区间非概率多目标优化设计方法及其在车身设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代经济、工业的发展使优化技术在各个领域得到了广泛应用,很多工程问题常常涉及到多目标优化问题,多个目标之间的相互竞争和相互冲突常常使得最优解不存在,因此,不能简单地应用单目标优化方法来解决。此外,不确定性也广泛存在于实际工程问题中,这使得传统的优化理论和方法难以直接得到应用,给求解带来了困难和挑战。随机和模糊优化方法是两类传统的不确定优化方法,然而要获得不确定量的精确概率分布和模糊隶属度函数较为困难。区间数优化是一类相对较新的不确定优化方法,它利用区间对不确定参数建模,只需要较少的信息即可获得变量的上下界,有较好的经济性和方便性。当前区间不确定优化问题大多是单目标优化问题,然而在实际工程中常常涉及到区间多目标优化问题,特别是非线性区间数多目标优化问题。目前为止,还没有发展出一种有效的算法来处理该类问题。为此,本论文对非线性区间不确定多目标优化问题进行了研究。
     本文的研究工作按以下几个方面展开:首先,提出了一种非线性区间不确定性多目标优化转换模型,实现了不确定多目标优化问题向确定性优化问题的转换。其次,基于该转换模型,将自适应近似模型技术引入非线性区间多目标优化,构造出一种具有一定工程实用性的高效非线性区间不确定优化算法,主要解决两层嵌套优化造成的效率低下问题。再次,基于该转换模型,拓展到不确定多学科优化问题中,构造出一种适用于多学科多目标的不确定优化算法。最后,将算法应用于车身设计领域中的一些实际问题。基于此思路,本文主要研究内容如下:
     (1)提出了一种基于非线性区间的不确定多目标转化模型。基于区间序关系和区间可能度,将不确定多目标的目标函数和约束转化为确定性的目标函数和约束。通过转换模型,得到确定性的两层嵌套优化问题。基于多目标遗传算法和序列二次规划算法的两层嵌套优化算法来求解转换后的确定多目标优化问题。对车辆耐撞性和薄板冲压成形两类不确定优化问题进行求解。结果表明该算法具有较好的工程实用性。
     (2)提出了一种基于自适应近似模型技术的不确定多目标优化算法。整个优化过程由一系列的近似不确定优化问题迭代完成,通过拉丁方试验设计,在设计空间和不确定空间进行采样,建立目标函数和约束的Kriging近似模型。自适应方法的每一迭代步,通过非线性区间数优化求解转换后的确定优化问题,获得Pareto解集和不确定集,组成设计点集,根据空间填充设计标准,从设计点集选择几个设计点对近似模型更新直到收敛为止。该算法不仅更新了设计空间和不确定空间,提高了近似模型的精度,而且减少了样本的数量,提高了优化效率。
     (3)在区间非概率可靠性指标的基础上,建立了具有可靠性指标约束的多目标优化模型。针对该内层优化为极小极大问题的嵌套优化模型,转换为易于处理的等效形式,同时通过区间序关系给出了目标函数稳健性的求解方法。
     (4)提出了一种基于多学科可行方法的区间不确定多目标优化算法。该多学科多目标算法是三层循环求解,最内层通过学科分析求得状态变量;中间层搜索不确定量,求得目标和约束函数的区间;基于区间序关系和区间可能度,转换为确定性多学科多目标优化问题,外层多目标优化算法求解该转换后的确定性优化问题。并通过数值算例验证了该方法的有效性。
The rapid development with modern industry and economy has made the optimization technique be greatly used in many kinds of fields.Many engineering problems often involve multi-objective optimization problem. Multiple objectives are always competitive and conflicting, which often result in inexistence of optimal solution. Therefore, multi-objective optimization problem (MOOP) can’t be efficiently solved by using the single objective optimization method.Moreover, the uncertainties also cause many difficulties to directly use the conventional optimization approaches and optimization theories,and bring challenges for MOOP. Stochastic and fuzzy multi-objective optimizations are two types of traditional uncertain multi-objective optimization methodologies. Unfortunately, and it is difficult to construct the precise probability distributions or fuzzy membership functions. The interval number optimization is a relatively newly-developed uncertain optimization method, in which interval is used to model the uncertainty of variables. Thus the variation bounds of the uncertain variables are only required, which can be obtained through only a small amount of uncertainty information. The interval number optimization method mostly focuses on the single objective optimization in dealing with uncertainties, while uncertain multi-objective optimization more often involves in engineering problems. It is still at preliminary stage for the nonlinear interval number optimization research. So far, a nonlinear interval number algorithm with fine efficiency and precision has still not been developed to deal with this class of problems. So it is necessary to study the nonlinear interval uncertain multi-objective optimization (NIUMO).
