钛合金Ti6Al4V高效切削刀具摩擦磨损特性及刀具寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效率、高精度、高柔性和绿色化是现代制造技术的发展方向。高速、高效切削加工技术近20年来以其独特的优势成功应用于钢铁及铝合金的切削加工,但是在高温合金的加工中应用并不广泛。论文主要针对Ti6A14V高效切削加工过程中刀具摩擦磨损特性及其热-力耦合作用对刀具磨损与刀具寿命的影响规律展开研究,为钛合金加工刀具材料选择、刀具结构设计及切削参数优化提供理论依据和技术支撑。
     研究了Ti6A14V-硬质合金的摩擦学行为。摩擦过程中,摩擦系数随摩擦温度变化呈近似线性的规律。硬质合金的磨损率随滑动速度的升高而增加,磨损机理主要是粘着、扩散、氧化、剥落磨损及破损,几种磨损机理是相互影响的,粘结剂Co元素的扩散是导致硬质合金刀具基体弱化剥落的重要因素。
     在Ti6A14V直角切削刀具-切屑(前刀面)、刀具-工件(后刀面)接触面的摩擦特性试验研究基础上,建立了前、后刀面的摩擦模型,刀具-切屑、刀具-工件接触以粘结为主,接触区分为紧密粘结和非紧密粘结两个区域,非紧密粘结区的成因为刀具表面不平整所致,接触区上主应力及摩擦应力服从负指数分布,摩擦系数为平均温度的函数。在刀具-切屑、刀具-工件、刃口区接触面主应力及相对滑动速度有限元分析的基础上,建立了直角切削前、后刀面及刃口区应力及速度连续性分布模型。为全面分析Ti6A14V加工过程中的刀具-切屑、刀具-工件接触面的摩擦特性及热-力耦合现象奠定了基础。
     建立了直角切削刀具前、后刀面及刃口区的热-力耦合作用解析模型,计算并分析了切削参数、刀具几何角度、后刀面磨损量对刀具-切屑接触长度、应力分布、切削温度、切削力等变量的影响,为进一步研究刀具磨损规律提供了理论依据。
     建立了热-力耦合作用下以扩散磨损为主要磨损机理的前刀面月牙洼磨损模型。计算并分析了切削参数及Co含量对硬质合金刀具前刀面磨损率的影响,结果显示硬质合金磨损率与Co含量成正比,为钛合金切削加工硬质合金刀具材料的选择提供了理论依据。建立了以扩散、磨粒、粘结磨损为机理的硬质合金刀具后刀面磨损解析模型。计算结果显示切削速度及后刀面磨损量对各种磨损机理所占比例有重要影响,切削速度及后刀面磨损量增大,扩散磨损比例大大增加。
     分析了刃倾角及主偏角对Ti6A14V车削过程的影响。刃倾角较小时(-15°~15°),其对前刀面切削温度和切削力影响不大。主偏角对刀具寿命有明显影响,减小主偏角可提高刀具寿命。因此,适当的速度、大切深、小主偏角是硬质合金刀具车削钛合金提高效率的优化方向。试验研究了非涂层硬质合金刀具、涂层硬质合金刀具及PCBN刀具车削Ti6A14V的切削力、切削温度、刀具磨损及寿命随切削参数的变化规律。并以表面粗糙度、刀具寿命及切削效率为优化目标对上述三种刀具切削参数进行了优化。Ti6A14V车削中,刀具的使用性能依次为非涂层硬质合金<涂层硬质合金<PCBN,PCBN刀具的应用将使Ti6A14V高速车削成为可能。
     对Ti6A14V铣削加工过程进行了数值模拟(DEFORM 3D)。铣削过程中的热-力耦合现象与车削显著不同,在断续的机械冲击和热冲击共同作用下,铣削刀具的磨损规律与车削不同。并对铣削可转位非涂层及涂层刀具进行了试验研究,分析了涂层、切削参数及冷却液对刀具切削力、切削温度、刀具寿命等影响。低速下,涂层刀具的寿命高于非涂层刀具,高速下两种刀具的寿命差别不大。冷却液在切削过程中可以使刀具寿命显著提高。最后,分析了刀具寿命与切削效率的关系,并对铣削参数进行了优化。
High efficiency, high accuracy, flexibility and greenization are the development directions of modern manufacturing technologies. In the last two decades years, High Speed/Performance Machining (HSM/HPS) is successfully applied in cutting steel, cast iron and alumina alloy, due to its unique advantages. However, it is not yet prevalent in high temperature alloy machining. This dissertation focuses on Ti6A14V HPM, systematically analyzes the tribological behaviors of tool-chip interface (rake face), tool-workpiece interface (flank face), the thermo-mechanical coupling effect and its influence on tool wear and tool life in Ti6A14V machining, finally provides theoretical and practical support for tool materials selection, tool geometries and cutting parameters optimization.
     Tribological behaviors of Ti6A14V-tungsten carbide (WC-6%Co) were studied. In friction process, friction coefficient is approximately linear with friction temperature. Wear rate of carbide increased with sliding speed, wear mechanism was adhesion, diffusion, oxidation, flaking and fracture, several wear mechanisms is interactive. Diffusion of carbide binder Co is the key factor for carbide substrate weakening and flaking.
     The friction models in tool-chip (rake face) and tool-workpiece (flank face) interface was constructed, based on friction characteristics analysis in Ti6A14V orthogonal cutting tests. Adhesion is the main contact morphology at tool-chip, tool-workpiece interface, which consist of tight adhesion region and non-tight adhesion region. The principal stress and frictional stress were a negative exponential distribution in whole contact length; friction coefficient is a function of average cutting temperature. The stress and sliding speed continuity hypothesis at tool-chip, tool-workpiece interface and edge area were assumed in visco-plastic material cutting process, base on DEFORM 3D finite element simulation and experimental analysis. It is a foundation for complete research on tribological behaviors and thermo-mechanical coupling effect of tool-chip, tool-workpiece interface in Ti6A14V machining process.
     Thermo-mechanical coupling analytical models of tool-chip and tool-workpiece interface were constructed; their computation results showed that the contact length, stress distribution, cutting force, cutting temperature at rake face contact area is influenced by cutting parameters and tool geometries, as well as flank wear value in machining process. These models provide the theoretical foundation for the research of tool wear laws in Ti6A14V machining.
