伊犁绢蒿再生生态生物学的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
退化严重的荒漠春秋场已经成为制约新疆北疆季节草地畜牧业发展的瓶颈,其合理利用是实现草地资源可持续发展的关键。研究以天山北坡分布最广泛的蒿类荒漠草地为对象,选择代表性的建群种——伊犁绢蒿,重点探讨其在不同利用方式下的生长节律、可塑性营养物质的变化差异以及蒿类荒漠草地始牧期,以期为荒漠春秋牧场的合理利用、修复及可持续发展提供科学依据。
     主要研究结果如下:
     (1)伊犁绢蒿春季3月上、中旬开始返青,4月中旬至6月上旬分枝,6月中旬至8月中、下旬现蕾, 9月上旬开花,9月下旬转入结实期,到10月中、下旬种子成熟,且在年度间存在一定波动性。
     (2)生长季内伊犁绢蒿的株高、枝条重基本呈近直线生长,且增长速度呈“快—慢—快”的趋势;枝条数及叶片重分别呈“升高—降低—升高”、“双峰”型,根干重变化不明显,均在6.1 g/株左右,而其地上部分和个体总产量均呈“S”型变化,且伊犁绢蒿地上产量是该荒漠草地总产量的主体。因此,在利用上应该避开伊犁绢蒿个体产量低谷期或生长缓慢期,适宜在4月至6月、9月至10月放牧。
     (3)伊犁绢蒿体内可塑性营养物质以粗蛋白质和蔗糖含量为主。5月4日至11月14日,伊犁绢蒿的可溶性碳水化合物、蔗糖呈现“升高—降低—再升高—再降低”特征,且在根、茎、叶中存在不同步性;叶中淀粉呈“单峰”曲线,茎中呈“下降—上升—再下降”趋势,根中变化规律不明显;叶中粗蛋白质呈“单峰”曲线,根中基本不变,茎中呈下降趋势;根中可塑性营养物质均在10月17日前完成贮存。
     (4)放牧对伊犁绢蒿的现蕾期、开花期、结实期具有一定的推迟作用,一般为10~15 d,且显著降低植株高度,但禁牧放牧地、连续放牧地间差异不显著;种子繁殖方面,连续放牧地上不能产生成熟种子,而多年封育地在结实能力、实生苗出现时间及数量上早于围栏休牧地,但在千粒重上两者相反。
     (5)三种利用方式间伊犁绢蒿叶、枝条重差异显著,且多年封育地>连续放牧地≈禁牧放牧地;根重上则差异不显著,但在增长趋势上存在一定差异,禁牧放牧地和连续放牧地呈现“下降—上升—下降—上升”趋势;枝条数在生长前期(8月24日以前)差异显著,且均呈“升高—降低—升高”趋势。多年封育能够增强伊犁绢蒿个体的生长潜力,促进草群盖度的增加,而短期禁牧后再进行连续放牧对其个体的影响不大。根颈破碎度间差异显著(p<0.01),可以将其作为判断蒿类荒漠草地放牧强度的一个有效指标。
     (6)三种利用方式间伊犁绢蒿体内可塑性营养物质含量差异显著(p<0.01)。可溶性碳水化合物及蔗糖含量均呈“上升—降低”趋势,并以多年封育地最高,连续放牧地最低;淀粉含量变化较复杂,叶中呈“单峰”曲线,茎中呈“双峰”曲线,且多年封育地明显高于其他两种利用方式;根中淀粉含量表现为多年封育地>连续放牧地>禁牧放牧地;叶中粗蛋白质含量呈下降趋势,根中粗蛋白质含量呈“降低—升高—再降低”特征,而茎中粗蛋白质含量变化较大;并以连续放牧地上根中粗蛋白质含量最高,茎中最低,叶中位于两者之间。
     (7)放牧强度处理前,伊犁绢蒿的高度、盖度、密度差异不显著(p>0.05),仅在地上干草产量存在极显著差异(p<0.01),且极度放牧>重度放牧>中度放牧≈轻度放牧;恢复后,极度放牧下伊犁绢蒿已经全部死亡,而其他放牧强度间,除在春季盖度恢复效果间有显著差异外,伊犁绢蒿的再生高度、密度、盖度差异不显著,但均以轻度放牧和中度放牧下恢复效果好。结合当前畜牧业发展情况及不同放牧强度间伊犁绢蒿粗蛋白质、粗脂肪含量测定结果轻度放牧>中度放牧>重度放牧>极度放牧,认为伊犁绢蒿荒漠春秋场以中度放牧为宜。
     (8)同一放牧强度下,不同放牧始期间伊犁绢蒿盖度、密度差异不显著(p>0.05),仅在高度和地上干草产量上存在一定的差异。恢复后,极度放牧下伊犁绢蒿全部死亡;其他放牧强度下,春季不同放牧始期间伊犁绢蒿再生高度以4月1日、4月15日恢复最好,且差异极显著(p<0.01);盖度均以4月15日恢复最快,密度变化不显著。而秋季再生高度、盖度、密度在不同放牧始期间差异不显著(p>0.05),但9月15日至10月1日伊犁绢蒿的恢复效果较好。结合粗蛋白质、粗脂肪含量表现出下降趋势,认为春季4月15日前后,秋季9月15日至10月1日作为伊犁绢蒿荒漠草地始牧期,最有利于该草地的可持续利用。
Severe degradation of sagebrush desert in spring and autumn have became the bottleneck that restricted development of seasonal stock raising in North area of Xinjiang. Reasonable utilization of sagebrush desert was the key for sustaining development of grassland resource in Xinjiang. In order to reasonable utilize, renovate and develop continuely sagebrush desert of spring-autumn, study on growth rhythm, change and difference on flexibility nutrition substance of Seriphidium transiliense under different utilizing model and beginning grazing-period of sagebrush desert were discussed, which widely distributed in Northern Slope of Tianshan Mountains.