     This dissertation mainly focuses the NIUMO problem. Firstly, a transformation model is proposed to deal with the NIUMO problem, through which the uncertain optimization can be transformed into a deterministic optimization problem. Secondly, an adaptive approximation method is presented to solve the low efficiency problem, which is caused by the nesting optimization. Thirdly, the transformation model is extended to uncertain multidisciplinary design optimization problem. Thus, an algorithm is constructed to solve the interval multidisciplinary multi-objective problem. Finally, the algorithm is applied to the design problem of vehicle body. The main contents are given as follows:
     (1) A new uncertain multi-objective optimization method is developed based on a nonlinear interval number programming. Based on the order relation of interval number and possibility degree of interval number, the uncertain multi-objective optimization is transformed into a deterministic non-constraint multi-objective optimization in terms of a penalty function. The multi-objective genetic algorithm and sequential quadratic programming algorithm are used to solve two layers nesting optimization problems, which are based on the deterministic multi-objective model of transformation. Thus, a new hybrid algorithm is proposed to solve the nonlinear interval number optimization problem. The optimization algorithm is successfully applied in complicated engineering problems, including the crashworthiness and sheet metal forming optimization. The application of the engineering problem demonstrates the effectiveness of the present method.
     (2) An adaptive approximation method is suggested to deal with an nonlinear interval uncertain multi-objective optimization (NIUMO) problem. The whole optimization process consists of a sequence of approximate optimization problems. The approximation models of uncertain objective functions and constrains are constructed by the Kriging models with the Latin Hypercube Design (LHD) samples in design space and uncertain field. In each iteration step, the approximate optimization can be created, and it can be solved by NIUMO. Then a Pareto set predicted by the approximations is identified through the NIUMO method, and an uncertainty set is generated by the Pareto set. Then design points set can be obtained, which consists of the Pareto set and uncertainty set. According to a space-filling design criterion, the approximation models are updated using a few design points belonging to design points set of the current iteration until convergence. This algorithm can improve the precision of approximation models by updating the design space and uncertain space. Furthermore, the algorithm can reduce the sample points at a certain extent and improve the optimization efficiency.
     (3) Based on the definition of non-probability reliability index, a mathematical model for nonlinear interval multi-objective optimization design considering reliability constraints is formulated as a nested optimization problem, in which the inner layer is a min-max problem associated with evaluation of the reliability index. An approach is proposed to transform the optimization problem into its equivalent form. Based on the order relation of interval number, the objective function robustness can be ensured.
     (4) A method is suggested to solve uncertain multidisciplinary multi-objective optimization problem based on the multidisciplinary feasible method (MDF) and interval. It is three-loop optimization procedure. The state variables are solved by the iteration of the multidisciplinary system analysis in the inner loop. The interval of objective functions and constraints are obtained in the middle loop. Based on the order relation of interval number and possibility degree of interval number, the uncertain multidisciplinary optimization can be transformed into the deterministic multidisciplinary optimization. The multi-objective optimization algorithm is used to solve the deterministic multidisciplinary multi-objective optimization problem in the outer loop. Numerical examples are presented to demonstrate the effectiveness and practicability of the present method.
引文
[1] Liu G P, Han X, Jiang C. A novel multi-objective optimization method based on an approximation model management technique. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 2719-2731
    [2] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 2000, 8(2): 173-195
    [3] Franklin B. Letter to Joseph Priestley. 1772
    [4] Pareto V. Course D’Economic Politique. Lausanne:F.Rouge, 1896, vol. I and II
    [5] Koopmans I C. Analysis of production and allocation. New Jersey: John Wiley and Sons, 1951, 33-97
    [6] Kuhn H W, Tucker A W. Nonlinear programming. Proceedings of the second Berkeley Symposium on Mathematical Statistical and Probability. U. California Press, 1951, 481-491
    [7] Zadeh L. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 1963, 8(59): 59-60
    [8] Keeney R L, Raiffa H. Decisions with multiple objectives: preferences and value tradeoffs. New York: Wile, 1976
    [9] Haimes Y Y, Lasdon L S, Wismer D A. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man and Cybernetics, 1971, 1: 296-297
    [10] Charnes A, Cooper W W, Ferguson R O. Optimal estimation of executive compensation by linear programming. Management Science, 1955, 1(2): 138-151
    [11] Benjamin W, Timothy W S. Efficient Pareto frontier exploration using surrogate approximations. Optimization and Engineering, 2001, 2 (1): 31-50
    [12] Shan, S Q, Wang, G G. An efficient Pareto set identification approach for multiobjective optimization on black-box functions. Journal of Mechanical Design, 2005, 127(5): 866-874
    [13] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. from evolutionary methods for design, optimisation and control, CIMNE, Barcelona, Spain, 2002.
