卵形鲳鲹选育群体微卫星标记、生长比较、形态性状与体重相关性分析和生态养殖研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为开发卵形鲳鲹优良品种,促进其养殖业健康、稳定、可持续性发展,本文对卵形鲳鲹基础选育群体进行了分子标记、生长比较以及主要形态性状与体重的相关性研究,并对其健康养殖模式进行了探讨。主要结果如下:
     1卵形鲳鲹养殖群体的微卫星多态性分析
     运用6对微卫星引物分别对海南、深圳、福建3个地区卵形鲳鲹(Trachinotus ovatus)养殖群体的遗传差异进行了分析。数据采用Popgen32软件分析,并用MEGA4.0作图,结果得出3个群体平均等位基因数(N_a)为3.67~3.83,平均有效等位基因数(N_e)2.43~3.03,平均观测杂合度(H_o)为0.48~0.66,平均期望杂合度(H_e)为0.56~0.64,平均多态信息含量(PIC)为0.49~0.55,可见3个养殖群体的遗传多样性较高。Hardy-weinberg平衡遗传偏离指数(d)显示海南和深圳群体杂合子过剩(0.10和0.12),而福建群体则出现杂合子缺失(-0.08),统计检验发现三个群体中各位点的遗传偏离并不显著(p>0.05)。根据3个群体的遗传相似度及遗传距离信息进行聚类分析表明,福建与深圳群体的亲缘关系较近,两者与海南群体的亲缘关系较远,三群体的确切来源还有待进一步研究,为卵形鲳鲹群体选育提供了指导。
     2卵形鲳鲹选育群体形态性状与体重的相关性分析
     跟踪测量了卵形鲳鲹(T. ovatus)选育群体1月龄,4月龄,7月龄,10月龄和13月龄个体的全长(x_1),体长(x_2),体高(x_3)和体重(y)。运用相关分析,多元回归分析和通径分析的方法,计算了以体重为依变量,其他形态性状为自变量的相关系数,通径系数和决定系数,并剖分各性状对体重的影响,并建立最优多元回归方程。结果表明:在不同的生长阶段,所测4个性状间的相关系数在0.017—0.960之间,除4月龄个体体高与其他性状间相关性不显著外((P>0.05),其他月龄群体各性状两两之间的相关性均达到了极显著水平(P<0.01);1月龄和4月龄个体全长对体重的直接作用最大,7月龄,10月龄和13月龄个体则是体高对体重的影响最大;各性状对体重决定程度分析与通径分析变化趋势一致,各月龄群体全长、体长、体高估计体重的多元线性回归方程的拟合度良好(86.9%-90.6%),说明影响体重的主要形态因素已找出,选育时期不同,所选择的形态性状也应有所差异,为卵形鲳鲹个体选育提供了理论依据。
     3卵形鲳鲹3个养殖群体的生长比较
     采集了海南、深圳和福建3个地区卵形鲳鲹养殖群体构建了亲本选育的基础群体,并跟踪测量了各群体的全长、体长、体高和体重,对各群体不同时期的生长速度,生长变异情况,6个月的绝对增重率、特定生长率,以及主要形态性状与体重的相关关系进行了分析。结果表明:经过6个月的人工选择后,各群体生长速度均较对照组有显著提高。福建群体的绝对增重率和特定生长率比海南群体分别高出0.23g/天和2.79%,比深圳群体分别高出0.49g/天和9.41%,且差异显著(p<0.05)。在生长早期(2月龄),福建群体体重变异程度最大,深圳群体次之,海南群体变异相对较平稳。变异程度相近时(6月龄),海南群体体重分布范围较广(200g-600g),而福建群体分布较为集中,体重在450-500克之间的个体占43.33%。综合说明选择的效果初步得到体现,福建群体比海南和深圳群体具备更强的生长优势,可做进一步选育。
     4卵形鲳鲹滩涂多级综合生态养殖研究
     滩涂综合养殖以其较强的可操作性,稳定性和灵活性受到越来越多学者的关注。本研究在广东省汕尾长沙湾地区构建了滩涂多级综合养殖体系,通过对体系中卵形鲳鲹(T. ovatus)、南美白对虾(Penaeus vannamei Boone)、锯缘青蟹(Scylla serrata)和近江牡蛎(Crassostrea)的生长与收获情况的分析以及养殖过程中水质监测分析来评估该模式的经济和环境效益。卵形鲳鲹、南美白对虾和锯缘青蟹混养在池塘中,比例为1.2:90:1.3;近江牡蛎单养在入水沟和围基池中,放养密度为2.3个/㎡。水流随着潮汐变化将残余的营养物质从高营养级物种输送给低营养级物种利用。体系外的3个鱼虾蟹混养池和3个牡蛎单养池设为对照组。同一检测时间内实验组和对照组温度、盐度和pH差异不显著(p>0.05),而其他水质指标则存在差别;进、排水沟水质也无明显差异;氨氮和活性磷的去除率分别为53.38%和58.02%;体系中各养殖品种的产量显著高于对照组(p<0.05),其中卵形鲳鲹实验组产量为4236.2 kg/ha,而对照组仅为3943.4kg/ha。体系中的总成本与对照组相差不大,但总收益和总利润却分别高出48.97%和123.48%。可见该养殖模式不仅能降低污染,而且节能高效。
In order to empolder the excellent varieties of Trachinotus ovatus and promote the healthy, stable, sustainable development of aquaculture, molecular and morphological markers were applied on the selective breeding program for T. ovatus, and healthy cultivation of T. ovatus was also carried out in this research. The results were showed as follows:
     1 Genetic polymorphism of cultured populations of Trachinotus ovatus as revealed by microsatellites
     Amplifications with 6 pairs of microsatellite primers we determined the genetic polymorphism of genomic DNA in three cultured populations of goldern pompano(T. ovatus), which were collected from Hainan,Shenzheng and Fujian province respectively. POPGEN ver.32 software package was used to analyze the data and phylogenetic trees were also constructed in MEGA ver.4.0. The result showed that in all three populations the value of average number of allele(sN_a)was 3.67~3.83, the value of average effective number of alleles(N_e) was 2.43~3.03, the oberved value of mean heterozygosity(H_o) varied from 48% to 66% and the expected value of mean heterozygosity(H_e) varied from 56% to 64%, the value of average polymorphism information content(PIC) was 0.49~0.55, a high genetic diversity among three populations could be concluded from the datas mentioned above. Additionally, we