     The main results were the flowing:
     (1) Seriphidium transiliense was begin to return green between the beginning of March and middle of March, tillering period was between the middle of April and the beginning of June, buding period was between the middle of June and middle-last of Augest, ablooming period was at the beginning of September, seed was appeared after the last of September, and seed maturity was between the middle of October and last of October. Phenophase of S. transiliense had certainly fluctuation at different years.
     (2) Height and tiller weight of S. transiliense were linearity increased during whole growth season, and emerged in a‘rapid-slow-rapid’shape on rate of growth. Curved shapes of the tiller quantity and the leaf biomass had“increase-reduce-increase”and“double growth peaks”respectively. The root biomass had no distinct difference, aboutindividual plant was 6.1g, the whole yield and aboveground biomass of S. transiliense emerged in“S”shape and aboveground biomass of S. transiliense was mainly part of whole yield in desert pasture. Hence desert pasture of S. transiliense was suitable for grazing from April to June in spring, from September to October in fall during whole growing season, which could avoided period of low-vale or slow-growth in individual.
     (3) The crude protein and sucrose were the dominating nutrition substance of S. transiliense. The seasonal changes of soluble carbohydrate and sucrose contents of S. transiliense emerged in an‘up-down-up-down’trend between 4th May and 14th November and appeared on different in roots, stems and leaves. Starch of leaves appeared‘single peaks’, stems appeared‘down-up-down’trend and no rule in root. The crude protein of leaves appeared‘single peaks’, no changes in roots and the trend of bellowing in stem.The contents of flexibility nutrition substance had finished storage in roots before 17th October.
     (4) Grazing had certainly effect on delaying phenophase on budding, blooming and seeding, about 10~15d. Grazing could obviously reduced height of plant, and had no difference on forbidding grazing and continuous grazing. Seed-ability, seeding appear period and quantity of S. transiliense on perennial enclosure pasture were higher than that of forbidding grazing pasture, but 1000-grain weight was on the contrary, and maturity of seed could not producted in continuous grazing pasture.
     (5) Leaves and tiller weight of S. transiliense had obvious discrepancy among three utilizing model, and the order of weight was perennial enclosure pasture>continuous grazing pasture≈forbidding grazing pasture. Root weight had no discrepancy among three utilizing model, and trend of growth had certainly difference, curved shapes on forbidding grazing pasture and continuous grazing pasture was“descend -increase-descend-increase”. The tiller quantity had obvious discrepancy among three utilizing model in prophase of growth (before 24th August), and appeared‘up-down-up’. Perennial enclosure could stimulate individual growth potential of S. transiliense, added the coverage of community, and forbidding grazing had no effect on S. transiliense individual. The cracking degree of root-stem had obvious discrepancy (p<0.01), and as could be evaluated grazing intension of Artemisia sagebrush desert.
     (6) The contents of flexibility nutrimental substance had significiant differnce in S. transiliense among three utilizing model (p<0.01). Soluble carbohydrate and sucrose contents emerged in an‘up-down’trend, and the highest at perennial enclosure pasture, the lowest at continuous grazing pasture. The changes of starch contents had more complex, respectively appeared‘single peak’,‘double peaks’at leaves and stems of S. transiliense, and the highest at perennial enclosure pasture. The order of starch contents of roots was perennial enclosure pasture> continuous grazing pasture>forbidding grazing pasture. Crude protein contents of leaves and roots appeared‘descending’,‘descend -increase-descend’respectively, more varieties at stems, and the highest contrnts of roots, the lowest of leaves and the middle of stems was at continuous grazing pasture.