     Diffusive crater wear model was established, based on tool wear mechanism and the thermo-mechanical coupling analysis in Ti6A14V machining. And its computation result showed that diffusion of Co element from tool into workpiece material at elevatated cutting temperature is the key factor of tool wear. The wear rate is proportional to Co content, and these results provide the theoretical foundation for tool material selection in Ti6A14V machining. The flank wear model was also constructed, base on diffusion, adhesion and abrasion wear mechanisms in Ti6A14V machining, its computation results showed that the proportion of three wear mechanisms was affected by cutting speed and flank wear value VB, the proportion of diffusion wear severely increase with VB and cutting speed increase in total wear value.
     The influence of tool geometries on turning process were analyzed, influence of inclination angle on cutting temperature and cutting force is not significant, when it changes from -15°to 15°. But, the influences of lead angle is remarkable, the smaller lead angle is more favorable for tool life in Ti6A14V turning. Therefore, appropriate cutting speed, lager depth of cut, smaller lead angle are the optimal direction for Ti6A14V high efficiency turning. The Ti6A14V turning cutting experiments with different materials, such as uncoated carbide, coated carbide (TiAlN) and PCBN were conducted, to analyze the influence of cutting parameters on cutting force, cutting temperature, tool wear and tool life. Finally, cutting parameters were optimized for three tools, based on tool life-cutting efficiency relationship analysis. The cutting performances of three tools are uncoated carbide < coated carbide < PCBN. The use of PCBN tool will be capable of Ti6A14V high speed turning.
     DEFORM 3D milling process simulation results showed that the milling process is different from turning, in which the intermittently mechanical impact and thermal shock result in tool wear and fracture. The Ti6A14V milling test was performed for uncoated carbide and coated carbide (TiAlN), the influences of coating, cutting parameters, coolant on cutting force, cutting temperature and tool life were analyzed. The cutting performance of coated carbide is more excellent than uncoated carbide at lower cutting speed, but it has no remarkable difference in higher cutting speed. The coolant can significantly improve the tool-chip, tool-workpiece interface contact situation and prolong the tool life. Finally, cutting parameters of both tools were optimized, based on tool life-cutting efficiency relationship analysis.
     This work is sponsored by the National Natural Science Foundation of China (50575126) and National Basic Research Program of China (973) (2009CB724401 and 2009CB724402).
引文
1.艾兴.坚持自主创新发展和应用高效切削技术提升加工制造水平[J].工具技术,2006,(6):2-6.
    2.沈壮行.高效切削加工已成为全球制造技术的发展趋势-中国工具工业应迎头赶上[J].工具技术,2005,(4):2-5.
    3.罗德福.高速高效切削加工技术的现状及发展趋势[J].世界制造技术与装备市场,2006,(3):34-36.
    4.艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.26-90.
    5.赵永庆,魏建峰,高占军等.钛合金的应用和低成本制造技术[J].材料导报,2003,(17):5-7.
    6.李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].钛工业进展,2004,(21):19-24.
    7.肖永清.诠释现代车用钛合金的应用及前景[J].铝加工,2008,(1):41-43.
    8.沈保罗,冯可芹,高升吉.钛合金的应用和应力腐蚀[J].四川化工与腐蚀控制,2000,(3):43-45.
    9.韦泰兴.高温钛合金的应用组织和性能[J].钒钛,1996,(1):48-50
    10.齐德新,马光锋,张桂木.钛合金切削加工性综述[J].煤矿机械,2002,(11):3-4.
    11.张春江.钛合金切下加工技术[M].西安:西北工业大学出版社,1986.
    12.蒋骏,理有亲,张中元等.钛合金零件制造技术[M].北京:国防工业出版社,1991.25-103.
    13.王金友,葛志明.航空用钛合金[M].上海:上海科学技术出版社1985.31-98.
    14.E O Ezugwu,J Bonney,Y Yamane,An overview of the machinability of aeroengine alloys[J],.Journal of Materials Processing Technology,2003,(134):233-253.
    15.E O Ezugwu,Z M Wang,Titanium alloys and their machinability-a review[J].Journal of Materials Processing Technology,1997,(68):262-274.
    16.Mustafizur Rahman,Zhi Gang Wang,Yoke Sun Wong.A review on high speed maching of titanium alloy[J].JSME Internationnal Jounal,2006,(1):11-20.
    17.P J Arrazola,A Garay,L M Iriarte.Machinability of titanium alloys(Ti6Al4V and Ti555.3)[J].Journal of materials processing technology,2009,(209):2223-2230.
    18.Zhen Bing Hou,R Komanduri.On a Thermoplastic Shear Instability in the Machining of Titanium Alloy(Ti6Al4V)[J].Annals of the CIRP,1995,(44):69-72.
    19.Zhen Bing Hou,R Komanduri.Modeling of thermomechanical shear instability in machining [J].International Journal of Mechanic Science.1997,(39):1273-1314.
    20.J Barry,G Byrne,D Lennon.Observations on chip formation and acoustic emission in machining Ti6Al4V alloy[J].International Journal of Machine Tools & Manufacture,2001,(41):1055-1070.
    21.M Cotterell,G Byrne.Dynamics of chip formation during orthogonal cutting of titanium alloy Ti6Al4V[J].CIRP Annals- Manufacturing Technology,2008,(57):93-96