computed the Hardy-Weinberg index to access the distribution of genotypes, and the values in Hainan,Shenzhen and Fujian population were 0.10, 0.12 and -0.08, respectively. The Bonferroni Correction test showed that all the loci reflected no significant genetic disequilibrium in three populations(p>0.05). Cluster analysis was also applied based on the Nei's genetic identity and genetic distance. The result revealed that the phylogenetic relationship between the population FJ and SZ was closer, and the resource of these populations may request further studies.
     2 Correlation analysis of morphometric traits and body weight on base population of T. ovatus
     Morphometric traits of T. ovatus at 1-month-old stage, 4-month-old stage, 7-month-old stage, 10-month-old stage and 13-month-old stage were measured, including total length(x_1), body length(x_2), body height(x_3) and weight(y). Correlation coefficients, path coefficients and determination coefficients of each trait to body weight were calculated through path analysis and multiple linear regression. Effects of each morphometric trait on body weight were also dissected and then the optimal regression equation was established. The results showed that the Pearson correlations among 4 traits ranged from 0.017 to 0.960, and all reached significant level(p< 0.01) at different stages except that at 4-month-old stage. At 1-month-old stage and 4-month old stage, the trait with strongest direct effect on body weight was the total length, but that at other stages was body height. The result of determinant coefficients analysis was consistent with that of path analysis, and the fitness of equations at different stages were good(86.9%-90.6%). It indicated that the main morphometric traits affecting body weight were found and traits for selection should be thoroughly considered at different stages, which provided theoretical evidence for selective breeding for T. ovatus.
     3 Growth comparation of three cultured populations of Trachinotus ovatus
     Base population for selective breeding of T. ovatus had been constructed by three cultured populations, which were collected form Hainan, Shenzhen and Fujian respectively. And the total length, body length, body height and body weight of T. ovatus in each group were measured too. Variance analysis of the growth rate in different stages, growth variation, absolute growth rate, specific growth rate, and the correlation relationship between main morphological traits and body weight were also conducted. The results showed that growth rate in each experiment group was significantly higher than that in control group after beening selected for 6 months. The absolute growth rate and specific growth rate in Fujian group was 0.23g/d and 2.79% higher than that in Hainan group respectively, 0.49g/d and 9.41% higher than that in Shenzhen group(p<0.05). In the earlier stage(2-month-old), the largest weight variation was found in Fujian group, followed by Shenzhen group, and that in Hainan group was placid. With the same weight variation(6-month-old), the distribution of weight in Hainan group was wider(200g-600g), and that in Fujian group was concentrate, 43.33% of T. ovatus were weighted between 450-500 gram. It could be concluded that the selection effect was initially reflected, and Fujian group had a greater growth advantage than Hainan and Shenzhen group, it was a good candidate for further studies.
