Fracture in the Taylor Test. Inter. J. Solids Struct.. 2005, 42: 2929-2948
    133 S.A. Quinones, L.E. Murr. Correlation of Computed Simulations with Residual Hardness Mappings and Microstructural Observations of High Velocity and Hypervelocity Impact Craters in Copper. Phys. Stat. Sol. A. 1998, 166: 763-789
    134 L.F. Hou, Y.H. Wei, B.S. Liu, B.S. Xu. High Energy Impact Techniques Application for Surface Grain Refinement in AZ91D Magnesium Alloy. J. Mater. Sci.. 2008, 43: 4658-4665
    135 H.Q. Sun, Y.-N. Shi, M.-X. Zhang, K. Lu. Plastic Strain-induced Grain Refinement in the Nanometer Scale in a Mg Alloy. Acta Mater.. 2007, 55: 975-982
    136 K.T. Ramesh. Effects of High Rates of Loading on the Deformation Behavior and Failure Mechanisms of Hexagonal Close-packed Metals and Alloys. Metall. Mater. Trans. A. 2007, 33: 927-935
    137陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究.材料导报. 2006, 20:107-113
    138夏伟军,杨春花,黄长清,陈振华.变形量和变形速率对AM60铸锭压缩过程中孪晶的影响.机械工程材料. 2006, 30: 13-15
    139陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性.有色金属学报. 2005, 15(1): 1-11
    140 S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath. Formation of Annealing Twins in F.c.c. Crystals. Acta Mater.. 1997, 45 (6): 2633-2638
    141杨春花.镁合金塑性变形中孪生的研究.湖南大学硕士学位论文. 2006: 2
    142苏燕玲.孪生在镁合金塑性变形中的作用.南京理工大学硕士学位论文.2007: 3-4
    143 Y. Yang, B.F. Wang. Microstructure Evolution in Adiabatic Shear Band inα-Titanium. J. Mater. Sci.. 2006, 41: 7387-7392
    144 L.E. Murr, E.V. Esquivel. Observation of Common Microstructural Issues Associated with Dynamic Deformation Phenomena: Twins, Microbands, Grain Size Effects, Shear Bands, and Dynamic Recrystallization. J. Mater. Sci.. 2004, 39: 1153-1168
    145 V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, A.N. Sysoev, V.I. Kopylov. Low-temperature Superplasticity and Internal Friction in Microcrystalline Mg Alloys Processed by ECAP. Scripta Mater.. 2004, 50: 861-865
    146 A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60. Acta Mater.. 2001, 49: 1199-1207
    147 H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi. Effect of Temperature and Grain Size on the Dominant Diffusion Process for Superplastic Flow in an AZ61 Magnesium Alloy. Acta Mater.. 1999, 47: 3753-3758
    148 D.R. Lesuer, C.K. Syn, O.D. Sherby. Severe Plastic Deformation through Adiabatic Shear Banding in Fe-C Steels. Mater. Sci. Eng. A. 2005, 410-411: 222-225
    149 Q. Xue, X.Z. Liao, Y.T. Zhu, G.T. Gray. Formation Mechanisms of Nanostructures in Stainless Steel during High-strain-rate Severe Plastic Deformation. Mater. Sci. Eng. A. 2005, 410-411: 252-256
    150 D.L. Yin, K.F. Zhang, G.F. Wang, W.B. Han. Warm Deformation Behavior of Hot-rolled AZ31 Mg Alloy. Mater. Sci. Eng. A. 2005, 392: 320-325
    151 M.H. Yoo. Slip, Twinning, and Fracture in Hexagonal Close-peaked Metals. Metall. Trans. A. 1981, 12: 409-418
    152 A. Serra, D.J. Bacon, R.C. Pond. Twins as Barriers to Basal Slip in Hexagonal-Close-packed Metals. Metall. Mater. Trans. A. 2002, 33: 809-812
    153 A. Serra, R.C. Pond, D.J. Bacon. Computer Simulation of the Structure and Mobility of Twinning Dislocations in HCP Metals. Acta Metal. Mater.. 1991, 39: 1469-1480
    154周铖. Mg-12Gd-3Y-0.5Zr(wt%)合金力学性能及变形孪晶研究.南京理工大学硕士学位论文. 2009: 45-46
    155 Y.J. Li, Y.J. Chen, J.C. Walmsley, R.H. Mathinsen, S. Dumoulin, H.J. Roven. Faceted Interfacial Structure of {1 0 11} Twins in Ti Formed during Equal Channel Angular Pressing. Scripta Mater.. 2010, 62: 443-446
