不确定性MDO在驱动桥壳轻量化设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻量化设计技术的开发应用是提高汽车性能、降低汽车油耗、减少汽车尾气排放的有效措施。零部件的轻量化设计方案往往要满足使用过程中的多个性能约束,而各个性能约束又涉及多个学科领域,因此多学科设计优化的思想被引入进来,除此之外,在汽车的设计、制造和使用过程中广泛存在的不确定性因素不可避免地影响着轻量化设计方案的有效性。因此,基于不确定性的多学科设计优化方法已成为汽车重要部件轻量化技术的重点研究内容。
     不确定性多学科设计优化方法融合了多学科设计优化思想和不确定性设计优化理论,其主要内容包括:系统分析与优化,学科分析与优化,试验设计,近似模型技术,不确定性建模与传递分析方法,可靠性约束等效处理方法,优化结果搜寻策略等。不确定性多学科设计优化可衍生出两类设计问题,即稳健性多学科设计优化问题和可靠性多学科设计优化问题。本文以某轻型载货汽车驱动桥壳为研究对象,以不确定性多学科设计优化理论为指导对驱动桥壳的轻量化设计开展了系统研究:
     (1)将适合处理高维计算问题的稀疏网格方法应用于高维近似模型的建立过程,研究了其确定样本空间的方法和建立近似模型的过程,并以Haupt函数和NASA减速器设计优化实例验证了其在拟合高维近似问题时的效率和精度。
     (2)建立驱动桥壳有限元模型,系统地归纳了驱动桥壳静强度试验和疲劳试验资料,将试验结果与有限元分析结果进行对比,验证了该有限元模型在仿真静强度和疲劳寿命方面的精度。补充进行了驱动桥壳的模态频率测试试验,并与有限元分析结果对比,最终获得了各指标仿真精度均符合要求的驱动桥壳有限元模型。
     (3)建立了驱动桥壳轻量化设计的总体优化模型,以各设计变量的灵敏度分析为基础划分学科模型,分别界定各个学科的范围,确定不确定性多学科设计优化问题的数学描述,并初步建立了各个设计变量的不确定性分布模型。然后以学科划分为基础,分别建立了系统级和学科级不确定性多学科设计优化模型。
     (4)为得到比较合理的驱动桥壳轻量化设计方案,以多学科优化软件Optimus为平台,利用有限元分析软件ANSYS Workbench得到的响应面数据,搭建基于协同优化方法的不确定性多学科设计优化工作流程,最终获得具有稳健性和可靠性的驱动桥壳轻量化设计最优解。
     (5)轻型载货汽车其它关键部件的轻量化设计也会集成多种分析软件、多种试验设计方法、多种近似模型技术,本课题中提出的基于不确定性的多学科设计优化流程可以其轻量化方案的获取提供一定参考。
Development and application of lightweight design are effective measures to improve automobile performance and decrease fuel consumption and gas emission. Generally speaking, the process of lightweight design needs to meet a lot of performance indexes, so the multidisciplinary design optimization theory is introduced in, but the uncertainties which exist widely in the design, manufacture, and service process inevitably influence the effectiveness of the lightweight design scheme. So, the uncertainty-based multidisciplinary design optimization (UMDO) methods have been the significant trend of automobile components lightweight design.
     Uncertainty-based multidisciplinary design optimization is the combination of multidisciplinary design optimization process and uncertainty-based design optimization process, its main contents include:systematical analysis and optimization, disciplinary analysis and optimization, design of experiment, approximate model technology, modeling and propagation analysis of uncertainties, equivalent modeling technologies of constraint reliability, etc.. UMDO have two derivative problems, which are robust multidisciplinary design optimization (RMDO) and reliability-based multidisciplinary design optimization (RBMDO). In this paper, the driving axle housing is used as research object to be studied systematically on the lightweight design according to the UMDO.
     (1) The sparse grid method aiming at processing high dimensionality problems is introduced to the building of approximate model, and the determination method of sampling method and building process of approximate model using sparse grid method are stated. Then the Haupt function and NASA reducer design optimization examples are used to verify the efficiency and accuracy of sparse grid method in building high dimensionality approximate model.