     4 Foundational studies on integrated multi-trophic aquaculture(IMTA) in intertidal zone
     Intertidal mudflat integrated aquaculture has been drawing reasearchers’interests in China for its controllability, sustainable management and flexible operation. The study was conducted to mearsure the potential environmental and economic efficiency of integrated multi-trophic aquaculture (IMTA) in intertidal zone by testing the effects of what on growth, survival and yield of T. ovatus, Penaeus vannamei Boone, Scylla serrata and Crassostrea in the IMTA system in Changsha Bay, Shanwei, Guangdong Province, China. Two culture modes were applied in the experiment. T.ovatus was polycultured with P. vannamei Boone and S. serrata in all the ponds at a ratio of 1.2 fish:90 shrimp:1.3 crab / m2, where oyster was monocultured in the channel and enclosure at the same density of 2.3 individuals / m2. Water in the system flowed and transferred with the change of tide to recycle waste nutrients from higher trophic-level species into production of lower trophic-level species of commercial value. Three ponds for polyculture of T.ovatus, P. vannamei Boone and S. serrata, and enclosures for oyster monoculture were set as control groups. No significant differences in temperature, salinity and pH were obeserved among all the treatments throughout the trial (p>0.05), where other water parameters were not the same case. There were also no significant differences in all the water parameters between infall and outfall of the IMTA system. The mean reduction efficiency of total ammonia nitrogen and reactive orthophosphate in the IMTA system were 53.38% and 58.02%, respectively. The yields of T.ovatus, shrimp, Scylla serrata, oyster in control groups were significantly lower than those in IMTA system(T.ovatus: 3943.4kg/ha vs 4236.2kg/ha, p<0.05). Total costs in IMTA system were slightly lower than that in controls, but benefits and net incomes was very higher by 48.97% and 123.48% respectively. It may be concluded that adopting an IMTA configuration in intertidal zone can not only mitigate the pollution to coastal waters from ponds, but also save energy and improve the economic efficiency.
引文
[1]小远. 2008年我国水产养殖发展形势综述[J].渔业致富指南, 2009, 15:4-5.
    [2]楼允东.鱼类育种学[M].北京:中国农业出版社, 1999, 10-11.
    [3] KATHLEEN G N, JAMES M M, JEFFREY J H, et al. Comparison of growth,feed intake,and nutrient efficiency in a selected strain of coho salmon (Oncorhynchus kisutch) and its source stock[J]. Aquaculture, 2008, 283(1-4):134-140.
    [4] SMITH I R, SHERIDAN A K, NELL J A. Evaluation of growing methods for use in a Sydney rock oyster Saccostrea commercialis (Iredale and Roughley) selective breeding program[J]. Aquaculture, 1995, 131(3-4):189-195.
    [5] WILLIAM R W, FREDERIC T B, GARY S B, et al. Growth parameters of wild and selected strains of Atlantic salmon, Salmo salar, on two experimental diets[J]. Aquaculture, 2009, 297(1-4):136-140.
    [6] DEAN R J, IAN W P, LAURIE R P, et al. Selection for faster growth in the freshwater crayfish Cherax destructor[J]. Aquaculture, 2005, 247(1-4):169-176.
    [7] NEWKIRK G F, HALEY L E. Selection for growth rate in the eurpean oyster,ostrea edulis:response of second generation groups[J].Aquaculture, 1983, 33(1-4):149-155.
    [8] CRENSHAW J W, HEFFERNAN P B, WALKER R L. Heritability of growth rate in the southern bay scallop[J]. Journal of shellfish Research, 1991, 10(1):55-63.
    [9] BERNARD C. Enhanced individual selection for selecting fast growing fish:the“PROSPER”method,with application on brown trout (Salmotrutta fario)[J]. Genet Sel Evol, 2004, 36:643-661.
    [10] KARI K, THEO H E M, BJARNE G, et al. Efficient design for doing genetic studies of feed efficiency in Atlantic salmon (Salmo salar)[J]. Aquaculture, 2005, 247(1-4): 153-158.
    [11] BOUJARD T, JOURDAN M, KENTOURI M, et al. Diel feeding activity and the effect of time-restricted self-feeding on growth and feed conversion in European sea bass[J]. Aquaculture, 1996, 139(1-2):117-127.
    [12] ALBERT K I, ARNTóR G, SNORRI G, et al. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut (Hippoglossus hippoglossus L.)[J]. Aquaculture, 2008, 274(2-4):254-259.
    [13] TóMASá, BJ?RN B, AGNAR S, et al. Effects of temperature and body weight on growth rate and feed conversion ratio in turbot (Scophthalmus maximus)[J]. 2009, 295(3-4):218-225.
    [14] KARI K, BARBARA G H, BJARNE G. Family differences in feed efficiency in Atlantic salmon (Salmo salar)[J]. Aquaculture, 2004, 241(1-4):169-177.
    [15] HEBB C D, CASTELL J D, ANDERSON D M, et al. Growth and feed conversion of juvenile winter flounder (Pleuronectes americanus) in relation to different protein-to-lipid levels in isocaloric diets[J]. Aquaculture, 2003, 221(1-4):439-449.
    [16] JAMES C, THOMAS G, MARCELA S, et al. Breeding for disease resistance of Penaeid shrimps[J]. Aquaculture, 2009, 286(1):1-11.