    [14] Carlos A C, Gregorio T P. Multiobjective optimization using a micro-genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001). San Francisco, California, 2001, 274-282
    [15] Horn J, Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, UIUC, 1993
    [16] Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation,1994, 2(3): 221-248
    [17] Corne D W, Knowles J D, Oates M J. The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization. In: Schoenauer M, Deb K, Rudolph G. Proceedings of the Parallel Problem Solving from Nature VI Conference Paris, France, 2000, 839-848
    [18] Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Compution, 1999, 3(4): 257-271
    [19] Iredi S, Merkle D, Middendorf M. Bi-Criterion optimization with multi colony ant algorithms. In Proceedings of the First International conference on Evolutionary Multicreterion Optimization(EMO’01), LNCS 1993, 2001"359-372
    [20] Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks (Perth, Australia). IEEE Service Center, Piscataway, NJ. 1995, 4:1942-1948
    [21] Chang C C, Lo J G. Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel. Atmospheric Environment, 2001, 35: 6201-6211
    [22]袁泉,李一兵.参数不确定度对汽车侧面碰撞事故再现结果的影响.农业机械学报, 2005, 36 (5): 16-19
    [23]钟志华,李光耀.冲压成形CAE技术中接触摩擦计算的新方法.机械工程学报, 2001,37(2):33-37
    [24]孙光永,李光耀,陈涛等.基于6σ的稳健优化设计在薄板冲压成形中的应用.机械工程学报, 2008, 44 (11): 248-254
    [25]官凤娇,韩旭,姜潮.基于区间法的发动机曲轴不确定性优化研究.工程力学, 2008, 25(9):198-202
    [26]苏静波.工程结构不确定性区间分析方法及其应用研究:[河海大学博士学位论文].南京:河海大学, 2006
    [27] ISO: 2394.结构可靠性总原则.陈定外译.北京:中国建筑工业出版社, 1998
    [28]王光远,陈树勋.工程结构系统软设计理论及应用.北京:国防工业出版社, 1996
    [29]王光远.未确知信息及其数学处理.哈尔滨建筑工程学院学报, 1990, (4):1-10
    [30] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics. Amsterdam: Elesevier, 1990
    [31] Goicoechea A, Duckstein L, Fagel M M. Multiobjective objectives under uncertainty: anillustrative application of protrade? Water Resources Research, 1979, 15: 203-215
    [32] Teghem J, Dufrane D, Thauvoye M. Strange: an interactive method for multi-objective linear programming under uncertainty. European Journal of Operational Research, 1986, 26:65-82
    [33]王金德.随机规划.南京:南京大学出版社? 1990
    [34] Caballeeo R, Cerda E, Munoz M M, et al. Efficient solution concepts and their relations in stochastic multiobjective programming. Journal of Optimization and Applications, 2001,110(1):53 -74
    [35] Abdelaziz F B, Aouni B, El-Fayedh R. Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research,2007,177(3):1811-1823
    [36]卢志义.随机多目标规划有效解理论的研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学, 2005
    [37]卢志义,徐裕生,张俊敏.随机多目标规划两种有效解之间的关系.西安建筑科技大学学报. 2004, 36(3): 372-374
    [38]石玉峰,于国荣,于辉.不确定性多目标物流路径优化研究.现代电子工程. 2007,5:40-43
    [39]盖英杰,陈月明,范海军.油田措施配置多目标随机规划.系统工程理论与实践, 2002, 2: 131-134, 139
    [40]胡毓达,杨雷.多目标随机规划的交互遗传算法.上海交通大学学报, 2001, 35(11):1733-1736
    [41]苑进.贝叶斯学习框架下非线性制造过程建模及多目标优化关键技术研究: [上海大学博士学位论文].上海:上海大学, 2008
    [42]胡超芳.基于决策者满意度的多目标模糊优化算法研究: [上海交通大学博士学位论文].上海:上海交通大学, 2007
    [43] Zadeh? L A. Fuzzy sets.Information and Control, 1965?8: 338-353
    [44] Sakawa M, Yano H, Yumine T. An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application. IEEE Transactions on Systems. Man and Cybernetics, 1987, l7(4): 654-661
    [45] Lai Y J, Hwang C L. Fuzzy multiple objective decision making: methods and applications. Berlin;New York:Springer-Verlag, 1996
    [46] Zadeh L A. Fuzzy sets as basis for theory of possibility, Fuzzy Sets and Systems, 1978, l: 3-28
    [47] Leberling H. On finding compromise solution in multicriteria problems using the fuzzy min-operator, Fuzzy Sets and Systems. 1981, 6: 105-118
    [48] Tiwari R H, Dharmar S, Rao J R. Fuzzy goal programming-an additive model. FuzzySets and Systems, 1987, 24: 27-34
    [49] Lee E S, Li R J. Fuzzy multiple objective programming and compromise programming with Pareto optimum.Fuzzy Sets and Systems, 1993, 53: 275-288