    22.Jiang Hua,Rajiv Shivpri.Prediction of chip morphology and segmentation during the machining of titanium alloys[J].Journal of Materials Processing Technology,2004,(150):124-133.
    23.A Molinari,C Musquar,G Sutter.Adiabatic shear banding in high speed machining of Ti6Al4V experiments and modeling[J].International Journal of Plasticity,2002,(18):443-459.
    24.Martin Baker,Joachim Rosier,Carsten Siemers.A finite element model of high speed metal cutting with adiabatic shearing[J].Computers and Structures.2002,80:495-513.
    25.Jiang Hua,Rajiv Shivpri.Prediction of chip morphology and segmentation during the machining of titanium alloys[J].Journal of Materials Processing Technology.2004,(150):124-133.
    26.Akhtar S Khan,Yeong Sung Suh,Rehan Kazmi.Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J].International Journal of Plasticity,2004,(20):2233-2248
    27.白以龙,徐永波.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展[J].力学进展.2007,(34):496-516.
    28.Yongbo Xu,Yilong Bai,M A Mayers.Deformation,phase transformation and recrystallization in the shear band induced by high-strain rate loading in titanium and its alloy[J].Jounal of Material Science Technology,2006,(22):737-748
    29.Yongbo Xu,M A Mayers.Microstructure Evolution of localized shear bands induced during explosion in TirAl4V alloy[J].Jounal of Material Science Technology,2003,(19):385-387.
    30.陈刚,陈忠富,陶俊林,et al.TC4动态力学性能研究[J].试验力学,2005,(20):605-609.
    31.Songwon Seo,Oakkey Min,HyunmoYang.Constitutive equation for Ti-6Al-4V at high temperatures[J].International Journal of Impact Engineering.2005,(31):735-754.
    32.S.Anurag,Y.B.Guo.A micromicro mechanical approach to determine flow stress of work materials experiencing complex deformation histories in manufacturing processes[J].Proceedings of ASME/MSEC,2006:1-9.
    33.S Anurag,Y B Guo.A modified micromechanical approach to determine flow stress of work materials experiencing complex deformation histories in manufacturing processes[J].International Journal of Mechanical Sciences.2007,(49):909-918.
    34.D A S Macdougall,J Harding.A constitutive relation and failure criterion for Ti6Al4V alloy at impact rates of strain[J].Journal of the Mechanics and Physics of Solids,1999,(47):1157-1185.
    35.M Vanderhasten,L Rabet,B Verlinden.Ti6Al4V Deformation map and modelisation of tensile behaviour[J].Materials and Design,2008,(29):1090-1098.
    36.S.Bruschi,S.Poggio,F.Quadrini,et al.Workability of Ti6Al4V alloy at high temperatures and strain rates[J].Materials Letters.2004,(58):3622-3629.
    37.史廷春,陈森灿.TC4钛合金高温锻造本构模型的试验研究[J].锻压技术,1999,(3):22-24.
    38.Farhad Nabhani.Machining of aerospace titanium alloys[J].Robotics and Computer Integrated Manufacturing,2001,(17):99-106.
    39.P A Dearnley.Evaluation of principal wear mechanism of cemented carbides and ceramics used for machining titanium alloys and IMI318[J].Material Sciences and Technology,1986,(2):47-58.
    40.M Nouari,A Ginting.Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy[J].Surface & Coatings Technology,2006,(200):5663-5676.
    41.A.Ginting,M Nouari.Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material[J].International Journal of Machine Tools &Manufacture,2006,(46):758-768.
    42.A Jawaid,S Shadf,S Koksal.Evalution of wear mechanisms of coated carbide tools when face milling titanium alloy[J].Journal of Materials Processing Technology,2000,(99):266-274.
    43.Perez R G V.Wear mechanisms of WC inserts in face milling of gamma titanium aluminides [J].Wear,2005,(259):1160-1167.
    44.李友生,邓建新,张辉.高速车削钛合金的硬质合金刀具磨损机理研究[J].摩擦学学报,2008,(28):443-447.
    45.N Corduan,T Himbert,G Poulachon,et al.Wear mechanisms of new tool materials for Ti6Al4V high performance Machining[J].Annals of the CIRP,2003,(52):73-76.
    46.E O Ezugwu,R.B Da Silva,J.Bonney,et al.Evaluation of the performance of CBN tools when turning Ti6Al4V alloy with high pressure coolant supplies[J].International Journal of Machine Tools & Manufacture,2005,(45):1009-1014.
    47.Z G Wang.High-speed milling of titanium alloy using binderless CBN tools[J].International Journal of Machine Tool & Manufacture,2005,(45):105-114.
    48.Z G Wang,M.Rahman,Y.S.Wong.Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys,Wear,2005,(258):752-758.
    49.S K Bhaumik,C Divakar,A K Singh.Machining Ti-6Al-4V alloy with a WBN-CBN composite tool,Materials & Design,1995,(16):221-226