    [17] BRITT B, DANIEL B, JOHN N, et al. Breeding for QX disease resistance negatively selects one form of the defensive enzyme, phenoloxidase, in Sydney rock oysters[J]. Fish & Shellfish Immunology, 2006, 228(4):627-636.
    [18] RICHARD S T, JAMES W W, PETER D K, et al. Genetic variation of resistance to amoebic gill disease in Atlantic salmon (Salmo salar) assessed in a challenge system[J].Aquaculture, 2007, 272(S1):94-99.
    [19] PALTI Y, REXROAD C E, WELCH T, et al. Selective breeding and genetic mapping of disease resistance in rainbow trout[J].Aquaculture, 2007, 272(S1):298.
    [20] GEERT F W, RENE J M S, HENK K P, et al. Immunogenetics of disease resistance in fish: a comparative approach[J]. Developmental and Comparative Immunology, 1996, 20(6):365-381.
    [21] MARK H, PEER B, NIELS J O, et al. Selective breeding provides an approach to increase resistance of rainbow trout (Onchorhynchus mykiss) to the diseases, enteric redmouth disease, rainbow trout fry syndrome, and viral haemorrhagic septicaemia[J]. Aquaculture, 2005, 250(3-4):621-636.
    [22] WILD V, SIMIANER H, GJ?EN H M, et al. Genetic parameters and genotype×environment interaction for early sexual maturity in Atlantic salmon (Salmo salar)[J]. Aquaculture, 1994, 128(1-2):51-65.
    [23] DANIEL D H, ROBERT H D, JOHN W H, et al. Growth and hormonal changes associated with precocious sexual maturation in male chinook salmon (Oncorhynchus tshawytscha (Walbaum))[J]. Journal of Experimental Marine Biology and Ecology, 1997, 208(1-2):239-250.
    [24] BENEDIKTE H P. Induced sexual maturation of the european eel Anguilla anguilla and fertilisation of the eggs[J]. Aquaculture, 2003, 224(1-4):323-338.
    [25] ARVE J B, TRYGVE S, AINA S, et al. Effect of stocking density, oxygen level, light regime and swimming velocity on the incidence of sexual maturation in adultAtlantic salmon(Salmo salar)[J]. Aquaculture, 1996, 143(1):43-59.
    [26] DIMITRI A P, ERLEND M. Repeat sexual maturation of wolffish (Anarhichas lupus L.) broodstock[J]. Aquaculture, 1996, 139(3-4):249-263.
    [27] SHEARER K, PARKINS P, GADBERRY B, et al. Effects of growth rate/body size and a low lipid diet on the incidence of early sexual maturation in juvenile male spring Chinook salmon (Oncorhynchus tshawytscha)[J]. Aquaculture, 2006, 252(2-4): 545-556.
    [28] ALAM M A, BHANDARI R K, KOBAYASHI Y, et al. Induction of sex change within two full moons during breeding season and spawning in grouper[J]. Aquaculture, 2006, 255(1-4):532-535.
    [29] CHERYL D Q, LAURA R M, IAN M. Strain and maturation effects on female spawning time in diallel crosses of three strains of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2004, 234(1-4):99-110.
    [30] SAKAMOTO T, DANZMANN R G, OKAMOTO N, et al. Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 1999, 173(1-4):33-43.
    [31] HERLIN M, DELGHANDI M, WESMAJERVI M, et al. Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod (Gadus morhua) breeding tank[J]. Aquaculture, 2008, 274(2-4):218-224.
    [32] NEIRA R, DíAZ N F, GALL G A E, et al. Genetic improvement in coho salmon (Oncorhynchus kisutch). II: Selection response for early spawning date[J]. Aquaculture, 2006, 257(1-4):1-8.
    [33] FALCONER D S, MACKAY T F C. Introduction to quantitativgenetics(4th)[M]. Beijing: Lonman group limited, 1996,1-152.
    [34] BOLIVAR R B, NEWKIRK G F. Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model[J]. Aquaculture, 2002, 204(3-4):371-381.
    [35] FEVOLDEN S E, R?ED K H, FJALESTAD K T, et al. Selection response of cortisol and lysozyme in rainbow trout and correlation to growth[J]. Aquaculture, 2002, 205(1-2):61-75.
    [36]李云峰.家系选择在水产动物养殖中的应用[J].养殖技术, 2007, 5:44-46.
    [37] VANDEPUTTE M, DUPONT-NIVET M, HAFFRAY P, et al. Response todomestication and selection for growth in the European sea bass (Dicentrarchus labrax) in separate and mixed tanks[J]. Aquaculture, 2009, 286(1-2):20-27.
    [38] DUPONT-NIVET M, VANDEPUTTE M, HAFFRAY P, et al. Effect of different mating designs on inbreeding, genetic variance and response to selection when applying individual selection in fish breeding programs[J]. Aquaculture, 2006, 252(2-4):161-170.
