汽车铝板、拼焊镀锌板成形性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于保护环境和节约能源方面的考虑,降低车身质量已成为汽车制造业的一个基本发展目标。目前汽车车身轻量化的最重要的方法就是采用新材料以及新的成形方法。由于铝合金板具有密度小,比强度高,耐锈蚀等优点,能满足汽车轻量化的特殊要求,已成为汽车轻量化技术中替代钢板的主要材料。同时在新的成形方法中,拼焊板技术可以优化工件结构,减少材料消耗,对于汽车轻量化起着重要作用,在汽车制造中得到了广泛应用。
     本文对等厚拼焊镀锌板SGCC的单向拉伸性能进行了研究。针对焊缝处于拉伸试样的不同方位进行了试验,并与母材SGCC的拉伸性能进行了比较,分析了不同焊缝方位对拼焊板拉伸性能的影响。研究表明:当焊缝平行于拉伸方向时,材料在变形过程中容易失稳,同时与母材相比,其断后伸长率较低,板材的拉伸变形能力较差;当焊缝垂直于拉伸方向时,材料在变形过程中不容易失稳,且形状稳定不容易回弹。
     通过对拼焊镀锌板SGCC拉伸试样断口的测试,分析了拼焊板拉伸试样的断裂机制。研究表明:当焊缝垂直于拉伸方向时,焊缝的断口形貌与母材基本一致,但是其韧窝呈现出不同于母材韧窝的方向性;当焊缝平行于拉伸方向时,焊缝的断口形貌为韧性断裂与解理断裂的混合断裂。
     通过杯突试验对拼焊镀锌板SGCC的胀形性能进行了测试,并与母材进行了比较,研究了焊缝的移动规律及焊缝对杯突值的影响。试验表明:拼焊镀锌板SGCC的杯突值要低于母材的杯突值;拼焊镀锌板焊缝两侧的材料变形一致,焊缝没有发生偏移;焊缝基本上没有发生变形,仍保持直线型,焊缝的加强筋作用明显。
     本文还对6061铝合金板的单向拉伸性能、成形性能进行了研究,研究表明:6061铝合金板材具有一定的成形性能,这种板材在单向拉伸过程中受到了双向非均匀应力,容易产生应力集中,但是在胀形过程中为双向应力均匀扩展,成形性能较好;6061铝合金板材在拉伸过程中的强化段会产生锯齿形屈服,导致试件表面上形成类似滑移带的形变花纹而损害产品的外观,所以采用该材料作汽车表面件时,必须避免产生锯齿形屈服;在铝合金板材塑性变形过程中随着变形量逐渐加大时,硬度相应地增加,这一现象可以用位错增殖机理来解释。
     本文分析了铝合金板材冲压成形过程中有限元模拟的关键技术;利用Dynaform软件分析了铝合金覆盖件在成形过程中的厚度变化、应力和应变分布情况;通过铝合金冲压件的数值模拟结果和实物冲压结果进一步说明了铝合金汽车覆盖件数值模拟的有效性和可行性,也为铝合金板的冲压成形工艺设计提供了科学依据。
Based on the consideration of environmental protection and energy conservation, lowering the auto body weight becomes the basic development goals of automotive industry. Nowadays the main methods of light weighting of automotive are the adoption of new materials and forming methods. As aluminum alloy sheets with small density, high strength, corrosion resistance, etc., which meet the specific requirements of lightweight of automobile, it has become the main alternative to steel materials in the technology of lightweight of automobile. And TWB (Tailor Weld Blank) technology can optimize the structure of the workpieces and reduce material consumption, so the TWB technology plays an important role in lightweight of automobile, it has been widely used in automotive industry.
     In this paper the tensile properties of TWB for SGCC galvanized sheet with same thickness jointed were researched. The tensile tests were carried out with different locations of weld lines in the specimens. Compared with the tensile properties of original materials, the influence of weld line location on formability of the TWB was studied. The research results were shown that when the weld line was paralleled to tensile axis, the deformation of the TWB was uneven, the plastic deformation was poor. Compared with its of original materials, elongation after fracture was poorer. when the weld line was perpendicular to tensile axial, the forming process of the TWB was stable, the shape of materials after drawing was not easy to be rebounded, the plastic deformation of the blank was very good.
     By the fracture surface scanning test, the research results were shown that the fracture surface was the same as those of welding materials SGCC, but the directions of dimples were different, when the weld line was perpendicular to tensile axial. the fracture was ductile fracture and cleavage fracture, when the weld line was paralleled to tensile axial.