     (7) Coverage, height and density of S. transiliense had no discrepancy before simulating grazing intensity (p>0.05), had significiant difference among aboveground yield (p<0.01) and the order was‘super grazing>high grazing>middle grazing≈light grazing’. After resuming, S. transiliense had all died at super grazing. Except coverage in spring, there was no difference on regrowth height, density, coverage of S. transiliense among high grazing, middle grazing and light grazing, but effect of renewing was best at middle grazing and light grazing. According to currently development of stockbreeding and crude protein and crude fat contents of S. transiliense appeared‘light grazing>middle grazing>high grazing>super grazing, middle grazing was suitable to the spring- autumn desert pasture of S. transiliense.
     (8) Coverage and density of S. transiliense had no discrepancy among different beginning grazing-period at the same grazing intensity (p>0.05), had significiant difference among aboveground yield and heigh. After resuming, S. transiliense had all died at super grazing. In spring, regrowth height of S. transiliense had significant difference (p<0.01), and that of between 1st April and 15th April was best, Coverage of resuming was quicker on 15th April, density had no discrepancy (p>0.05). In autumn, regrowth height, coverage and density of S. transiliense had no significant difference (p>0.05) among different beginning grazing-period, but effect of renewing was better between 15th September and 1st October. According to crude protein, crude fat contents of S. transiliense appeared the trend of descending and grazing intensity, the Beginning grazing-period was at 5th April in spring, from 15th September to 1st October under middle grazing, which was propitious to the continuely development of S. transiliense sagebrush desert.
引文
[1] 阿不来提,石定燧,冈本明治,等.鸡脚草、牛尾草在放牧条件下体内糖分含量积累动态与再生速度关系的研究[J].草业科学,1995,12(3):26-29.
    [2] 阿衣古力·阿不都瓦依提,吐尔逊娜依·热衣木江,哈丽旦,等.伊犁绢蒿种子天然种衣与水分关系初步研究[J].干旱区研究,2000,17(4):53-56.
    [3] 安沙舟.新疆北疆地区退牧还草对策与实践剖析[D].新疆农业大学博士学位论文,2004.
    [4] 巴图朝鲁,许志信,昭和斯图,等.草甸草原牧草贮藏养分积累与消耗规律的研究[J].内蒙古农牧学院学报,1994,(1):32-38.
    [5] 白可喻,许志信,赵萌莉,等.荒漠草原牧草贮藏养分积累与消耗规律的研究[J].内蒙古农牧学院学报,1996,(1):1-6.
    [6] 白可喻,赵萌莉,卫智军,等.刈割对荒漠草原几种牧草贮藏碳水化合物的影响[J].中国草地,1996,(2):126-133.
    [7] 白可喻,赵萌莉,许志信,等.荒漠草原12种牧草贮藏碳水化合物含量变化规律的研究[J].内蒙古草业,1997,(1):42-46.
    [8] 白永飞,李德新,许志信,等.牧压梯度对克氏针茅生长和繁殖的影响[J].生态学报,1999,19(4):479-484.
    [9] 白永飞,许志信,段淳清,等.典型草原主要牧草植株贮藏碳水化合物分布部位的研究[J].中国草地,1996,(1):7-9.
    [10] 包国章,李向林,谢忠雷,等.放牧对鸭茅能量积累及分配的影响[J].草业科学,2001,18(3):7-10.
    [11] 包国章,李向林,白静仁. 放牧及刈割强度对鸭茅密度及能量积累的影响[J].应用生态学报,2001,12 (6):955-957.
    [12] 蔡永平,李合生,骆炳山,等.霍山3种石斛的生长节律及其与生态因子关系的研究[J].武汉植物学研究,2003,21(4):351-355.
    [13] 曹自成,易津.羊草中氮磷及可溶性糖类变化状况的初步研究[J].中国草原,1983,(3):31-36.
    [14] 翟永信主编.现代食品分析手册[M].北京:北京大学出版社,1988,259-261.
    [15] 柴巍中,马呈图,卢月香,等.甘肃皇城天然草场牧草营养动态变化规律初探[J].中国草地,1993,(1):14-18.
    [16] 邓传玲,许鹏,胡锋铎.利用投影寻踪回归技术建立草地产量模型的研究[J].草业学报,1994,3(2):65-68.
    [17] 邓雁如,丁兰,李维琪,等.沙漠绢蒿挥发油化学成分分析[J].天然产物研究与开发,2003,15(4):313-315.
    [18] 邓雁如,宋爱新,武水仙,等.沙漠绢蒿三萜和酚类化合物的研究[J].天然产物研究与开发,2004,16(4):314-316.