    [39]吴仲庆.水产生物遗传育种学(第三版)[M].厦门:厦门大学出版社, 2000.21-82.
    [40] SEKINO M, SAITOH K, YAMADA T, et al. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: implications for hatchery management related to stock enhancement program[J]. Aquaculture, 2003, 221(1-4):255-263.
    [41] FISHBACK A G, DANZMANN R G, FERGUSON M M, et al. Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees[J]. Aquaculture, 2002, 206(3-4):137-150.
    [42] DUPONT-NIVET M, VANDEPUTTE M, VERGNET A, et al. Heritabilities and GxE interactions for growth in the European sea bass (Dicentrarchus labrax L.) using a marker-based pedigree[J]. Aquaculture, 2008, 275(1-4):81-87.
    [43]李鸿鸣,孙效文.应用大规模家系选育技术促进辽宁海水养殖业的可持续发展[J].沈阳农业大学学报(社会科学版), 2002, 4(1):7-10.
    [44]陈松林,田永胜,徐田军,等.牙鲆抗病群体和家系的建立及其生长和抗病性能初步测定[J].水产学报, 2008, 32(5):665-673.
    [45]李云明,郑岳夫,管丹东,等.大黄鱼四家系肌肉营养成分差异及品质选育分析[J].水产学报, 2009, 33(4):632-638.
    [46] NEIRA R, DíAZ N F, GALL G A E, et al. Genetic improvement in coho salmon (Oncorhynchus kisutch). II: Selection response for early spawning date[J]. Aquaculture, 2006, 257(1-4):1-8.
    [47]朱军.遗传模型[M].北京:中国农业出版社, 1996, 202-212.
    [48]林祥日.我国养殖鱼类育种技术概况[J].淡水渔业, 2005, 35(4):61-64.
    [49] GALL G A E, HUANG N. Heritability and selection schemes for rainbow trout: Female reproductive performance[J]. Aquaculture, 1988, 73(1-4):57-66.
    [50] GALL G A E, HUANG N. Heritability and selection schemes for rainbow trout:body weight[J]. Aquaculture, 1988, 73(1-4):43-56.
    [51] VANDEPUTTE M, DUPONT-NIVET M, CHATAIN B, et al. Setting up a strain-testing design for the seabass, Dicentrarchus labrax: a simulation study[J]. Aquaculture, 2001, 202(3-4):329-342.
    [52] BENTSEN H B, OLESEN I. Designing aquaculture mass selection programs to avoid high inbreeding rates[J]. Aquaculture, 2002, 204(3-4):349-359.
    [53]区又君.石首鱼类的人工繁育[J].海洋与渔业, 2009, 4: 18-19.
    [54]何永亮,区又君.石斑鱼人工繁育技术研究进展[J].南方水产, 2008, 3(4):75-79.
    [55]谢启浪,刘伟成,单乐州.海水鱼类人工繁育技术的研究进展[J].水产科学,2009, 28(6):361-364.
    [56]汤娇雯,张富,陈兆波.中国海水养殖种类遗传育种进展与发展趋势[J].南方水产, 2009, 4(5):77-84.
    [57] SONESSON A K, GJERDE B, MEUWISSEN T H E. Truncation selection for BLUP-EBV and phenotypic values in fish breeding schemes[J]. Aquaculture, 2005, 243(1-4):61-68.
    [58] NIELSEN H M, SONESSON A K, YAZDI H, et al. Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes[J]. Aquaculture, 2009, 289(3-4):259-264.
    [59] TUTMAN P, GLAVI? N, KO?UL V, et al. Preliminary information on feeding and growth of pompano, Trachinotus ovatus (Linnaeus 1758) (Pisces; Carangidae) in captivity[J]. Aquaculture International, 2004, 12(4/5): 3873?93.
    [60]陶启友,郭根喜.卵形鲳鲹深水网箱养殖试验[J].科学养鱼, 2006, 2:39.
    [61]陶启友,郭根喜.深水网箱养殖卵形鲳鲹应注意的几个问题[J].齐鲁渔业, 2006, 23(9):26-27.
    [62]唐志坚,张璐,马学坤.卵形鲳鲹和南美白对虾池塘混养技术[J].内陆水产, 2008, 12(9):24-25.
    [63]罗杰,杜涛.卵形鲳鲹不同养殖方式的研究[J].水利渔业, 2008, 28(1):70-71.
    [64]区又君,李加儿.卵形鲳鲹的早期胚胎发育[J].中国水产科学, 2005, 12(6): 786-789.
    [65]李加儿,区又君,刘匆.红笛绸和卵形鲳鲹鳃的扫描电镜观察与功能探讨[J].海洋水产研究, 2007, 28(6):45-50.
    [66]齐旭东,区又君.卵形鲳鲹不同组织同工酶表达的差异[J].南方水产, 2008,4(3):38-42.