    50.A K M Nurul Amin,Ahmad F Ismail,M K Nor Khairusshima.Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloyTi6Al4V[J].Journal of Materials Processing Technology,2007,(192-193):147-158.
    51.H A Kishawya.Tool performance and attainable surface quality during the machining of aerospace alloys using self-propelled rotary tools[J].Journal of Materials Processing Technology.2004,152:266-271.
    52.Shuting Lei W L.High-speed machining of titanium alloys using the driven rotary tool[J].International Journal of Machine Tools & Manufacture.2002,42:653-661.
    53.Ezugwu E O.Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique[J].Journal of Materials Processing Technology.2007,185:60-71.
    54.Ezugwu E O.Key improvements in the machining of difficult-to-cut aerospace super alloys[J].International Journal of Machine Tools & Manufacture.2005,45:1267-1353.
    55.Shane Y Hong,Irel Markus,Woo cheol Jeong.New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V[J].International Journal of Machine Tools & Manufacture,2001,(41):2245-2260.
    56.Z Y Wang,K P Rajurkar.Cryogenic machining of hard-to-cut materials[J].Wear,2000,(239):168-175.
    57.Yakup Yildiz,Muammer Nalbant.A review of cryogenic cooling in machining processes[J].International Journal of Machine Tools & Manufacture,2008,(48):947-964.
    58.K A Venugopal,S Paul,A B Chattopadhyay.Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling[J].Wear,2007,(262):1071-1078.
    59.K.A.Venugopal,S.Paul,A.B.Chattopadhyay,Tool wear in cryogenic turning of Ti6AI4V alloy [J].Cryogenics,2007,(47):12-18
    60.舒彪,何宁.无污染切削介质下钛合金铣削刀具磨损机理研究[J].机械科学与技术.2004,(24):454-457.
    61.满忠雷,何宁,武凯.氮气介质下铣削钛合金时的刀具磨损研究[J].机械科学与技术.2003,(22):988-996.
    62.仇启源,庞思勤.现代金属切削技术[M].北京:机械工业出版社:1989.15-360.
    63.Merchant M E.Mechanics of themetal cutting process,Ⅰ:orthogonal function of the work-material properties[J].Journal of Applied Physics,1945,(16):267-275
    64.Merchant M E.Mechanics of the metal cutting process,Ⅱ:plasticity conditions in orthogonal cutting[J].Journal of Applied Physics,1945,(16):318-324
    65.Shaw M C.Metal cutting principles[M],Oxford,UK:Oxford University Press.1984.
    66.Oxley PLB.Mechanics of machining[M].Chichester,UK:EllisHor-wood,1989.
    67.N Fang.Slip line modeling of machining with a rounded edge tool-Part ang New model and theory[J].Journal of the Mechanics and Physics of Solids,2003,(51):715-742
    68.N Fang,P Dewhurst.Slip line modeling of built up edge formation in machining[J].International Journal of Mechanical Sciences,2005,(47):1079-1098.
    69.N Fang,I S Jawahir,P L B Oxley.A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool[J].International Journal of Mechanical Sciences,2001,(43):557-580.
    70.A.Molinari,A.Moufki.The Merchant's model of orthogonal cutting revisited:A new insight into the modeling of chip formation[J].International Journal of Mechanical Sciences,2008,(50):124-131
    71.Matthew Cotterell,Gerry Byrne.Characterisation of chip formation during orthogonal cutting of titanium alloy Ti6Al4V[J].CIRP Journal of Manufacturing Science and Technology,2008,(1):81-85
    72.明冬兰,刘旺玉,张发英.大刃倾角切削的变形研究[J].工具技术,1999,(6):11-14
    73.#12
    74.J A Arsecularatne.On tool-chip interface stress distributions ploughing force and size effect in machining[J].International Journal of Machine Tools & Manufacture.1997,(37):885-899.
    75.Xiaoping Yang,C R Liu.A new stress-based model of friction characteristic in machining and its significant impact on residual stresses computed by finite element method[J].International Journal of Mechanical Sciences,2002,(44):703-723.
    76.Tugrul Ozel,Erol Zeren.Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests[J].Journal of Materials Processing Technology.2004,(153-154):1019-1025.
    77.Tugrul Ozel.The influence of friction models on finite element simulations of machining[J].International Journal of Machine Tools & Manufacture,2006,(46):518-530.
    78.W Grzesik.The role of coatings in controlling the cutting process when turning with coated indexable inserts[J].Journal of Materials Processing Technology,1998,(79):133-143.
    79.W Grzesik.Experimental investigation of the influence of adhesion on the frictional conditions in the cutting process[J].Tribology International,1999,(32):15-23.
    80.W Grzesik.An integrated approach to evaluating the tribo-contact for coated cutting inserts[J].Wear,2000,(240):9-18.
    81.W Grzesik.The influence of thin hard coatings on frictional behaviour in the orthogonal cutting process [J]. Tribology International, 2000, (33): 131-140.
    