    [19] 杜占池,钟华平.红三叶人工草地群落营养元素积累量的分配与动态特征[J].草业科学,2002,(6):24-26.
    [20] 冯缨,安沙舟,刘长娥,等.天山北坡中山带草地类型复合结构与局部气候的关系[J].草业学报,2005,(2):18-23.
    [21] 高辉远,李卫军,尚新刚,等.4种抗盐性不同牧草对Na2SO4胁迫的反应[J].八一农学院学报,1994,17(1):27-32. [22 ]高辉远,李卫军,尚新刚,等.Na2SO4胁迫对四种抗盐性不同牧草膜质过氧化和活性氧清除系统的影响[J].植物生态学报,1995,19(2):192-196.
    [23] 高俊凤主编.植物生理学实验技术[M].西安:世界图书出版公司,2000,263.
    [24] 郭选政,杨刚,于振田,等.蒿类半灌木植物在草地中的地位及饲用评价[J ].草业科学,1998,15(4):3–9.
    [25] 韩国栋,卫智军.不同放牧强度植物地下生物量及贮藏养分的研究[J].牧草与饲料,1990,(2):16-19.
    [26] 韩建国,宋锦峰,张蕴薇,等.放牧强度对新麦草生产特性和品质的影响[J].草地学报,2000,8(4):312-318.
    [27] 何池全,赵魁义,余国营.湿地克隆植物的繁殖对策与生态适应性[J].生态学杂志,1999,18(6):38-46.
    [28] 何荔,李维琪,汪汉卿.沙漠绢蒿化学成分研究[J].中草药,2004,35(6):622-624.
    [29] 胡宝忠,刘娣,胡国富,等.羊草遗传多样性的研究[J].植物生态学报,2001,25,83-89.
    [30] 胡锋铎.伊犁蒿和草原苔草蒸腾强度的初步研究[J].草地学报,1991,(1):112-118.
    [31] 滑艳,何荔,汪汉卿. 白茎绢蒿化学成分的研究[J].天然产物研究与开发,2003,15(3):219-221.
    [32] 滑艳,汪汉卿. 白茎绢蒿黄酮类化合物的研究[J].中国中药杂志,2006,31(10):820-822.
    [33] 蒋景纯,杨殿林. 呼伦贝尔草地产草量和营养物质含量动态研究[J].中国草地,1993,(2):32-35,12.
    [34] 李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,195-197.
    [35] 李建龙,许鹏,李正春,等.天山北坡蒿属荒漠春秋场封育与放牧演替的研究[J].草业科学,1993,10(5):35-39.
    [36] 李金花,李镇清,王刚.不同放牧强度对冷蒿和星毛委陵菜养分含量的影响[J].草业学报,2003,12(6):30-35
    [37] 李希来,朱志红,杨元武,等.矮嵩草无性系对不同放牧强度的生长反应[J].青海大学学报(自然科学版),2002,20(4):4-6.
    [38] 李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响[J].草地学报,1998,(2):90-98.
    [39] 李振武,许鹏.天山北坡低山带春秋场优势种牧草的再生性能.1.几种优势种牧草再生性能的观测[J].中国草地,1993,(5):18-24.
    [40] 李振武,许鹏.天山北坡低山春秋场优势种牧草的再生性能.Ⅱ.春秋牧场的合理利用[J].中国草地,1994,(2):45-48,40.
    [41] 李振武,陈敬峰.牧草种群再生草产量的数学模型及生态因子分析[J].草食家畜,1996,(增刊),84-89.
    [42] 李振武,陈敬锋.天山北坡低山春秋场优势种牧草种群再生草产量与生态因子的相关分析[J].中国草地,1996,(3):22-25.
    [43] 梁存柱,王炜,朱宗元,等.荒漠区一年生植物层片的组织格局与生态适应模式[J].干旱区资源与环境,2002,1(16):77-83.
    [44] 林柯.气象条件对天山北坡中山带牧草生长发育及产量的影响[J].新疆农业科学,1996,(3):141-144.
    [45] 林有润.中国植物志(第76卷第2分册)[M].北京:科学出版社,1991.
    [46] 刘长娥,许鹏,安沙舟.土质温性荒漠草地植物生育节律分析[J].新疆农业科学,2006,43(1):11-15.
    [47] 刘长娥.天山北坡草地植物生育节律与草地合理利用模式的研究[D].乌鲁木齐:新疆农业大学,2006.6.
    [48] 刘军萍,王德利,巴雷.不同刈割条件下的人工草地羊草叶片的再生动态研究[J].东北师大学报(自然科学版).2003,35(1),117-124.
    [49] 刘金平,张新全,游明鸿.扁穗牛鞭草人工种群构件及生物量动态变化[J].草地学报,2006,14(4):310-314.