    [67]王瑞旋,刘广锋,王江勇,等.养殖卵形鲳鲹诺卡氏菌病的研究[J].海洋湖沼通报, 2010, 7(1):52-58.
    [68]王江勇,郭志勋,黄剑南,等.一起卵形鲳鲹幼鱼死亡原因的调查[J].南方水产, 2006, 2(3):54-56.
    [69] XU HAIDONG, FENG JUAN, GUO ZHIXUN, et al. Detection of red-spotted grouper nervous necrosis virus by loop-mediated isothermal amplification[J]. Journal of Virological Methods, 2010, 163(1): 1231?28.
    [70] LI GUIFENG, ZHAO DIANHUI, HUANG LU, et al. Identification and phylogenetic analysis of Vibrio vulnificus isolated from diseased Trachinotus ovatus in cage mariculture[J]. Aquaculture, 2006, 261(1): 172?5.
    [71] SPARKS J S, DUNLAP P V, SMITH W L. Evolution and diversification of a sexually dimorphic luminescent system in ponyfishes (Teleostei: Leiognathidae), including diagnoses for two new genera[J]. Cladistics, 2005, 21(4):305-327.
    [72] CHEN W L, BONILLO C, LECOINTRE G. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa[J]. Molecular Phylogenetics and Evolution, 2003, 26:262-288.
    [73]孙效文,张晓峰,赵莹莹,等.水产生物微卫星标记技术研究进展及其应用[J].中国水产科学, 2008, 25(4):689-730.
    [74] LI DAYU, KANG DAHAI, YIN QIANQIAN, et al. Microsatellite DNA marker analysis of genetic diversity in wild common carp(Cyprinus carpio L.) populations[J]. Genetics and Genomics, 2007, 34(11):984-993.
    [75]尹邵武,廖经球,黄海,等.海南近海点带石斑鱼野生和养殖群体微卫星多态分析[J].应用与环境生物学报, 2008, 14(2):215-219.
    [76] HUANG B X, PEAKALL R, HANNA P J. Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers[J]. Mar Biol, 2000, 136(2):207-216.
    [77]张研,梁利群,常玉梅,等.鲤鱼体长性状的QTL定位及其遗传效应分析[J].遗传, 2007, 29(10):1243-1248.
    [78] JACKSON T R, FERGUSON M M, DANZMANN R G, et al. Identification of two QTL influencing upper temperature tolerance in three rainbow trout half-sib families[J]. Heredity, 1998, 80(2):143-151.
    [79] NIELSEN E E, HANSEN M M. Looking for a needle in a haystack: discovery of indigenous Atlantic salmon (Salmo salar L.) in stocked population[J]. Conservation Genetics, 2001, 2(3):219-232.
    [80]宋红梅,白俊杰,全迎春,等.三种罗非鱼的微卫星分子鉴定和遗传结构分析[J].农业生物技术学报, 2008, 16(6):952-958.
    [81] NICHOL K M, YOUNG W P, DANZMANN R G. A consolidated linkage map for rainbow trout [J]. Animal Genetics, 2003, 34(2):102-115.
    [82] KOCHER T D, LEE W J, SOBOLEWSKA H, et al. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus)[J]. Genetics, 1998, 148(3):1225-1232.
    [83] CáRDENAS L, SILVA A X, MAGOULAS A, et al. Genetic population structure in the Chilean jack mackerel, Trachurus murphyi (Nichols) across the South-eastern Pacific Ocean[J]. Fisheries Research, 2009, 2(100): 1091?15.
    [84] GONG PING, LI JIALE, YUE GENHUA. Twelve novel microsatellite loci from an endangered marine fish species golden pompano Trachinotus blochii[J]. Conservation Genetics, 2009, 10(5):1365-1367.
    [85] SAMBROOK J, RUSSELL D W. Molecular cloning: A laboratory manual,3rd edition[M]. Cold spring Harbor Laboratory Press, 2001.
    [86] Nei M. Analysis of gene diversity in subdivided populations [J]. Proc Natl Acad Sci USA, 1973, 70(12): 3321-3323.
    [87]全迎春,梁利群,孙效文,等.斑马鱼微卫星分子标记检测鲤鱼种间多态性[J].中国水产科学, 2006, 13(2):300-304.
    [88]郭昱嵩,王中铎,刘楚吾,等. 9种常见笛鲷微卫星位点筛选与遗传多样性分析[J].热带海洋学报, 2010, 29(3):82-86.
    [89] ULRIKE S. Characterization and cross-species amplification of microsatellite loci in a Cyprinodon species flock [J]. Molecular Ecology Notes, 2006, 6(3): 843-846.
    [90] MCQUOWN E C, SLOSS B L, SHEEHAN R J, et a1. Microsatellite analysis of genetic variation in sturgeon(Acipenseridae):new primer sequences for Scaphirhynchus and Acipenser[J]. Trans Am Fish Soc, 2000, 129:1380-1388.