    82. W Grzesik, Z Zalisz, P Nieslony. Friction and wear testing of multilayer coatings on carbide substrates for dry machining applications.Surface and Coatings Technology, 2002, (155):37—45.
    
    83. T H C Childs. Friction modelling in metal cutting [J]. Wear, 2006, (260):310-318.
    
    84. D Dudzinski, A Molinari. A modelling of cutting for viscoplastic materials [J]. International Journal of Mechanical Sciences. 1997, (39): 369-389.
    
    85. A Moufki, D Dudzinski, A Molinari. Modelling of orthogonal cutting with a temperature dependent friction law [J]. J. Mech Phys Solids. 1998, (46): 2103-2138.
    
    86. A Moufki, D Dudzinski, A Molinari. Thermoviscoplastic modelling of oblique cutting- forces and chip flow predictions [J]. International Journal of Mechanical Sciences. 2000, (42):1205-1232.
    
    87. A Moufki, A Devillez, D Dudzinski, et al. Thermomechanical modelling of oblique cutting and experimental validation [J]. International Journal of Machine Tools & Manufacture. 2004, 44:971-989.
    
    88. A Molinari, A Moufki. A new thermomechanical model of cutting applied to turning operations:Part I. Theory [J]. International Journal of Machine Tools & Manufacture. 2006,45: 166-180.
    
    89. A Moufki, A Molinari. A new thermomechanical model of cutting applied to turning operations: Part II. Parametric study [J]. International Journal of Machine Tools & Manufacture. 2005, 45:181-193.
    
    90. J Wang, C Z Huang, W G Song. The effect of tool flank wear on the orthogonal cutting process and its practical implications [J]. Journal of Materials Processing Technology. 2003, 142:338-346.
    
    91. Huang Y. Predictive modeling of tool wear with application to CBN hard turning [D]. Atlanta:Georgia Institute of Technoloty, 2002:125-189.
    
    92. HuangYong, S Y Liang. Cutting force considering the effect of tool thermal property application to CBN hard turning [J]. International Journal of Advanced Manufacturing and Technology. 2003, (43): 307-315.
    
    93. Ljang Y S, Huang Y. Force modelling in shallow cuts with large negative rake angle and large nose radius tools application to hard turning [J]. International Journal of Advanced Manufacturing and Technology. 2003, (42): 626-632.
    
    94. M T Zaman, A SenthilKumar, M Rahman, et al. A three-dimensional an alytical cutting force model for micro end milling operation [J]. International Journal of Machine Tools &Manufacture, 2006, (46):353-366.
    