    [50] Zimmermann H J. Fuzzy set theory and its applications. Boston: Klumer Academic Publishers, 1996
    [51] Jimenez M, Arenas M, Bilbao A, et al. Approximate resolution of an imprecise goal programming model with nonlinear membership functions. Fuzzy Sets and Systems, 2005, 150:129-145
    [52] Tiwari R H, Dharmar S, Rao, J R. Fuzzy goal programming-an additive model. Fuzzy Sets and Systems, 1987, 24:27-34
    [53] Akoz O, Petrovic D. A fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research, 2007, 181(3): 1427-1433
    [54] Amid A, Ghodsypour S H, O’Brien C. Fuzzy multiobjective linear model for supplier selection in a supply chain. Interational Journal of Production Economics, 2006, 104: 394-407
    [55] Huang H Z, Gu Y K, Du X P. An interactive fuzzy multi-objective optimization method for engineering design. Engineering Applications of Artificial Intelligence, 2006, 19: 451-460
    [56] Syau Y R, Lee E S. Fuzzy convexity and multiobjective convex optimization problems. Computers and Mathematics with Applications, 2006, 52: 351-362
    [57] Kaufmann A. Introduction to the theory of fuzzy subses. New York: Academic Press, 1975
    [58] Zadeh L A. Fuzzy sets as basis for theory of possibility. Fuzzy Sets and Systems, 1978, l: 3-28
    [59] Orlovski S A. Multiobjective programming problems with fuzzy parameters. Control and Cybernetics, 1984, 13: 175-183
    [60] Luhandjula M K. Multiple objective programming problems with possibility coefficients. Fuzzy sets and Systems, 1987, 21: 135-145
    [61] Negi D S. Fuzzy analysis and optimization: [dissertation]. Manhattan: Kansas State University, 1989.
    [62] Rommelfanger H. Interactive decision making in fuzzy linear opimization problems. European Journal of Operational Research,1989, 41(4): 2l0-217
    [63] Kuwano H. On the fuzzy multi-objective linear programming problem goal programming approach. Fuzzy Sets and Systems, 1996, 82:57-64
    [64] Liu B. Uncertainty theory: toward axiomatic foundations, Lecture Note, TsinghuaUniversity, Beijing, 2003
    [65] Gao J? Liu B. Fuzzy multilevel programming with a hybrid intelligent algorithm. Computers and Mathematics with Applications? 2005? 49:1539-1548
    [66] Yang L? Liu B A. Multi-objective fuzzy assignment problem: new model and algorithm? In: Proceedings of the 2005 Conference on Fuzzy Systems. Reno? 2005, 551-556
    [67] Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from AMFreudenthal’s criticisms to moderm convex modeling. Computers and Structures, 1995, 56(6):871-895
    [68] Scheurkogel A, Elishakoff I. On ergodicity assumption in an applied mechanics problem. Journal of Applied Mechanics, 1985, 52:133-136
    [69] Scheurkogel A, Elishakof L. On the error that can be induced by an ergodicity assumption. Journal of Applied Mechanics, 1981, 48:554-656
    [70]姜潮.基于区间的不确定性优化理论和算法: [湖南大学博士学位论文].长沙:湖南大学, 2008
    [71] Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells.Journal of Applied Mechanics, Transactions ASME, 1993,60(3):683-688
    [72] Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells. Journal of Applied Mechanics, 1993, 60(3):683-688
    [73] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety, 1995, 17(2):91-109
    [74] Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty-optimization with anti-optimization. Computers and Structures, 1994, 57(6):1401-1405
    [75] Pantelides C P, Ganzerli S. Design of trusses under uncertain loads using convex models. Journal of Structural Engineering, 1998, 124(3):318-329
    [76] Barbieri E, Cinquini C, Lombardi M. Shape/size optimization of truss structures using non-probabilistic description of uncertainty. Computer aided optimum design of structures, 1997, 5:163-172
    [77] Ganzerli S, Pantelides C P. Optimum structural design via convex model superposition. Computers and Structures, 2000, 74(6):639-647