    [91] BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymophisms[J]. Am J Hum Genet, 1980, 32(3):314-331.
    [92] YUE G H, ZHU Z Y, LIN G, et al. Novel polymorphic microsatellites for studyinggenetic diversity of red Asian arowanas[J]. Conservation Genetics, 2006, 7(4):627-629.
    [93]李先仁,李思发,唐首杰,等.尼罗罗非鱼8个养殖群体遗传差异的微卫星分析[J].上海海洋大学学报, 2009, 18(1):1-7.
    [94]杜博,龚世园,童馨,等.皱纹盘鲍和盘鲍南方养殖群体遗传变异的微卫星分析[J].南方水产, 2007, 6(3):22-29.
    [95]刘丽,刘楚吾,郭昱嵩,等.青石斑鱼微卫星DNA标记的筛选及群体遗传多样性分析[J].中国水产科学, 2008, 15(1):22-29.
    [96]蒋家金,李瑞伟,叶富良.罗非鱼4个选育群体遗传结构SSR分析[J].广东海洋大学学报, 2008, 28(4):10-14.
    [97]袁美云,刘双凤,韩志忠,等. 3月龄施氏鲟形态性状对体质量的影响分析[J].中国水产科学, 2010, 17(3):507-513.
    [98]明道绪.生物统计附试验设计(第三版)[M].北京:中国农业出版社, 2004:228-244.
    [99]王新安,马爱军,许可,等.大菱鲆幼鱼表型形态性状与体重之间的关系[J].动物学报, 2008, 54(3):540-545.
    [100]刘永新,刘海金.牙鲆不同家系早期形态性状差异比较[J].东北农业大学学报, 2008, 39(8):82-87.
    [101]严福升,王志刚,刘旭东,等. 3月龄牙鲆形态性状对体质量的通径分析[J].渔业科学进展, 2010, 31(2):45-50.
    [102]王凯,刘海金,刘永新,等.牙鲆形态性状对体重的影响效果分析[J].上海水产大学学报, 2008, 17(6):655-660.
    [103]何小燕,刘小林,白俊杰,等.大口黑鲈形态性状对体重的影响效果分析[J].水产学报, 2009, 33(4):597-603.
    [104]廖锐,区又君,勾效伟,等.黄唇鱼、大黄鱼、丁氏鱼或和棘头梅童鱼的形态差异和判别分析[J].大连水产学院学报,2009,24(4):305-310.
    [105]刘贤德,蔡明夷,王志勇,等.闽-粤东族大黄鱼生长性状的相关与通径分析[J].中国海洋大学学报, 2008, 38(6):916-920.
    [106]刘贤德,蔡明夷,王志勇,等.不同生长时期大黄鱼形态性状与体重的相关性分析[J].热带海洋学报, 2010, 29(5):159-163.
    [107] KORA H, TSUCHIMOTO M, MIYATA K, el al. Estimation of body fat content from standard body length and body weight on cultured Red Seabream[J]. Fisheries Science, 2000, 66(2): 365?371.
    [108]佟雪红,董在杰,缪为民,等.建鲤与黄河鲤的杂交优势研究及主要生长性状的通径分析[J].大连水产学院报, 2007, 22(3):159-l63.
    [109]刘小林,常亚青,相建海,等.栉孔扇贝壳尺寸性状对活体重的影响效果分析[J].海洋与湖沼, 2002, 33(6):673-678.
    [110]马爱军,王新安,杨志,等.大菱鲆Scophthalmus maximus幼鱼生长性状的遗传力及其相关性分析[J].海洋与湖沼, 2008, 39(5):499-504.
    [111]董世瑞,孔杰,万初坤,等.中国对虾形态性状对体重影响的通径分析[J].海洋水产研究, 2007, 28(3):15-22.
    [112]宋春妮,李健,刘萍,等.日本蟳形态性状对体重的影响效果[J].大连海洋大学学报, 2010, 25(4):365-369.
    [113]农新闻,米强,朱瑜,等.卵形鲳鲹的含肉率及肌肉营养价值研究[J].中国水产,2008,9,73-75.
    [114]黄郁葱,简纪常,吴灶和,等.卵形鲳鲹结节病病原的分离与鉴定[J].广东海洋大学学报,2008,28(4):49-53.
    [115]何毛贤,管云雁,林岳光,等.马氏珠母贝家系的生长比较[J].热带海洋学报,2007,26(1):39-43.
    [116]石宇光,刘海金,刘永新.雌核发育牙鲆家系的生长比较和形态分析[J].大连海洋大学学报,2010,25(4):324-329.
    [117]李思发,李晨红,李家乐,等.尼罗罗非鱼五品系生长性能评估[J].水产学报,1998,22(4):314-321.
    [118]络作勇,王雷,王宝杰,等.不同投喂模式对奥利亚罗非鱼血液生化指标与生长性能的影响[J].中国水产科学,2007,14(5):743-748.