    [50] 刘君.不同放牧强度对牧草地下贮藏物质的影响[J].黑龙江畜牧兽医,1996,(9):20-21.
    [51] 刘艳,卫智军,杨静,等.短花针茅草原不同放牧制度的植物补偿性生长[J].中国草地.2004,26(3):18-23.
    [52] 刘颖,王德利,韩士杰,等.放牧强度对羊草草地植被再生性能的影响[J].草业学报,2004,13(6):39-44.
    [53] 刘颖,王德利,韩士杰,等.不同放牧率下羊草和芦苇可溶性碳水化合物和氮素含量的变化[J].应用生态学报,2003,14(12):2167-2170.
    [54] 刘占林,宋颐,李珊,等.华山新麦草开花物候期观测和自然种群基因流的间接估测[J].植物生态学报,2001,25(4):426-430.
    [55] 刘振国,李镇清.不同放牧强度下冷蒿种群小尺度空间格局[J].生态学报,2004,24,227-234.
    [56] 刘振国,李镇清,Ivan Nijs,等.糙隐子草种群在不同放牧强度下的小尺度空间格局[J].草业学报,2005,1(14):11-17.
    [57] 鲁彩艳,刘颖茹.不同年龄冷蒿种群再生生长速率的比较研究[J].中国草地,2001,23(2):76-78.
    [58] 马成仓,高玉葆,王金龙,等.内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究[J].植物生态学报,2004,28(3):305-311.
    [59] 牛忠磊,贺学礼,孙会忠.中国菊科绢蒿属植物叶表皮特征观察[J].西北农林科技大学学报(自然科学版),2006,26(12):2417-2422.
    [60] 戎郁萍,韩建国,王培,等.放牧强度对牧草再生性能的影响[J].草地学报,2001,9(2):92-98.
    [61] 石定燧,成彩辉,司马义·巴拉提,等.戈壁型伊犁蒿研究初报[J].中国草地,1990,(1):11-14.
    [62] 石定燧,司马义·巴拉提,等.蒿子扦插繁殖试验报告[J].草业科学,1990,(4):6-8.
    [63] 石定燧,司马义·巴拉提,等.新疆几种小半灌木蒿属植物生态生物学特性的初步研究[J].草地学报,1991,(1):126-132.
    [64] 司马义·巴拉提. 戈壁型伊犁蒿的初步研究[D].乌鲁木齐:新疆八一农学院,1987.4.
    [65] 司马义·巴拉提.伊犁蒿的染色体组型分析[J].中国草地,1991,(2):74.
    [66] 司马义·巴拉提.不灌溉条件下戈壁型伊犁蒿的产量动态及自身因子与相关性的研究[J].中国草地,1997,(2):6-11.
    [67] 司马义·巴拉提.不灌溉条件下戈壁型伊犁蒿的抗旱特性及蒸腾耗水量的研究[J].中国草地,1998,(3),33-38.
    [68] 司马义·巴拉提.戈壁型伊犁蒿种子生态学特性的研究[J].中国草地,1992,(5):37-41.
    [69] 孙会忠,贺学礼,张跃进,等.中国12种绢蒿属植物种子的微形态特征研究[J].西北农林科技大学学报(自然科学版),2007,35(1):217-222.
    [70] 孙会忠,贺学礼.中国绢蒿属植物种质资源及其开发利用现状[J].西南林学院学报,2006,26(3):67-70,78.
    [71] 孙建华,王彦荣,曾彦军.封育和放牧条件下退化荒漠草地土壤种子库特征[J].西北植物学报,2005,25(10):2035-2042.
    [72] 陶梦.蒿类荒漠春秋牧场始牧期、终牧期的确定[D].乌鲁木齐:新疆农业大学,2006.6.
    [73] 万清林,刘鸣远.侧金盏花成株年生长节律生理特性的研究[J].植物研究,1996,16(3):351-355.
    [74] 汪诗平,王艳芬,李永宏,等.不同放牧率对草原牧草再生性能和地上净初级生产力的影响[J].草地学报,1998,6(4):275-281.
    [75] 汪诗平.草原植物的放牧抗性[J].应用生态学报,2004,15,517-522.
    [76] 王静,杨持,韩文权,等.刈割强度对冷蒿可溶性碳水化合物的影响[J].生态学报,2003,(5):908-903.
    [77] 王静,杨持,王铁娟,等.冷蒿种群在不同放牧干扰下叶绿素、可溶性糖的对比研究[J].内蒙古大学学报(自然科学版),2005,(3):280-283.
    [78] 王启基,周兴民.高寒矮嵩草草甸禾草种群的生长发育节律及环境适应性[J].植物生态学报,1991,15(2):168-176.