     (2) The finite element model of driving axle housing is built. Then the results of driving axle housing static strength and fatigue tests are summarized, and the modal frequency measuring test is added in. Through the contrast of finite element and tests results, the accuracy of finite element model of driving axle housing is verified.
     (3) The systematical optimization model of lightweight design is built, and each discipline scope is defined according to the sensitivity analysis results of each design variables. Then the mathematical model of UMDO is built and uncertainty distribution model of each design variable is premised. Based on the results of disciplinary division, the UMDO model of system-level and discipline-level are built.
     (4) In order to obtain a more reasonable lightweight design scheme, the UMDO workflow based on collaborative optimization method is set up in the MDO software Optimus. At last, the robust and reliable lightweight design scheme of driving axle housing is obtained.
     (5) The UMDO workflow in this project can provide a reference for the other key parts optimization process which integrate multiple analysis softwares, DOE methods, approximate model technologies, etc..
引文
[1]Cheah L, Heywood J. Meeting U.S. passenger vehicle fuel economy standards in 2016 and beyond[J]. Energy Policy.2011,39:454-466.
    [2]Wang Z, Jin Y, Wang M, et al. New fuel consumption standards for Chinese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese passenger vehicle fleet[J]. Energy Policy.2010,38:5242-5250.
    [3]Global Light-duty Vehicles:Fuel Economy and Greenhouse Gas Emissions Standards[R]. Global Passenger Vehicles Program,2011.
    [4]胡朝辉.面向汽车轻量化设计的关键技术研究[D].湖南大学,2010.
    [5]燕战秋,华润兰.论汽车轻量化[J].汽车工程.1994,16(6):375-383.
    [6]克莱恩B.轻量化设计-计算基础与构件结构[M].北京:机械工业出版社,2010.
    [7]向晓峰,魏丽霞,马鸣图.汽车轻量化技术的应用[J].汽车工程师.2012(5):57-59.
    [8]刘海东.乘用车轻量化绿色效应评价理论与方法研究[D].吉林大学,2011.
    [9]施颐.面向轿车车身轻量化的试验设计方法及应用研究[D].上海交通大学,2010.
    [10]Zarei H R, Kroger M. Multiobjective crashworthiness optimization of circular aluminum tubes[J]. Thin-Walled Structures.2006(44):301-308.
    [11]J. A, M. R. Response Surface Methods and Pareto Optimization in Crashworthiness Design:ASME design engineering technical conference and information in engineering conference[Z]. Chicago USA:2003.
    [12]张勇,李光耀,钟志华.基于移动最小二乘响应面方法的整车轻量化设计优化[J].机械工程学报.2008(11):192-196.
    [13]Chen G, Han X, Liu G, et al. An dficent multi-objective optimization method for black-box functions using sequential approximate technique[J]. Applied Soft Computing.2012(12):14-27.
    [14]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报.2007(8):142-147.
    [15]潘锋,朱平.面向约束优化的改进响应面法在车身轻量化设计中的应用[J].机械工程学报.2011(10):82-87.
    [16]Fang H, Rais-Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimiztion[J]. Computer& Structures.2005(83):2121-2136.
    [17]冯美斌.从SAE 2004年会看汽车材料发展趋势[J].汽车工艺与材料.2004(6):6-12.
    [18]张治民,张星,王强,等.重型车辆传动行动构件轻量化设计研究[J].机械工程学报.2012(18):67-71.
    [19]崔新涛.多材料结构汽车车身轻量化设计方法研究[D].天津大学,2007.
    [20]谢然.多目标优化方法在车身结构轻量化设计中的应用研究[D].华南理工大学,2010.
    [21]龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报.2008(6):27-35.
    [22]范军锋,冯奇,凌天钧,等.汽车轻量化与制造工艺[J].机械设计与制造.2009(7):141-143.