    [119] CHOPIN, T, ROBINSON, S. Defining the appropriate regulatory and policy framework for the development of integrated multi-trophic aquaculture practices: introduction to the workshop and positioning of the issues[J]. Bulletin of the Aquaculture Association of Canada, 2004, 104(3): 4-10.
    [120] BARRINGTON, K, CHOPIN, T, ROBINSON, S. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters[J]. Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper, 2009, No.529, Rome, FAO, 7–46.
    [121] TROELL, M. Integrated marine and brackishwater aquaculture in tropical regions:research, implementation and prospects[J]. Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper, 2009, No. 529,Rome, FAO, 47–131.
    [122] NEORI, A, CHOPIN, T, TROELL, M, BUSCHMANN, A.H, et al. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture[J]. Aquaculture, 2004, 231(1-4):361-391.
    [123] HAWKINS A J S, DUARTE P, FANG J G, et al. A functional model of responsive suspension feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China[J]. J Exp Mar Biol Ecol, 2002, 281(1-2):13–40.
    [124]毛玉泽,杨红生,周毅,等.龙须菜(Gracilaria lemaneiformis)的生长、光合作用及其对扇贝排泄氮磷的吸收[J].生态学报,2006, 26(10):3225–3231.
    [125] ZHOU YI, YANG HONGSHENG, HU HAIYAN, et al. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China[J]. Aquaculture, 2006, 252(2-4):264–276.
    [126] YANG YUFENG, LI CHUN HOU, NIE XIANGPING, et al. Development of mariculture and its impacts in Chinese coastal waters[J]. Reviews in Fish Biology and Fisheries, 2004, 14(1):1-10.
    [127] MAO YUZE, YANG HONGSHENG, ZHOU YI, et al. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China[J]. Journal of Applied Phycology, 2009, 21(6):649.
    [128] MOLARES J, FUENTES J. Recruitment of the mussel Mytilus galbprovincialis on collectors situated on the intertidal zone in the Ria de Arousa (NW Spain) [J]. Aquaculture, 1995, 138(1-4):131-137
    [129] Bouchet V M P, Sauriau P G. Influence of oyster culture practices and environmental conditions on the ecological status of intertidal mudflats in the Pertuis Charentais (SW France): A multi-index approach[J]. Marine Pollution Bulletin, 2008, 56(11):1898-1912.
    [130] Fitch J E , Crowe T P. Effective methods for assessing ecological quality in intertidal soft-sediment habitats[J]. Marine Pollution Bulletin, 2010, 60(10):1726-1733.
    [131] TIAN XIANGLI, LI DESHANG, DONG SHUANGLIN, et al. An experimental study on closed-polyculture of penaeid shrimp with tilapia and constricted tagelus[J]. Aquaculture, 2001, 202(1-2):57–71.
    [132] LUIS R M, MARCEL M P. Polyculture of Pacific white shrimp, Litopenaeus vannamei, giant oyster, Crassostrea gigas and black clam, Chione fluctifraga in ponds in Sonora, Mexico[J]. Aquaculture, 2006, 258(1-4):321-326.
    [133] KADIR A, WAHAB M A, MILSTEIN A, et al. Effects of silver carp and the small indigenous fish mola Amblypharyngodon mola and punti Puntius sophore on fish polyculture production[J]. Aquaculture, 2007, 237(4):520-531.
    [134] BUFFORD, M A, LORENZEN, K. Modeling nitrogen dynamics in intensive ponds, the role of sediment remineralization[J]. Aquaculture, 2004, 229(1-4)129–145.
    [135] NUNES J P, FERREIRA J G, GAZEAU F, et al. A model for sustainable management of shellfish polyculture in coastal bays[J]. Aquaculture, 2003, 219(1-4):257–277.
    [136]唐志坚,张璐,马学坤.卵形鲳鲹和南美白对虾池塘混养技术[J].内陆水产,2008,33(9):24-25.
    [137]罗杰,杜涛.卵形鲳鲹不同养殖方式的研究[J].水利渔业, 2008, 28(1):70-71.
    [138]方卫东.鲜杂鱼与配合饲料饲喂卵形鲳鲹对比试验[J].福建农业学报, 2005, 20(S1):25-26.
    [139] HACHERO-CRUZADO I, OLMO P, SáNCHEZ B, et al. The effects of an artificial and a natural diet on growth, survival and reproductive performance of wild caught and reared brill (Scophthalmus rhombus)[J]. Aquaculture, 2009, 291(1-2):82-88.
    [140] HOPKINS, J S, HAMILTON, R D, SANDIFER, P A, et al. The production of bivalve mollusks in intensive shrimp ponds and their effect on shrimp production and water quality[J]. World Aquaculture, 1993, 24(2):74–77.
    [141]胡家财,钟幼平,王丽卿.养殖虾塘内虾、贝套养技术的研究[J].厦门水产学院学报,1995, 17(2):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700