    156 R.E. Reed-Hill, W.D. Robertson. The Crystallographic Characteristics of Fracture in Magnesium Sngle Crystals. Acta Metall.. 1957, 5: 728-737
    157 B.L. Wu, G. Wan, Y.D. Zhang, C. Esling. Twinning Characteristics in Textured AZ31 Alloy under Impact Loading along Specified Direction. Mater. Lett.. 2010, 64: 636-639
    158 S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima. Recrystallization Mechanism of As-cast AZ91 Magnesium Alloy during Hot Compressive Deformation. Mater. Sci. Eng. A. 2009, 527: 52-60
    159 X.Y. Li, Y.J. Wei, L. Lu, K. Lu, H.J. Gao. Dislocation Nucleation Governed Softening and Maximum Strength in Nano-twinned Metals. Nature. 2010, 464: 877-880
    160 M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng. Deformation Twinning in Nanocrystalline Aluminum. Science. 2003, 300: 1275-1277
    161 Q. Yu, Z.W. Shan, J. Li, X.X. Huang, L. Xiao, J. Sun, E. Ma. Strong Crystal Size Effect on Deformation Twinning. Nature. 2010, 463: 335-338
    162隋曼龄,王艳波,崔静萍,李白清.透射电镜原位拉伸研究金属材料形变机制.电子显微学报. 2010, 29(3): 219-229
    163 I.W. Donald, H.A. Davies. Prediction of Glass-forming Ability for Metallic Systems. J. Non-Cryst. Solids. 1978, 30: 77-85
    164 R.B. Schwarz, W.L. Johnson. Formation of an Amorphous Alloy by Solid-state Reaction of the Pure Polycrystalline Metals. Phys. Rev. Lett.. 1983, 51(5): 415-418
    165李冬剑,王景唐,丁炳哲.高压非晶化转化机制研究.自然科学进展. 1992: 562-564
    166李冬剑,王景唐,丁炳哲,李淑苓.压力诱致非晶合金形成.高压物理学报. 1994: 73-79
    167王晓丽.机械合金化制备镁基非晶合金.兰州理工大学硕士学位论文. 2004: 12
    168 M.C. Chen, C.C. Hsieh, W. Wu. Microstructral Characterization of Al/Mg Alloy Interduffusion Mechanism during Accumulative Roll Bonding. Met.Mater. Int.. 2007, 13: 201-205
    169 K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, M.Y. Zheng. Miceostructure and Mechanical Properties of the Mg/Al laminated Composite Fabricated by Accumulative Roll Bonding. Mater. Sci. Eng. A. 2010, 527: 3073-3078
    170 M.Y. Zheng, W.C. Zhang, K. Wu, C.Y. Yao. The Deformation and Fracture Behavior of SiCw/AZ91 Magnesium Matrix Composite during In-situ TEM Straining. J. Mater. Sci.. 2003, 38: 2647-2654
    171 X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, D.L. Peng. Study on Fracture Behavior of Particulate Resinforced Magnesium Matrix Composite Using in Situ SEM. Compos. Sci. Technol.. 2007, 67: 2253-2260
    172 Y.B. Wang, M.L. Sui. Atomic-scale in Situ Observation of Lattice Dislocations Passing through Twin Boundaries. Appl. Phys. Lett.. 2009, 94, 021909: 1-3
    173 X.D. Li, Z.H. Xu, R.Z. Wang. In situ Observation of Nanograins Rotation and Deformation in Nacre. Nano Lett.. 2006, 6: 2301-2304
    174 J.W. Christian, S. Mahajan. Deformation Twinning. Prog. Mater. Sci.. 1995, 39: 1-157
    175 Z.L. Mi, D. Tang, Y.J. Dai, H.T. Jiang, J.C. Lu. In-situ Observation on the Deformation Behaviors of Fe-Mn-C Twin Steel. Inter. J. Miner. Metall. Mater.. 2009, 16: 646-649
    176 G.F. Quan, L.M. Cai. Mechanism of Crack Nucleation Analysed by In situ Observation on Mg-Al-Zn Alloy. Mater. Sci. Forum. 2007, 539-543: 1669-1674
    177 H. R?sner, N. Bouncharat, J. Markmann, K.A. Padmannabhan, G. Wilde. In situ Transmission Electron Microscope Observations of Deformation and Fractrue Processes in Nanocrystalline Palladium and Pd90Au10. Mater. Sci. Eng. A. 2009, 525: 102-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700