    [23]Tomokatsu A, Mehrdad K, Keigo O. Application of magnetic pulse welding for aluminium alloys and SPCC steel sheets[J]. Welding in the World.2005,49(9):212-222.
    [24]A B T, R P I. Joining techniques for aluminium space frames used in atuomobiles[J].2000,99(1-3): 72-79.
    [25]J R M, M K. Use of pulsed CO2 laser in laser roll bonding of A5052 aluminium alloy and low carbon steel[J]. Welding in the World.2006,50(7-8):28-36.
    [26]Laukant H, Wallmann C, Korte M, et al. Flux-Less Joining Technique of Aluminium with Zinc-Coated Steel Sheets by a Dual-Spot-Laser Beam[J]. Advanced Materials Research.2005(6-8): 163-170.
    [27]马鸣图,易红亮,路洪洲,等.论汽车轻量化[J].中国工程科学.2009(9):20-27.
    [28]冯奇,范军锋,王斌,等.汽车的轻量化技术与节能环保[J].汽车工艺与材料.2010(2):4-6.
    [29]李昂,曹占义.镁合金在汽车使用中的节能效果评价[J].汽车技术.2009(10):59-61.
    [30]袁亚辉,黄洪钟,张小玲.一种新的多学科系统不确定性分析方法——协同不确定性分析法[J].机械工程学报.2009(7):174-1 82.
    [31]Yao W, Chen X, Luo W, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress In Aerospace Sciences.2011(47):450-479.
    [32]谢然,兰凤崇,陈吉清,等.满足可靠性要求的轻量化车身结构多目标优化方法[J].机械工程学报.2011(4):117-124.
    [33]Agarwal H, Renaud J E, Preston E L, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization[J]. Reliability Engineering & System Safety.2004(85):281-294.
    [34]陶友瑞.基于凸模型的多学科不确定性优化设计方法[D].湖南大学,2010.
    [35]张义民,贺向东,刘巧伶,等。非正态分布参数的车辆零件可靠性稳健设计[J].机械工程学报.2005(11):106-112.
    [36]Helton J C, Johnson J D, Sallaberry C J, et al. Survey of Sampling-Based Methods for Uncertainty ans Sensitivity Analysis[R]. Sandia National Laboratories,2006.
    [37]Gu X, Renaud J E, Batill S M, et al. Worst case propagated uncertainty of multidisciplinary systems in robust design optimization[J]. Journal of Structural and Multidisciplinary Optimization.2000,20(3): 190-213.
    [38]曹鸿钧,段宝岩.基于凸集模型的多学科耦合系统不确定性分析[J].西安电子科技大学学报.2005(3):335-338.
    [39]Rackwitz R. Reliability analysis-a review and some perspectives[J]. Structural Safety.2001(23): 365-395.
    [40]A P, C S, N P. A general approach for robust optimal design[J]. Transactions of the ASME.1993, 115(1):74-80.
    [41]S S, K I, Dr H. A robust optimization procedure with variations on design variables and constraints[J]. Advances in Design Automation.1993,69(1):379-386.
    [42]C. Y J, K. I. Design for robustness based on manufacturing variation patterns[J]. Transactions of the ASME.1998,120(2):196-202.
    [43]Yu X, Du X. Reliability-based multidisciplinary optimization for aircraft wing design[J]. Structure and Infrastructure Engieering.2006,3-4(2):277-289.
    [44]N S, S M. Integrating systems-level and componet-level designs under uncertainty[J]. Journal of Spacecraft And Rockets.2005,42(4):752-760.
    [45]D. M C, W. S T. Multidisciplinary robust design Optimization of an internal combustion engine[J]. Journal of Mechanical Design.2003,125(1):124-130.
    [46]D. P, S. B. Reliability based optimization using approximations with application to multi-disciplinary system design:Proceedings of the 40th aerospace science meeting and exhibit[Z]. 2002.
    [47]J. S. A Linear decompostion method for large optiimization problems-blueprint for development[R]. NASA Technical Memorandum 83248,1982.