     The cupping tests were carried out to test the bulging formability of the TWB, which compared with base material, eventually the phenomenon of weld movement during the cup test was discussed. The research results were shown that cupping test value (IE) of the TWB was smaller than that of the base materials, material deformation on both sides of the weld line was same, the weld line didn’t move, the weld line didn’t deform and was still straight line, the weld line had apparent effect as the rebar.
     In this paper tensile properties and forming properties of 6061 aluminum alloy sheet were investigated. The research results were shown that 6061 aluminum alloy had certain forming capability. When this sheet was subjected to non-uniform biaxial stress in unilateral stretching, this sheet easily occurred stress concentration and brittle rupture, but when this sheet was subjected to biaxial stress and spread even in cup drawing, it appeared excellent formability. When 6061 aluminum alloy is to be processed, it should be avoided to appear bidirectional non-uniform stress. Because 6061 aluminum alloy appeared fluctuation load in strain hardening stage of stretching, it easily brought on tracery that come on surface as a result of slip band, it would damage product appearance. So when 6061 aluminum alloy were made on automotive panel, fluctuation of load must be augmented to avoid.Grain size gradually decreased along with deformation increase in the process of plastic deformation of aluminum alloy sheet, accordingly microhardness will be increased as a result of dislocation multiplication.
     The key technologies of finite element simulation of 6061 aluminum alloy were used to analyze sheet stress, plastic strain, thick variety analyzed, and the wrinkling and cracking prone areas. Therefore, the effective reference can be provided for the forming process of 6xxx based Alloy auto panel.
引文
[1]杜明义.用铝合金材料实现汽车轻量化[J].轻合金加工技术,2007,35(2):11-11,35.
    [2]魏莹.汽车轻量化[J].现代零部件,2008,(4):35-36.
    [3]范叶,杨沿平,孟先春等.汽车轻量化技术及其实施途径[J].汽车工业研究,2006,(7):40-42.
    [4]孙友松,刘艳.材料加工技术创新与汽车轻量化[J].锻压技术,2007,32(5):1-7.
    [5]于忠奇.汽车用铝合金板冲压成形仿真精度与机罩外板拉深工艺设计研究[D].上海:上海交通大学车身制造系,2005.
    [6]王婷婷.轿车用激光拼焊板冲压成形性研究[D].长春:吉林大学车身工程系,2007.
    [7] H.ZHAO and T.DEBROY, Weld Metal Composition Change during Conduction Mode Laser Welding of Aluminum Alloys 5182, METALLURGICAL AND MATERIALS TRANSACTIONS B. 2001, 32B:163-172.
    [8] Spalding, I.L Laser Systems Development. Physics Bulletin, July 1971,p402.
    [9] F I Sunders, R H Wagoner.Forming of Tailor-Welded Blanks. Metal Lurgical and Materials Transactions A, 1996, (9):2605-2616.
    [10]童正国.拼焊板胀形成形不均匀性研究及数值仿真[D].上海:同济大学机械工程学院,2006.
    [11] Visteon.Enlightened process.Automotive Engineer.2002, 12:6-10.
    [12] Nargess.Sha, Hmanesh.Bank.Material advantages.Automotive Engineer.2003, 10:38-40.
    [13]陈元华,杨沿平.轻合金在汽车轻量化中的应用[J].桂林航天工业高等专科学校学报,2008,13(1):20-22.
    [14] Barlat F, Berm J C. Plane stress yield function for aluminium alloy sheets[J]. International Journal of Plasticity, 2003, 19(9):1297-1339.
    [15]王孟君,黄电源,姜海涛.汽车用铝合金的研究进展[J].金属热处理,2006,31(9):34-38
    [16]刘宏.Al-Mg-Si-Cu-Mn汽车车身用铝合金板材的研究[D].沈阳:东北大学材料与冶金学院,2005.
    [17]关绍康,姚波,王迎新.汽车铝合金车身板材的研究现状及发展趋势[J].机械工程材料,2001,25 (5):12-14,18.
    [18]王孟君,黄电源,姜海涛.汽车用铝合金的研究进展[J].金属热处理,2006,31(9):34-38
    [19] D.M.Jiang, S.B.Kang.Microstructure and mechanical properties of Al-Mg alloy sheets for autobody application[J].Materials Science and Technology.1999, 115:401-407.
    [20]赵亦希,于忠奇.汽车用铝合金板拉伸性能与成形能力的相关性[J].材料科学与工艺,2007,15 (1):98-101.
    [21]李敬勇,林铸明,赵勇.舟桥结构用铝合金力学性能研究[J].华东船舶工业学院学报,2004,18(6):81-85.
    [22]林忠钦,于忠奇,孙成智等.变压边力条件下铝合金板的成形窗口[J].中国有色金属学报,2005 ,15(8):1162-1166.