    [78] Qiu Z, Elishakoff I. Antioptimization of structures with large uncertain-but- non-random parameters via interval analysis. Computer Methods in Applied Mechanics and Engineering, 1998, 152(3-4):361-372
    [79] Qiu Z, Elishakoff I. Anti-optimization technique- a generalization of interval analysis for nonprobablistic treatment of uncertainty. Chaos, Solitons and Fractals, 2001,12(9):1747-1759
    [80]郭书祥,吕震宙.基于非概率模型的结构可靠性优化设计.计算力学学报, 2002, 19(2): 198-201
    [81]郭书祥,吕震宙.结构非概率可靠性方法和概率可靠性方法的比较.应用力学学报, 2003, 20(3):107-110
    [82]李永华,黄洪钟,马启明.轴静强度的非概率可靠性设计.可靠性设计与工艺控制, 2003, (3):24 -27
    [83]程远胜,曾光武.结构非概率可靠性优化设.华中科技人学学报, 2002, 30(3): 30-32
    [84]程远胜,曾光武.非概率不确定性及其对船帕坐墩配墩优化的影响.工程力学, 2003, 20 (3): 129-133
    [85] Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 4791-4800
    [86]曹鸿钧.基于凸集合模型的结构和多学科系统不确定分析与设计.[西安电子科技大学博士学位论文].西安:西安电子科技大学, 2005
    [87]亢战,罗阳军.基于凸模型的结构非概率可靠性优化.力学学报, 2006, 38(6): 807-815
    [88] Luo Y J, Kang Z, Luo Z, et al. Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Structural and Multidisciplinary Optimization, 2009, 39(3):297-310
    [89] Moore R E. Methods and applications of interval analysis. London:Prentice-Hall Inc.,1979
    [90] Inuiguchi M, Sakawa M. Minmax regret solution to linear programming problemswith all interval objective function.European Journal of Operational Research, 1995, 86(3): 526-536
    [91] Stefan C, Dorota K. Multiobjective programming in optimization of interval objective functions-A generalized approach. European Journal of Operational Research, 1996, 94(3):594-598
    [92] Tong S. Interval number and fuzzy number linear programming. Fuzzy sets and systems, 1994, 66(3): 301-306
    [93]达庆利,刘新旺.区间数线性规划及其满意解系统工程理论与实践.系统工程理论与实践, 1999, 4:3-7
    [94] Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy sets and systems, 2001, 119(1):129-138
    [95]马龙华.不确定系统的鲁棒优化方法及其研究: [浙江大学博士学位论文].杭州:浙江大学, 2002
    [96]郑泳凌,马龙华,钱积新.一类参数不确定规划的三目标标规划解集方法.系统工程理论与实践, 2003, 5:23-25
    [97]蒋峥.区间参数不确定系统优化方法及其在汽油调和中的应用研究: [浙江大学博士学位论文].杭州:浙江大学, 2005
    [98] Jiang C, Han X, Liu G R, et al. The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. Journal of Materials Processing Technology, 2007, 182: 262-267
    [99] Zhou Y T, Jiang C, Han X. Interval and subinterval analysis methods of the structural analysis and their error estimations. International Journal of Computational Methods, 2006, 3 (2): 229-244
    [100] Han X, Jiang C, Gong S, et al. Transient waves in composite-laminated plates with uncertain load and material property. International Journal for Numerical Methods in Engineering, 2008, 75 (3): 253-274
    [101] Jiang C, Han X, Guan F J, et al. An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method. Engineering Structures, 2007, 29 (11): 3168-3177
    [102] Jiang C, Han X, Liu G P. A sequential nonlinear interval number programming method for uncertain structures. Computer Methods in Applied Mechanics and Engineering, 2008, 197:4250–4265
    [103] Jiang C, Han X. A new uncertain optimization method based on intervals and an approximation management model. CMES-Computer Modeling in Engineering and Science, 2007, 22 (2): 97-118
    [104] Zhao Z H, Han X, Jiang C, et al. A nonlinear interval-based optimization method with local-densifying approximation technique. Struct Multidisc Optim. 2010,42:559–573
    [105] Jiang C, Liu G R, Han X. A novel method for uncertainty inverse problems and application to material characterization of composites. Experimental Mechanics 2008,48:539–548
    [106]吴江,黄登仕.区间数排序方法研究综述.系统工程, 2004,22(8):1-4
    [107] Nakahara Y, Sasaki M, Gen M. On the linear programming problems with interval coefficients. International Journal of Computer Industrial Engineering, 1992, 23: 301-304
    [108]张全,樊治平,潘德惠.不确定多属性决策中区间数的一种排序方法.系统工程理论与实践, 1999, 19(5):129-133
    [109]达庆利,刘新旺.区间数线性规划及其满意解.系统工程理论与实践. 1999, 19(4):3-7
    [110]徐泽水,达庆利.区间数的排序方法研究.系统工程, 2001, 19(6):94-96
    [111]张全,樊治平,潘德惠.不确定性多属性决策中区间数的一种排序方法.系统工程理论与实践, 1999, 5: 129-133
