BN纤维及BN-AIN复相陶瓷的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硼(BN)是一种具有多种优良性能的新型无机材料,在军事工程、科学技术和工业生产中有广阔的应用前景。本文对BN的研究主要包括三个方面:BN粉末的合成;先驱体法合成BN纤维;热压制备BN-AlN复相陶瓷。
    以三聚氰胺(C3N6H6)和硼酸(H3BO3)为原料,采用干法混合,合成BN粉末,测得合成产物的氮含量为49.45%,粒径0.2~5μm,XRD分析结果表明结晶程度较低。
    以三聚氰胺(C3N6H6)和硼酸(H3BO3)为原料,采用湿化学法合成纤维状先驱体,由合成的先驱体制备BN纤维。在以往的先驱体法制备BN纤维报道[39]中,通常以BCl3和HNSi(Me3)2(HMDS)等为原料合成聚硼氮烷先驱体,熔融拉丝成为先驱体纤维,再经不熔化处理,高温烧成等一系列工艺制备BN纤维。本文首次以C3N6H6和H3BO3为原料制得BN纤维,合成先驱体的工艺简单易于控制,先驱体呈纤维状结构,化学性质稳定,且其制得的BN纤维氮含量高。关于以C3N6H6和H3BO3为原料制得BN纤维还未见报道,这是本文的研究重点也是创新之处。
    在合成先驱体的研究中,确定了合成工艺参数,反应物的较佳配比为三聚氰胺:硼酸=1:1(mol比),较佳的反应浓度为0.05g/ml。热分析结果表明三聚氰胺与硼酸发生反应合成了先驱体。根据红外光谱分析,表明先驱体中可能存在C=N、-NH2、B-N、-OH等结构单元。根据IR分析结果和以往的研究[15]及对合成先驱体的反应机理的探讨推测出先驱体的分子结构式。扫描电镜观察先驱体的形貌,为纤维状结构,直径为2~20μm,长径比为20~100。
    对先驱体在不同温度热处理的产物进行了研究,表明热处理产物的氮含量随着温度的升高而增大,IR光谱表明先驱体900℃热处理后的产物中出现BN的特征吸收带。本文确定了由合成的先驱体制备BN纤维的工艺,较佳的工艺参数为温度1700℃,保温时间3小时,氮气流量2.0L/min,炉内压力0.1MPa。合成的BN纤维的氮含量测得为53.41%。通过对合成的BN纤维进行XRD物相分析,表明随温度的升高,BN纤维的结晶程度逐渐提高。SEM观察合成的BN纤维的形貌,直径为1~10μm,长径比为10~60。将BN纤维的形貌与先驱体比较,
    
    发现BN纤维的体积收缩。根据先驱体与BN纤维的形貌观察认为BN纤维是通过先驱体原位反应生成的。
    以BN粉末和AlN粉末为原料,采用热压烧结工艺,通过添加烧结助剂Y2O3和CaF2制备BN-AlN复相陶瓷。结果表明,在添加剂种类不变的情况下,当Y2O3的添加量为8wt%时,BN:AlN=50:50(质量比),BN-AlN陶瓷的性能最好,体积密度达到最大为2.637g/cm3,相对密度达到98.60%,显气孔率为0.265%,抗弯强度为210.7MPa。
    X射线衍射对BN-AlN复相陶瓷进行物相分析,表明除了主晶相BN、AlN以外,在添加单一添加剂8wt%Y2O3的试样中,还存在次晶相Y4Al2O9、YAlO3、Y3Al5O12、YBO3、Y3BO6;在添加复合添加剂8wt%Y2O3+2wt%CaF2的试样中,次晶相中含有Y4Al2O9、YAlO3、Y3Al5O12、YBO3、Y3BO6、Ca3Al2O6。SEM观察BN-AlN复相陶瓷的显微结构,主要呈卡片房式结构,基本烧结致密,BN颗粒呈明显的片状结构,颗粒尺寸约为1~2μm;AlN颗粒呈多面体形状,颗粒尺寸约为3~5μm,断裂方式为晶界断裂。
Hexagonal boron nitride (h-BN) is a new inorganic material with various excellent properties. h-BN is in well prospects of application in industry, science and technology, military engineering and so on. This thesis mainly consists of three aspects: synthesis of BN ceramic fibers from precursor, preparation of BN powders and hot-pressed BN-AlN ceramic composites.