    [48]MDO white paper on current state of the art[R]. Washington DC:AIAA,1991.
    [49]刘蔚.多学科设计优化方法在7000米载人潜水器总体设计中的应用[D].上海交通大学,2007.
    [50]马明旭,王成恩,张嘉易,等.复杂产品多学科设计优化技术[J].机械工程学报.2008(6):15-26.
    [51]F. H K, L. B C. A Comparison of solution strategies for simulation-based multidisciplinary design optimization[R]. AIAA,1998.
    [52]龚春林.多学科设计优化技术研究[D].西北工业大学,2004.
    [53]苏子健.多学科设计优化的分解_协同及不确定性研究[D].华中科技大学,2008.
    [54]Kodiyalam S. Evaluation of methods for multidisciplinary design optimization(MDO), Phase 1 [R]. NASA/CR-1998-208716,1998.
    [55]Yukish M, Simpson T W. Requirements on mdo imposed by the undersea vehicle conceptual design problem[R]. AIAA,2000.
    [56]Kodiyalam S, Sobieski J. Multidisciplinary design optimization:Some formal methods, frame work requirements, and application to vehicle design[J]. International Journal of Vehicle Design.2001,25(1/2): 3-22.
    [57]Wujek B A, Renaud J E, Batill S M, et al. Concurrent subspace optimization using design variable sharing in a distributed computing environment[C]. Boston, MA, USA:1995.
    [58]Alexandrov N M, Lewis R M. Analytical and computational aspects of cllaborative optimization[R]. NASA,2000.
    [59]Kodiyalam S, Sobieszczanski-Sobieski J. Bi-level integrated system synthesis with response surfaces: 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structual Dynamics, and Materials Conference[Z]. St. Louis, MO:AIAA,1999.
    [60]Moore R E. Methods and Applications of Interval Analysis[M]. London:Prentice-Hall Inc.,1979.
    [61]郑泳凌,马龙华,钱积新.一类参数不确定规划的三目标规划解决方法[J].系统工程理论与实践.2003(5):59-64.
    [62]Jiang C, Han X. A new uncertain optimization method based on intervals and an approximation management model[J]. CMES-Computer Modeling In Engineering & Sciences.2007,22(2):97-118.
    [63]姜潮.基于区间的不确定性优化理论与算法[D].湖南大学,2008.
    [64]Shafer G. A mathematics theory of evidence[M]. Princeton:Princeton University Press,1976.
    [65]M. L A, D. K W. Simulation modeling and analysis[M]. New York:McGraw Hill Company,1982.
    [66]蔡伟.不确定性多目标MDO理论及其在飞行器总体设计中的应用研究[D].国防科学技术大学,2008.
    [67]姚雯.不确定性MDO理论及其在卫星总体设计中的应用研究[D].国防科学技术大学,2007.
    [68]潘锋.组合近似模型方法研究及其在轿车车身轻量化设计的应用[D].上海交通大学,2011.
    [69]Bungartz H, Griebel M. Sparse grids[M]. United Kingdom:Cambridge University Press,2004.
    [70]Xiong F, Green S, Chen W. A new sparse grid based method for uncerainty propagation[J]. Structural and Multidisciplinary Optimization.2010,41(3):335-349.
    [71]Klimke A. Piecewise multilinear sparse grid interpolation in MATLAB[R]. University of Stuttgart: Institue of Apllied Analysis and Numerical Simulation,2004.
    [72]Barthelmann V, Novak E, Ritter K. High dimensional polynomial interpolation on sparse grids[J]. Advances in Computational Mathematics. (12):273-288.
    [73]Azarm S, Li W C. Multi-level design optimization using global monotonicity[R]. The University of Maryland:Department of Mechanical Engineering and Systems Research Center,1989.
    [74]陈家瑞.汽车构造[M].北京:机械工业出版社,2005.
    [75]何洋.轻型载货汽车驱动桥轻量化研究[D].山东大学,2012.
    [76]吴跃成.驱动桥疲劳可靠性分析与试验方法研究[D].浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700