    [23]张弛.拼焊板制前纵梁加强板拉深成形及焊缝移动研究[D].长春:吉林大学车身工程系, 2007.
    [24]伍强,陈根余,徐兰英等. CO2激光焊接汽车镀锌板的试验研究[J].机械与电子,2007,(5) :21-24
    [25]杨键.汽车镀锌板的发展[J].中国冶金,1997,(6):40-42.
    [26]崔令江编著.汽车覆盖件冲压成形技术[M].北京:机械工业出版社,2003:10-20.
    [27]阎启,曹能,俞宁峰.激光拼焊板成形性能的试验研究[J].应用激光,2003,23(2):71-73.
    [28]朱强.差厚激光拼焊板焊接工艺及其组织性能研究[D].镇江:江苏大学材料加工工程系,2007.
    [29] Ashley S. Steel cars face a weighty decision [J]. Mechanical Engineering, 1997, 119(2): 56-61.
    [30] Miller W S, Zhuang L. Recent development in aluminium alloys for the automotive industry [J]. Materials Science and Engineering A , 2000, 280: 37-49.
    [31] Hayashi H, Nakagawa T. Recent trends in sheet metals and their formability in manufacturing automotive panels [J].Journal of Mater Processing Technology , 1994, 46: 455-487.
    [32]于忠奇,赵亦希,林忠钦.汽车用铝合金板拉深性能评估参数[J].中国有色金属学报,2004, 14(10):1689-1693.
    [33]王祝堂.国际协定牌号的加工纯铝及加工铝合金[J].轻合金加工技术,1996,24(4):24-27.
    [34]石德珂,金志浩编著.材料力学性能[M].西安:西安交通大学出版社,1998,5,38.
    [35]陈林,汪凌云,卢志文.AZ31B镁合金板材冲压成形性能研究[J].轻合金加工技术,2006, 34(1):31-54
    [36]陶友瑞,吴安如.耐热铝合金FVS0812板材冲压成形性能研究[J].塑性工程学报,2008, 15(3):9-12.
    [37]李玉萍.各向异性指数和厚向异性指数对金属板料拉延成形的影响[J].绵阳经济技术高等专科学校学报,2000,17(4):28-29.
    [38]陈忠家,昌木松,张青川等.铝合金板材塑性性能的研究[J].实验力学,2007,22(3):413-418.
    [39] Hahner P , Ziegenbein A , Rizzi E , Neuhauser H. Spatiotemporal analysis of Portevin-Le Chatelier deformation bands : Theory , simulation , and experiment [J ] . Phys Rev B., 2002 , 65 : 13410921~20.
    [40] Zhang Q C , J iang Z Y, Jiang H F , Chen Z J , Wu X P. On the propagation and pulsation of Portevin-Le Chatelier deformation bands: An experimental study with digital speckle pattern met rology [J]. Int. J. Plasticity, 2005, 21(11): 2150~2173.
    [41] J iang Z Y, Zhang Q C, Jiang H F, Chen Z J, Wu X P. Spatial characteristics of thePortevin-Le Chatelier deformation bands in Al-4%Cu polycrystals [J].Mater.Sci.Eng. A , 2005 , 403 (122) : 154~164.
    [42] Pink E, Kumar S, Tian B. Serrated flow of aluminium alloys influenced by precipitates [J]. Mater.Sci. Eng. A ,2000 , 280 : 17~24.
    [43] Mertens F, Franklin S V, Marder M. Dynamics of plastic deformation fronts in an aluminum alloy [J].Phy RevLett , 1997 , 78 : 4502~4505.
    [44]张新梅,郝丽华,蒋大鸣等.Al_Mg_Si合金拉伸断口研究[J].材料工程,1996,(3):35-36.
    [45]许淳淳,张新生,胡钢.塑性变形对AISI304不锈钢组织及耐蚀性的影响[J].化工学报,2003, 54(6):790-795.
    [46]何成宏,杨国泰,杨雪春等.板料成形工艺的介观模型[J].锻压技术,2004,(4):16~22.
    [47]王强.汽车覆盖件冲压成形仿真研究[D].哈尔滨:哈尔滨工业大学汽车工程学院,2006.
    [48]张进国,王强.板料冲压成形动力显式有限元法计算效率影响因素分析[J].机械设计,2006, 23(6):58-60.
    [49]陈文亮.板料成形CAE分析教程[M].北京:机械工业出版社,2005,10:40~49.
    [50]孙成智,陈关龙,林忠钦.各向异性屈服准则对铝合金板成形预测精度的影响[J].塑性工程学报,2004,(11):59~63.
    [51]欧阳可居,董湘怀,陈吕罡等.鼓包竖板拉延成形的有限元模拟[J].金属成形工艺,2003,21(5): 71~73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700