    [79] 魏建群,张克斌,杨俊杰,等.封育对北方农牧交错带荒漠化地区植被恢复作用的研究—以宁夏盐池县为例[J].水土保持研究,2007,17(1):208-210,214.
    [80] 王天河.古浪县北部荒漠草场改良过程中植被变化动态的研究[J].草业科学,2005,22(8):14-16.
    [81] 王彦荣,曾彦军,付华,等.过牧及封育对红砂荒漠植被演替的影响[J].中国沙漠,2002,22(4):321-327.
    [82] 王玉辉,周广胜.内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应[J].生态学报,2004,24(6):1140-1145.
    [83] 王宗灵,王刚,刘新民.5种沙漠植物种子的萌发生态学研究[J].中国沙漠,1997,17(增刊3):16-20.
    [84] 卫智军,宛涛.放牧对牧草贮藏养分及草地早春生产力的影响[J].内蒙古农牧学院学报,1994,(1):39-43.
    [85] 卫智军,杨静,苏吉安,等.荒漠草原不同放牧制度群落现存量与营养物质动态研究[J].旱地区农业研究,2003,21(4):53-57
    [86] 魏均,南寅镐.羊草贮藏性物质含量的季节变化及其对不同人为活动影响的反应[J].生态学报,1983,(1):21-27.
    [87] 温方,孙启忠,陶雅.影响牧草再生性的因素分析[J].草原与草坪,2007,20(1):73-77.
    [88] 新疆植物志编辑委员会.新疆植物志(第五卷)[M].乌鲁木齐:新疆科技卫生出版社,1999.
    [89] 徐雨晴,陆佩玲,于强.气候变化对植物物候影响的研究进展[J].资源科学,2004,26(1):129-136.
    [90] 许鹏.新疆草地资源及其利用[M].乌鲁木齐:新疆科技卫生出版社,1993.
    [91] 许鹏,胡锋铎,陈敬锋.天山北坡低山春秋牧场产量动态分析[J].中国草地,1994,(3):6-9.
    [92] 许鹏,胡锋铎.天山北坡低山草地类型复合体结构与成因的分析[J].草业学报,1994,3(2):1-5.
    [93] 许志信,巴图朝鲁,段谆清.草甸草原六种牧草贮藏养分含量变化规律的研究[J].中国草地,1993,(6):22-25.
    [94] 许志信,巴图朝鲁,卫智军,等.牧草再生与贮藏碳水化合物含量变化关系的研究[J].草业学报,1993,(4):13-18.
    [95] 许志信,白永飞.干草原牧草贮藏碳水化合物含量变化规律的研究[J].草业学报,1994,(4):27-31.
    [96] 颜廷芬,阎秀峰,祖元刚.不同海拔梯度的高山红景天种群适应机制的初步探讨[J].植物研究,1999,2(19):201-206.
    [97] 杨锦忠,Corry Mathew.刈割强度对多年生黑麦草和高羊茅再生能力影响的研究[J].中国草地,1997,(4):33-36.
    [98] 姚爱兴,李平,王培,等.不同放牧制度和强度下多年生黑麦草/白三叶人工草地种群密度的研究[J].宁夏农学院学报,1997,18(1):11-15.
    [99] 杨持,宝音陶格涛,李良.冷蒿种群在不同放牧强度胁迫下构件的变化规律[J].生态学报,2001,21(3):405-408.
    [100] 杨胜主编.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社,1993.
    [101] 于力文,蔡永萍,张鹤英,等.安徽霍山3种石斛营养成分分析及其分布规律[J].安徽农业科学,1996,24(4):369-370.
    [102] 于应文,蒋文兰,徐震,等.刈割对多年生黑麦草分蘖与叶片生长动态及生产力的影响[J].西北植物学报,2002,22(4):900-906.
    [103] 张宝田,王德利,杨允菲.黄蒿生物学特性及生物量动态的研究[J].中国草地,2002,24(1):13-17.
    [104] 郑江平,钱新岚.促进新疆草原畜牧业可持续发展的对策[J]. 新疆农业科学,2003,40(增刊):99-101.
    [105] 张光辉,李增嘉,潘庆民,等.内蒙古典型草原羊草和大针茅地下器官中碳水化合物含量的季节性变化[J].草业学报,2006,15(3):42-49.
    [106] 张景光,李新荣,王新平,等.沙坡头地区固定沙丘一年生植物小画眉草种群动态研究[J].中国沙漠,2001,21(3):232-235.
    [107] 张景光,李新荣,王新平,等.人工固沙区一年生植物异速生长动态研究[J].中国沙漠,2002,22(6):607-611.
    [108] 张景光,王新平,李新荣,等.荒漠植物生活史对策研究进展与展望[J].中国沙漠,2005,25(3):306-314.