    95. Won Soo Yun, Dong Woo Cho. Accurate 3D cutting force prediction using cutting condition independent coefficients in end milling[J].International Journal of Machine Tools &Manufacture,2001,(41):463-478.
    96.Shih-Ming Wang,Chu-Hsiang Chiou,Yuan-Ming Cheng.An improved dynamic cutting force model for end milling process[J].Journal of Materials Processing Technology,2004,(148):317-327.
    97.Chu-Hsiang Chiou,Min-Sung Hong,Kornel F Ehmann.Instantaneous shear plane based cutting force model for end milling[J].Journal of Materials Processing Technology,2005,(170):164-180.
    98.Li Zheng,Yun Shun Chiou,Steven Y Liang.Three dimensional cutting force analyses in end milling[J].International Journal of Mechanical Sciences,1996,(38):259-269.
    99.X P Li,H Z Li.Theoretical modelling of cutting forces in helical end milling with cutter runout [J].International Journal of Mechanical Sciences,2004,(46):1399-1414.
    100.张润红,李振加.平前刀面铣刀片受力密度函数的研究[J].哈尔滨理工大学学报,2004,(9):7-10.
    101.许春停,张冲.高速铣削时铣削力的研究[J].电子机械工程,2009,(1):58-60.
    102.孙暄,安庆龙,张东进等.立铣加工动态切削力预测新方法及应用[J].机械设计与研究,2008,(3):84-88.
    103.田静云,田卫军,李郁.钛合金TC11插铣铣削力建模与分析[J].制造技术与机床,2009,(1):97-101.
    104.Z B Hou,R Komanduri.General solutions for stationary-moving plane heat source problems in manufacturing and tribology[J].International Journal of Heat and Mass Transfer,1999,(43):1670-1698.
    105.R Komanduri,Z B Hou.Analysis of heat partition and temperature distribution in sliding systems[J].Wear.2001,(251):925-938.
    106.R Komanduri,Z B Hou.Thermal modeling of the metal cutting process:Part Ⅰ Temperature rise distribution due to shear plane heat source[J].International Journal of Mechanical Sciences.2000,42:1715-1752.
    107.R Komandud,Z B Hou.Thermal modeling of the metal cutting process:Part-Ⅱ temperature rise distribution due to frictional heat source at the tool- chip interface[J].International Journal of Mechanical Sciences,2001,(43):57-88.
    108.R Komanduri,Z B Hou.Thermal modeling of the metal cutting process:Part Ⅲ temperature rise distribution due to the combined effects of shear plane heat source and the tool- chip interface frictional heat source[J].International Journal of Mechanical Sciences,2001,(43):89-107.
    109.W Grzesik.Experimental investigation of the cutting temperature when turning with coated indexable inserts[J].International Journal of Machine Tools & Manufacture,1999,(39):355-369.
    110.W Grzesik,P Nieslony.Physics based modelling of interface temperatures in machining with multilayer coated tools at moderate cutting speeds[J].International Journal of Machine Tools &Manufacture,2004,(44):889-901.
    111.N A Abukhshim,P T Mativenga,M A Sheikh.Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J].International Journal of Machine Tools & Manufacture,2006,(46):782-800.
    112.R Komanduri,Z B Hou.A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology[J].Tribology International,2001,(34):653-682.
    113.Marcio Baccid da Silva,James Wallbank.Cutting temperature:prediction and measurement methods a review[J].Journal of Materials Processing Technology,1999,(88):195-202
    114.G Sutter,L Faure,A Molinari,et al.An experimental technique for the measurement of temperature felds for the orthogonal cutting in high speed machining[J].International Journal of Machine Tools & Manufacture,2003,(43):671-678.
    115.P.muller-Hummel M L.Quantitative measurement of temperatures on diamond-coated tools during machining[J].Diamond and Related Materials,1995,(4):1216-1221.
    116.刘战强,黄传真,万熠.切削温度测量方法综述[J].工具技术,2002,(3):3-6.
    117.李涛,鲁世红.高速切削过程测温方法综述[J].机械设计与制造,2007,(5):122-124
    118.段春争,李园园,李国和.高速切削温度场测量技术研究现状[J].机械设计与制造,2008,(4):212-214.
    119.宋昌才,刘苏.多元多层复合涂层刀具切削温度的测量[J].江苏理工大学学报(自然科学版),2001,(1):54-58.
    120.张义平.钛合金高速铣削温度的试验研究[J].苏州市职业大学学报.2006,(17):80-83.
    121.韩满林,李一民,赵威.高速切削Ti6AI4V钛合金时切削温度的试验研究[J].工具技术,2008,(1):10-13.
    122.余作生,周正朝.中国工程物理研究院科技系列报告-热弹塑性理论在焊接中的应用[M].1994:1-8
    123.万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究[D].山东大学,2006:1-100
    124.Chun Ho Liu,A Cheng Wang,YiSian Chen.The coupled thermo-mechanical analysis in the upsetting process by the dynamic FEM[J].Journal of Materials Processing Technology.2008,(201):37-42.
    125. L M Galantucci, L Tricarico. Thermo-mechanical simulation of a rolling process with an FEM approach [J]. Journal of Materials Processing Technology, 1999, (92-93): 494-501.
    