    [112] Jiang C, Han X, Liu G P. A nonlinear interval number programming method for uncertain optimization problems. European Journal of Operational Research, 2008, 188(1):1-13
    [113]王伟.基于GSM短信的信息管理系统开发. [哈尔滨工程大学硕士论文].哈尔滨:哈尔滨工程大学, 2006
    [114] Deb K. Multi-objective optimization using evolutionary algorithms. New York: Wiley, 2001
    [115] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Trans Evol comput, 2002, 6(2):182-197
    [116]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社, 1999
    [117] Han S P. A globally convergent method for nonlinear programming. Journal of optimization Theory and Applications, 1977, 22(3): 297-309
    [118] Han S P. Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Mathematical Programming. 1976, 11(1): 263-282
    [119]赵瑞安,吴方.非线性最优化理论和方法.杭州:浙江科学技术出版社, 1992, 208- 238
    [120]沈明辉,周伯昭. SQP方法在最优中制导律中的应用.弹道学报, 2006, 18(3):48-50
    [121] Soares G L, Parreiras R O, Jaulin L, et al. Interval robust multi-objective algorithm. Nonlinear Analysis, 2009,71: e1818-e1825
    [122] Dellino G, Lino P, Meloni C, et al. Kriging metamodel management in the design optimization of a CNG injection system. Mathematics and Computers in Simulation, 2009, 79: 2345–2360
    [123] Liao X T, Li Q, Yang X J, et al. Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Structural and Multidisciplinary Optimization, 2008, 35:61–569
    [124] Emmerich M T M, Giannakoglou K C, Naujoks B. Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans Evol Comput, 2006, 10(4): 421-439
    [125] Yang, B S, Yeun Y S, Ruy, W S. Managing approximation models in multiobjective optimization. Structural and Multidisciplinary Optimization, 2002, 24: 41-156
    [126] Liu G P, Han X, Jiang C. A novel multi-objective optimization method based on an approximation model management technique. Computer methods in applied mechanicsand engineering, 2008, 197: 2719-2731
    [127] Li G, Li M, Azarm S, et al. Improving multi-objective genetic algorithms with adaptive design of experiments and online metamodeling. Structural and Multidisciplinary Optimization, 2009, 37:47–461
    [128] Yun Y, Yoon M, Nakayama H. Multi-objective optimization based on meta-modeling by using support vector regression. Optimization and Engineering, 2009,10: 67–181
    [129]侯景儒,尹镇南,李维明等.实用地质统计学(空间信息统计学).北京:地质出版社. 1998
    [130] Giunta A A. Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods: [dissertation]. Virginia: Virginia Polytechnic Institute, 1997
    [131] Giunta A A, Watson L T. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models.7th AIAA/ USAF/ NASA/ ISSMO Symposium on Multidisciplinary Analysis & Optimization, St.Louis, MO, AIAA,Vol l, September 2-4,1998, 392-404
    [132] Simpson T W, Mauery T M, Korte J J, et al. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization. AIAA-98-4755,1998
    [133] Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiple modeling criteria. Journal of Structural and Multidisciplinary Optimization, 2001, 123(1): 1-13
    [134]刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究.计算力学学报, 2006, 23(3): 344-347
    [135]张崎.基于Kriging方法的结构可靠性分析及优化设计:[大连理工大学博士论文].大连:大连理工大学,2005
    [136] Koehler J R, Owen A B. Computer Experiments. In Handbook of Statistics, Amsterdam: Elsevier Science B V, 1996, 261-308
    [137] Welch W J, Mitchell T J, Wynn H P. Design and analysis of computer experiments.Statistics Science, 1989, 4(4):409-443
    [138]茆诗松,周纪芗,陈颖.试验设计.北京:中国统计出版社, 2004, 287-333
    [139] Mitchell T J. An algorithm for the construction of“D-Optimal”experimental designs. Technometrics, 1974, 16(2): 203–210
    [140] Haftka R, Scott E P, Cruz J R. Optimization and experiments: a survey. Applied Mechanics Reviews, 1998, 51(7): 435–448
    [141] Taguchi G, Yokoyama Y, Wu Y. Taguchi. Methods: Design of Experiments. Allen Park: American Supplier Institute, 1993
    [142] Sacks J, Schiller S B, Welch W J. Designs for computer experiments. Technometrics, 1989, 31(1): 41–47