    [109] 张连义,杨世忠,阿不都热依木·哈地尔,等.伊犁绢蒿种子天然种衣吸水保水性能研究[J].植物学报,1998,40(8):775-777.
    [110] 张文辉,李红,李景侠,等.秦岭独叶草种群个体和构件生物量动态研究应用[J].生态学报,2003,14(4):530-534.
    [111] 赵彩霞,赵大玮,何文清,等.不同围栏年限冷蒿草原群落特征与土壤特性变化的研究[J].草业科学,2006,23(12):89-92.
    [112] 赵钢,崔泽仁.家畜的选择性采食对草地植物的反应[J].中国草地,1999,(1):62-67.
    [113] 赵海新,黄晓群,朱占林,等.刈割对无芒雀麦、苜蓿混播草层根体积、根重及含糖量的影响[J].草原与草坪,2007,(4):50-57.
    [114] 赵萌莉,许志信.短花针茅荒漠草原主要牧草再生特性及其影响因素的研究[J].草地学报,1994,(2):33-42.
    [115] 赵萌莉,许志信.刈割高度对牧草再生性的影响[J].内蒙古草业,1998,(2):40-41.
    [116] 赵平,曾小平,彭少麟.植被恢复树种在不同实验光环境下叶片气体交换的生态适应特点[J].生态学杂志,2003,22(3):1-8.
    [117] 中国植物志编辑委员会.中国植物志(76卷第二册)[M].北京:科学出版社,1991.
    [118] 中华人民共和国卫生部及中国国家标准化管理委员会主编.食品卫生检验方法理论部分(一)[M].北京:中国标准出版社,2004,49-50.
    [119] 朱进忠,吴咏梅.伊犁绢蒿荒漠不同退化阶段草地经济性状演变的分析[J].草业科学,2005,22(10):1-6.
    [120] 朱琳,黄文惠,苏加楷,等.不同放牧强度对多年生黑麦草—白三叶草地群体密度的影响[J].草地学报,1995,3(3):190-197.
    [121] 朱琳,黄文惠,苏加楷.不同放牧强度对多年生黑麦草—白三叶草地叶片数量特征的影响[J].草地学报,1995,3(4):297-304.
    [122] 祝廷成主编.羊草生态生物学[M].长春:吉林科学技术出版社,2004,10.
    [123] 祖元刚,崔继哲.羊草种群克隆多样性的初步研究[J].植物生态学报,2002,26():157-162.
    [124] Brancourt-Hulmel, M, G. Doussinault, C. Lecomte, et al.. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992[J]. Crop Science, 2003, 43:37-45.
    [125] Buwai M, Trlica M J. Multiple defoliation effects on herbage yield, vigor, and total nonstructural carbohydrates of five range species [J]. Range Management, 1977, 30:164-171.
    [126] Donaghy D J, Fulkerson W J. Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne [J]. Grass and Forage Science, 1998, 53: 211-218.
    [127] Graber, L F. Food reserve in relation to other factors limiting the growth of grasses [J].Plant Physiology, 1931, 6, 31-43.
    [128] Goldman D A, Wilson M F. Sex allocation in functionally hermaphroditic plants: A review and critique [J]. Botanical Review, 1986, 52, 157-194.
    [129] Harper J L, Ogden J. The reproductive strategy of higher plants. I. The concept of strategy with special reference to Senecio vulgaris [J]. Journal of Ecology, 1970, 58, 681-698.
    [130] Harper J L. A Darwinian approach to plant ecology [J]. Journal of Ecology, 1967, 55, 247- 270.
    [131] Housley T L, Pollock C J. Photosynthesis and carbohydrate metabolism in detached leaves of Lolium temulentum L [J]. New Phytology, 1985, 99, 499-507.
    [132] Jameson, D. C. Responses of individual plants to harvesting [J]. Botanical Review, 1963, 29, 532-594.
    [133] Johann B, Josef H.The use of phenology modilsin plant conservation programmes, the establishment of the earliest cutting for the wild daffodil narcissus radiiflorus[J].Miological conservation, 1993, 2:155-163
    [134] Karsten H. D., J. W. MacAdam. Effect of drought on growth, carbohydrates, and soil water use by perennial ryegrass, tall fescue and white clover[J]. Crop Science, 41, 2001, 156-166.
    [135] Kimiry J R. Nonstructural carbohydrate utilization by sorghum and maize shaded during grain growth[J]. Crop Science, 1992, 32, 13l-137.
    [136] Koch K E. Carbohydrate-modulated gene expression in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 509-540.
    [137] Lilley, Tsuda M. Effect of water deficits on panicle exertion in rice and sorghum[J].Crop science, 1986, 55(2):196-200.