    126. A K Tieu, X D Fang, D Zhang. FE analysis of cutting tool temperature field with adhering layer formation [J].Wear, 1998, (214):252-258.
    
    127. E Ceretti, M Lucchi, T Altan. FEM simulation of orthogonal cutting: serrated chip formation [J].Journal of Materials Processing Technology, 1999, (95): 17-26.
    
    128. D R J Owen, M Vaz Jr. Computational techniques applied to high-speed machining under adiabatic strain localization conditions [J]. Computation Methods Application Mechanical.Engeering, 1999, (171): 445-461.
    
    129. Madalina Calamaz, Dominique Coupard, Franck Girot.A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti6A14V [J]. International Journal of Machine Tools & Manufacture,2008, (48):275 - 288.
    
    130. Tugrul Ozel, Taylan Altan. Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting [J]. International Journal of Machine Tools & Manufacture, 2000,(40): 133-152.
    
    131. Tugrul Ozel, Taylan Altan. Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in highspeed flat end milling [J]. International Journal of Machine Tools & Manufacture, 2000, (40): 713-738.
    
    132. M H Dirikolu, THC Childs, K Maekawa. Finite element simulation of chip flow in metal machining [J]. International Journal of Mechanical Sciences, 2001, (43): 2699 - 2713.
    
    133. Martin Baker, Joachim Rosier, Carsten Siemers A finite element model of high speed metal cutting with adiabatic shearing [J]. Computers and Structures, 2002, (80):495-513.
    
    134. Martin Baker. The influence of plastic properties on chip formation [J]. Computational Materials Science, 2003, (28): 556-562.
    
    135. John S Strenkowski, Albert J Shih, Jong Cherng Lin. An analytical finite element model for predicting three-dimensional tool forces and chip flow [J]. International Journal of Machine Tools & Manufacture, 2002, (42):723-731.
    
    136. J Mackerle. Finite element analysis and simulation of machining: an addendum A bibliography (1996-2002) [J]. International Journal of Machine Tools & Manufacture, 2003, (43):103-l 14.
    
    137. W Grzesik, P Nieslony. A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools [J]. International Journal of Machine Tools &Manufacture, 2003, (43): 1311-1317.
    