    [143] Park J S. Optimal Latin-hypercube designs for computer experiments. Journal of Statistical Planning and Inference, 1994, 39: 95–111
    [144] Mitchell T J. An algorithm for the construction of“D-Optimal”experimental Designs. Technometrics, 1974, 16(2): 203–210
    [145] Giunta A A,Wojtkiewicz Jr S F, Eldred M S. Overview of modern design of experiments methods for computation simulations.AIAA-2003-0649,2003
    [146]刘桂萍.基于微型遗传算法的多目标优化方法及应用研究:[湖南大学博士学位论文].湖南:湖南大学,2007
    [147]钟志华,张维刚,曹立波等.汽车碰撞安全技术.北京:机械工业出版社, 2005
    [148]刘桂萍,韩旭,官凤娇.基于信赖域近似模型管理的多目标优化方法及其应用.中国机械工程学报.2008,19(10):1140-1143
    [149] Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness design optimization using successive response surface approximations. Computational Mechanics, 2002, 29: 409-421
    [150]张勇,李光耀,钟志华.基于可靠性的多学科设计优化在薄壁梁轻量化设计中的应用研究.中国机械工程学报. 2009, 20(15):1885-1889
    [151]王海亮.基于耐撞性数值仿真的汽车车身结构优化设计研究: [上海交通大学博士学位论文].上海:上海交通大学, 2002
    [152] Belytschko T, Lin J I, Tsay C S. Explicit algorithms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering, 1984, 42: 225-251
    [153] Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety. 1994, 14(4): 227-245
    [154] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety, 1995, 17: 91-109
    [155] Elishakoff I. Discussion on: a non-probabilistic concept of reliability. Structural Safety. 1995, 17: 195-199
    [156]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报. 2001, 18(1):56-60
    [157]郭书祥,吕震宙.结构体系的非概率可靠性分析方法.计算力学学报, 2002, 19(3): 332-335
    [158]曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究.计算力学学报, 2005, 22(5): 546-549
    [159]江涛.结构系统非概率可靠性算法研究. [西安电子科技大学博士学位论文].西安:[西安电子科技大学], 2006
    [160] Sun H L, Yao W X. The basic properties of some typical system’s reliability in its interval form. Structural Safety, 2008, 30(4): 364-373
    [161]赵国藩,曹居易,张宽权.工程结构可靠度.北京:水利电力出版社,1984.
    [162] Sobieszczanski-sobieski J. A linear decomposition method for optimization problems-blueprint for development. NASA Technical Memorandum 83248, 1982
    [163] Sobieszczanski-sobieski J. Optimization by decomposition: A Step from Hierarchic to Non-Hierachic Systems. NASA-TM-101494, NASA-CP-303l, 1988
    [164] Sobieszczanski-sobieski J. The Sensitivity of Complex, Internally Coupled Systems. AIAA Journal, 1990, 28(1): 153-160
    [165] Kroo I. Multidisciplinary Optimization Methods for Aircraft Preliminary Design, AIAA-94-4325, 1994
    [166] Renaud J E. Improved Coordinationin Nonhierarchic System Optimization, AIAA Journal, 1993, 31(12):2367-2373
    [167] Braun R D, Kroo I M, Moore A A. Use of the Collaborative Optimization Architecture for Launch Vehicle Design . AIAA96-4018, 6th AIAA / USAF/NASA / ISSMO Symposium on Multidisciplinary Analysis and Optimization.Bellevue,WA:AIAA,4-6 September 1996.
    [168]余雄庆.多学科设计优化算法及其在飞行器设计中应用.航空学报, 2000,1:1-6
    [169]陈琪锋,戴金海.异步并行的分布式协同进化MDO算法.宇航学报, 2002, 23(4): 57-61
    [170]李伟剑.微机电系统的多域耦合分析与多学科设计优化: [博士学位论文].西安:西北工业大学,2004
    [171]胡迎春.甘蔗收获机械的多学科优化理论及关键技术的研究:[博士学位论文].南宁:广西大学, 2006
    [172]操安喜.载人潜水器多学科设计优化方法及其应用研究:[上海交通大学博士学位论文].上海:上海交通大学, 2008
    [173] Delaurentis D A, Mavris D N. Uncertainty modeling and management in multidisciplinary analysis and synthesis. AIAA-2000-0422, 2000
    [174] Sues R H, Cesare M A. An innovation framework for reliability based MDO. In: Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structual Dynamics and Material Conference. Atlanta, 2000, 1-8
    [175] Padmanabhan D, Batill S M. Decomposition strategies for reliability based multidisciplinary system design. AIAA 2200225471, 2002
    [176] Du X P, Chen W. An efficient approach to probabilistic analysis in simulation-basedmultidisciplinary design. AIAA 2000-0423, 2000
    [177] Gu X, Renaud J E, Batill S M, et al. Worst case propagated uncertainty of multidisciplinary systems in robust design optimization. Structural and Multidisciplinary Optimization, 2000, 20 (3): 190-213