    [138] Livingston DP, The second phase of cold hardening: Freezing tolerance and fructan isomer changes in winter-cereal crowns [J]. Crop science, 1996, 36:1568-1573.
    [139] Lloyd D G. Selection of off-spring size at independence andot her size versus number strategies [J]. American Naturalist, 1987, 129, 800-817.
    [140] Loewe A, Einig W, Shi L, et al.. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen[J]. New Physiologist, 2000, 145: 565-574.
    [141] Martin C, Smith A M. Starch biosynthesis [J]. Plant cell, 1995, 7: 971-985.
    [142] Mooey, H A, W D Billings. Effects of altitude on carbohydrate content of mountain plants[J]. Ecology, 1965, (5):75l.
    [143] Moran, C. H. Changes in the carbohydrate reserves of ladino white clover following defloliation [J]. Plant Physiology, 1952, 28, 467-474.
    [144] Olson B E, Wallander R T. Biomass and carbohydrates of spotted knapweed and Idaho fescue after repeated grazing [J]. Range Manage, 1997, 50:409-412.
    [145] Philippi T. Bet- hedging germination of desert annuals: beyond the first year [J]. The American Naturalist, 1993a, 142, 474-487.
    [146] Philippi T. Bet - hedging germination of desert annuals: variation among populations and maternal effect s in Lepdiumi lasiocarpum [J]. The American Naturalist, 1993b, 142, 488 -507.
    [147] Poljakov. Material and systematic of the Artemisia L.[M].Trudy Inst. Bot. Alma-ata., 1961, 11:134-177.
    [148] Preiss J. Biosynthesis of starch and its regulation. In: Press Jeds. The Biochemistry of Plants. New York: Academic Press, 1988, (3):371-378.
    [149] Qing-zhang Xu, Bingru Huang. Seasonal changes in carbohydrate accumulation for two creeping bentgrass cultivars[J]. Crop Science, 2003, 43:266–271.
    [150] Ralph L. Obendorf, Marcin Horbowicz, Alexandra M. Dickerman, et al.. Soluble oligosaccharides and galactosyl cyclitols in maturing soybean seeds in Planta and In Vitro[J]. Crop Science, 38, 1998, 78-84.
    [151] Rosenthal, J. P. & P. M. Kotanen. Terrestrial plant tolerance to herbivory[J]. Trends in Ecology and Evolution, 1994, 9, 145-148.
    [152] Samonte, S. O. PB. L. T. Wilson, A. M. McClung, et al. Seasonal dynamics of nonstructural carbohydrate partitioning in 15 diverse rice genotypes[J]. Crop Science, 2001, 41:902–909.
    [153] Schmid B, Weiner J. Plastic relationships between reproductive and vegetative mass in Solidago altissima[J]. Evolution, 1993, 47, 61-74.
    [154] Shearman V. J., R. Sylvester-Bradley, R. K. Scott, et al.. Physiological processes associated with wheat yield progress in the UK[J]. Crop Science, 2005, 45:175-185.
    [155] Schaffer A A, Petreikov M. Sucrose-to-starch metabolism tomato fruit undergoing transient starch accumulation[J]. Plant Physiology, 1997, 113: 739-746.
    [156] Siddhartha Narra, Thomas W. Fermanian, John M. Swiader, et al.. Total nonstructural carbohydrate assessment in creeping bentgrass at different mowing heights[J]. Crop Science, 2004, 44:908–913.
    [157] Smith D. Classification of several native North American grasses as starch or fructan accumulation inrelation to taxonomy[J].Journal of British Grassland Society, 1968, 23: 306-309.
    [158] Singh T N,Aspinal l D,Palag L G. Prolin accumulation and varietal adaptability to drought in barley :apotential metabolic meature of drought resistance[J].Nature New Biol,1972,236:188-190.
    [159] Troughton, Arthun. The underground organs of herbage grasses[J]. Commonwealth Bur. Pastures Field Crops Bull, 1999, 44, 49-68.
    [160] Vanderklein D.W, Reich P.B. The effect of defoliation intensity and history on photosynthesis, growth ,and carbon reserves of two conifers with contrasting leaf lifespans and growth habits[J]. New Phytologis, 1999,144:121-132.
    [161] Vanden Ende W, Roover JD, Laere AV. Effect of nitrogen concentration on fructan metabolizing enzymes in young chicory plants(Cichorium intybus)[J].Physiol Plant,1999,105:2-8
    [162] Ward, C Y, R E Blaser.Carbohydrate food reserves and leaf area in regrowth of orchadgrass[J]. Crop Science, 1961, (1):366-370.
    [163] Xu, Q, B Huang. Effects of differential air and soil of temperature on carbohydrate metabolism in creeping bentgrass[J]. Crop Science, 2000b, 40:1368-1374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700