    138. W Grzesik, M Bartoszuk, P Nieslony Finite difference analysis of the thermal behaviour of coated tools in orthogonal cutting of steels [J].International Journal of Machine Tools & Manufacture,2004,(44):1451-1462.
    139.W Grzesik,M Bartoszuk,P Nieslony.Finite element modelling of temperature distribution in the cutting zone in turning processes with differently coated tools[J].Journal of Materials Processing Technology,2005,(164-165):1204-1211.
    140.W Grzesik.Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique[J].International Journal of Machine Tools & Manufacture,2006,(46):651-658.
    141.Y B Guo,David W Yen.A FEM study on mechanisms of discontinuous chip formation in hard machining[J].Journal of Materials Processing Technology,2004,(155-156):1350-1356.
    142.Halil Bil,S Engin K(?)l(?)c,A Erman Tekkaya.A comparison of orthogonal cutting data from experiments with three different finite element models[J].International Journal of Machine Tools & Manufacture,2004,(44):933-944.
    143.Ramezanati Mahdavinejad.Finite element analysis of machine and workpiece instability in turning[J].International Journal of Machine Tools & Manufacture,2005,(45):753-760.
    144.方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,(7):641-644.
    145.胡韦华,王秋成,胡晓冬等.切削加工过程数值模拟的研究进展[J].南京航空航天大学学报,2005,(11):194-198.
    146.李益锋.二维金属切削的热-力耦合模型及数值模拟[J].湖南工程学院学报,(2006),(12):35-38.
    147.罗蓬,胡侨丹,夏巨谌等.车削过程的三维有限元数值模拟[J].华中科技大学学报(自然科学版),2006,(4):89-92.
    148.李一民,韩满林,赵威.硬质合金刀具高速切削Ti6Al4V合金时扩散磨损的数值模拟[J].工具技术,2008,(4):22-25.
    149.吴金炎,王庆明.基于热-力耦合模型的金属切削过程有限元分析[J].机械设计与研究,2009,(2):18-21.
    150.高爱华,郑友益.正交切削加工有限元模型的建立及其关键技术[J].工具技术,2009,(3):55-57.
    151.王素玉.高速铣削加工表面质量研究[D].山东大学,2006.25-80.
    152.杜树浩,刘勇,许志弘.高速铣削加工的数学模型建立和试验研究[J].机械设计与制造,2009,(4):151-153.
    153.K Cheng,X Luo,R Ward et al.Modeling and simulation of the tool wear in nanometric cutting [J].Wear,2003,(255):1427-1432.
    154.R Komanduri,N Chandrasekaran,L M Raft.Effect of tool geometry in nanometric cutting a molecular dynamics simulation approach[J].Wear,1998,(219):84-97.
    155.R.Komanduri,N.Chandrasekaran,L M Raff.MD simulation of indentation and scratching of single crystal aluminum[J].Wear,2000,(240):113-143.
    156.R Komanduri,N Chandrasekaran.L M Raft.Molecular dynamic simulations of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems(MEMS)applications[J].Materials Science and Engineering,2003,(340):58-67.
    157.R Komanduri,M Lee,L M Raff,et al.The significance of normal rake in oblique machining[J].International Journal of Machine Tools & Manufacture,2004,(44):1115-1124.
    158.I S Jawahir,R Ghosh,X D Fang,et al.An investigation of the effects of chip flow on tool wear in machining with complex grooved tools[J].Wear,1995,(184):145-154.
    159.J A Arsecularatne,R F Fowle,P Mathew.Prediction of tool life in oblique machining with nose radius tools[J].Wear,1996,(198):220-228.
    160.J A Arsecularatne.On prediction of tool life and tool deformation conditions in machining with restricted contact tools[J].International Journal of Machine Tools & Manufacture.2003,(43):657-669.
    161.J A Arsecularatne.Prediction of tool life for restricted contact and grooved tools based on equivalent feed[J].International Journal of Machine Tools & Manufacture,2004,(44):1271-1282.
    162.J A Arsecularatne,L C Zhanga,C Montross.Wear and tool life of tungsten carbide,PCBN and PCD cutting tools[J].International Journal of Machine Tools & Manufacture,2006,(46):482-491.
    163.Yong Huang,Ty G Dawson.Tool crater wear depth modeling in CBN hard turning[J].Wear,2005,(258):1455-1461.
    164.A Molinari,M Nouari.Modeling of tool wear by diffusion in metal cutting[J].Wear,2002,(252):135-149.
    165.M Nouari,A Molinari.Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds[J].Wear,2005,(259):1151-1159
    166.X Luo,K Cheng,R Holt,et al.Modeling flank wear of carbide tool insert in metal cutting[J].Wear,2005,(259):1235-1240.
    167,全永昕.工程摩擦学[M].杭州:浙江大学出版社,1994:65-159.
    168.鲍登,泰伯.固体的摩擦与润滑[M].北京:机械工业出版社,1982:10-205.
    169.克拉盖尔斯基.摩擦磨损计算原理[M].北京:机械工业出版社,1982:25-156.
    170.朱华,葛世荣.摩擦学系统的混沌特性[J].机械工程学报.2004,40(12):10-13.
    171.Deng Jianxin,Li Yousheng,Song Wenlong.Diffusion wear in dry cutting of Ti6Al4V with??WC/Co carbide tools[J].Wear,2008,(265):1776-1783. 172.A.Moufki,A Devillez,M Segreti.A semi-analytical model of non-linear vibrations in orthogonal cutting and experimental validation[J].International Journal of Machine Tools &Manufacture.2006,(46):436-449. 173.A Gentel,H W Hoffmeister.Chip Formation in Machining Ti6Al4V at Extremely High Cutting Speeds[J].Annalofthe CIRP,2001,(50):49-52.v
    174.Shih Chieh Liao,J Duffy.Adiabatic shear bands in a TI-6Al-4V titanium alloy[J].Journal of the Mechanics and Physics of Solids.2008,(46):2201-2231. 175.邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005:117-130. 176.美国金属协会.硬质合金工具的破损及其断裂韧性[M].北京:机械工业出版社,1989:25-79. 177.T.H.Лoлaдзe.刀具的强度和耐磨性[M].北京:机械工艺出版社,1988:115-238. 178.周泽华.金属切削理论[M].北京:机械工业出版社,1992:121-145. 179.Jiang Hua,Rajiv Shivpri.A cobalt diffusion based model for predicting crater wear of carbide tools in machining titanium alloys[J].Transaction of the A SME,2005,(127):136-144. 180.化学工程手册编委会.化学工程手册第10篇-传质[M].北京:化学工业出版社,1989:56-89. 181.常文保.简明分析化学手册[M]北京:北京大学出版社,1981:1-3. 182.H A Abdel-Aal,M Nouad,M EIMansori.The effect of thermal property degradation on wear of WC-CO inserts in dry cutting[J].Wear.2008,(265):1671-1679. 183.H A Abdel-Aal,M Nouari,M ElMansori.Tribo-energetic correlation of tool thermal properties to wear of WC-Co inserts in high speed dry machining of aeronautical grade titanium alloys[J].Wear.2009,(266):432-443. 184.陆健中,孙家宁.金属切削原理与刀具[M].北京:机械工业出版社,2005:11-190. 185.陈章燕.研究切削过程的新方法[J].北京工业学院学报,1989,(15):96-106. 186.M Alauddin,M A E Baradie,M S J Hashmi.Prediction of tool life in end milling by response surface methodology[J].Journal of Materials Processing Technology,1997,(71):456-465. 187.魏宗舒.概率论与数理统计教程[M].北京:高等教育出版社,1983.372-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700