    [178]袁亚辉?黄洪钟?张小玲.一种新的多学科系统不确定性分析方法—协同不确定性分析法.机械工程学报. 2009, 45(7):174-182
    [179] Koch P N, Simpson T W, Allen J K, et al. Statistical approximations for multidisciplinary design optimization: the problem of size. Journal of Aircraft, 1999, 36(1):275-286
    [180] Padmanabhan D, Batill S M. An iterative concurrent subspace robust design framework. In: Proc of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, California, 2000, 133-138
    [181] Mavris D V, Bandte O, DeLaurentis D A. Robust design simulation: a probabilistic approach to multidisciplinary design. Journal of Aircraft, 1999, 36(1):298-397
    [182] Du X, Chen W. Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA Journal, 2002, 38(8):1471-1478
    [183]曹鸿钧.基于凸集合模型的结构和多学科系统不确定性分析与设计:[博士论文].西安:西安电子科技大学,2005
    [184]陶友瑞,韩旭,姜潮.一种基于区间模型的多学科不确定性设计优化方法.中国机械工程. 2009, 20(23): 2782-2787
    [185]王振国,陈小前,罗文彩等.飞行器多学科设计优化理论与应用研究.北京:国防工业出版社, 2006
    [186]张静.多学科设计优化关键技术研究及其在机构学领域中的应用: [博士学位论文].成都:西南交通大学, 2008
    [187]颜力.飞行器多学科设计优化若干关键技术的研究与应用: [博士学位论文].长沙:国防科学技术大学, 2006
    [188]刘永均.基于MDO理论的3-RRS并联机器人设计优化:[硕士学位论文].成都:西南交通大学, 2009
    [189]谷良贤,龚春林.多学科设计优化方法比较.弹箭与制导学报.2005,25(1):59-62
    [190]胡峪.飞机多学科设计优化及其应用研究: [西北工业大学博士学位论文].西安:西北工业大学, 2001
    [191]余雄庆.多学科设计优化算法及其在飞机设计中的应用研究:[南京航空航天大学博士学位论文].南京:南京航空航天大学, 1999
    [192]龚春林.多学科设计优化技术研究: [西北工业大学硕士学位论文].西安:西北工业大学, 2004
    [193] Hou S J, Li Q, Long S R, et al. Multiobjective optimization of multi-cell sections for the crashworthiness design. International Journal of Impact Engineering, 2008,35:1355–1367
    [194]张宏波,顾镭,徐有忠.基于博弈论的汽车耐撞性多目标优化设计.汽车工程,2008,30(7):553-556.
    [195] Koch P N, Yang R J, Gu L. Design for six sigma through robust optimization. Structural and Multidisciplinary Optimization, 2004, 26: 235-248
    [196]孙光永,李光耀,王建华等.可靠性优化设计在汽车构件耐撞性中的应用.计算机辅助设计与图形学学报, 2007,19(10):1308-1314
    [197] Sinha K. Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety. Structural and Multidisciplinary Optimization, 2007,33:255-268
    [198] Acar E, Solanki K. System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures. Structural and Multidisciplinary Optimization, 2009, 39:311-325
    [199]穆雪峰.多学科设计优化代理模型技术的研究和应用:[南京航空航天大学硕士学位论文] ,南京:南京航空航天大学, 2004
    [200] Meckesheimer M, Barton R R, Simpson T W, et al. Metamodeling of Combined Discrete/Continuous Responses. AIAA Journal, 2001, 39: 1950-1959
    [201] Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiple modeling criteria. Journal of Structural and Multidisciplinary Optimization, 2001, 23:1-13
    [202] Simpson T W, Lin D K J, Chen W. Sampling strategies for computer experiments: design and analysis. International Journal of Reliability and Applications, 2001, 2(3): 209-240
    [203]吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解.工程数学学报, 2002, 19(2): 1-12
    [204] Fang H, Raus-Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crash worthiness optimization. Computer and Structures. 2005,183:2121-2136
    [205]刘伟.板料成形工艺与模具多目标优化设计技术及应用研究. [哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学, 2005
    [206]刘桂萍,韩旭,姜潮.基于微型多目标遗传算法的薄板冲压成形变压边力优化.中国机械工程学报. 2007, 21(18):2614-2617
    [207]孙光永,李光耀,陈涛等.多目标粒子群优化算法在薄板冲压成形中的应用.机械工程学报,2009, 45(5):153-159
    [208] Shivpuri R, Zhang W F. Robust design of spatially distributed friction for reducedwrinkling and thinning failure in sheet drawing. Materials and Design 2009, 30: 2043–2055
    [209] Zhang W F, Shivpuri R. Probabilistic design of aluminum sheet drawing for reduce drisk of wrinkling and fracture. Reliability Engineering and System Safety. 2009, 94:152–161
    [210]郑刚.汽车覆盖件冲压成形中拉延筋模型及其参数反演研究:[湖南大学博士学位论文].长沙:湖南大学, 2008
    [211] Kim Y. Study on wrinkling limit diagram of anisotropic sheet metals. Journal of Materials Processing Technology, 2000, 97(1-3): 88-94
    [212] Goodwin G M. Application of strain analysis to sheet metal forming problems in press shop. SAE Trans. 1968, 93: 380-387

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700