    The BN powders preparation was briefly presented. The BN powders were prepared by using boric acid (H3BO3) and melamine (C3N6H6) as raw materials. The raw materials were mixed by dry ball-milling. The content of nitrogen of BN powders was 49.45%. The particle size was 0.2~5μm. The BN powders were characterized by XRD. It was found that crystallization level of the powder was low.
    The BN fibers synthesized from precursor were studied in this work. The preparation process included the synthesis of precursor fibers using H3BO3 and C3N6H6 by wet chemical method and the transformation from precursor fibers to BN fibers. BN fibers were usually synthesized using the polyborazine polymer as the precursor. The process include preparing the precursor by the reaction of BCl3 and HNSi(Me3)2(HMDS) , melting spinning to produce precursor fibers, curving of the precursor fibers and heat-treatment at high temperature. In this work, it was the first time that the BN fibers were synthesized using H3BO3 and C3N6H6. The preparation process was simple and easy to be controlled. The chemical qualities of the precursor fibers were stable. The N content of BN fibers was high.
    The optimum process conditions for preparing precursor fibers were as follows: H3BO3 : C3N6H6=1:1(mol ratio), solution concentration: 0.05g/ml. The chemical bonds in precursor fibers were characterized by IR spectroscopy. The results showed that the precursor fibers may contain bonds of C-N、-NH2、B-N、-OH and so on. The appearance of precursor fibers was observed by SEM. The cross section dimension was 2~10μm, and the length/diameter ratio is 20~100. The precursor were heat-treated at 350~1700℃. The N content of products increased while the
    
    heat-treatment temperature elevated. The spectrum of IR showed that the characteristic absorbing band of BN appeared at 900℃.
    The process for precursor to transform into BN fibers was investigated. The optimum processing conditions were as follows: heat-treatment temperature: 1700℃, soaking time: 2~4h, nitrogen flow:2.0L/min, atmospheric pressure: 0.1MPa. The N content of the BN fibers was 53.41%. The XRD analysis of BN fibers showed that the crystalline level was low, but it was enhanced at higher temperature. The appearance of BN fibers was observed by SEM. The diameter of fibers was 1~10μm and length/diameter was 10~60. Comparing BN fibers with precursor fibers, the volume of BN fibers was contracted. The BN fibers were relatively regular.
    BN-AlN ceramic composites were prepared by means of hot-pressed technology from powder of h-BN and AlN. The sintering dopant consisted of Y2O3 and CaF2. The density and bending strength of BN-AlN ceramic composites added with Y2O310wt% were better than which added with Y2O3+CaF2. When adding single sintering dopant, the influence about the density with the amount of sintering dopant was different. The influence of dopant on the bending strength was small. When the content of Y2O3 was 8wt%, the density of BN-AlN ceramic was the highest. The density of specimens was up to 2.637g/cm3 and the porosity was 0.265%.
    Phase analysis by XRD showed that major phases of BN-AlN ceramic were BN and AlN. When Y2O3 was single added, there were minor phases Y4Al2O9, YAlO3, Y3Al5O12, YBO3, Y3BO6. Meanwhile, the minor phases of Y4Al2O9, YAlO3, Y3Al5O12, YBO3, Y3BO6, Ca3Al2O6 were founded in ceramics with combined dopants of Y2O3 and CaF2.
    SEM fracture morphology analysis of the BN-AlN ceramic was carried out. The BN-AlN ceramic was dense and having flake-house-shaped structure. BN particles were flaky, and AlN particles were multilateral. The BN-AlN ceramic was fractured along grain boundary.
引文
[1] 陶连印,郑学家. 硼化合物的生产与应用.成都科技大学出版社,1992
    [2] 沙才智.日本各公司耐火新材料战略(下1).工业炉,1989,2:61~64
    [3] 吴志英.六方氮化硼合成工艺及对其性能的影响. 磨料模具与模削,1992,(109):34~37
    [4] Paciorek K.J.L., AD-A233538, 1991
    [5] Paine R T, Narula C K. Chem. Rev., 1990.90: 73-91
    [6] Rye K R, Paine R T, Borek T T. Mat. Res. Soc. Synp. Proc., 1990, 180: 1041
    [7] Lindquisit D A, Smith D M, Paine R T. Mat. Res. Soc. Symp. Proc., 1990, 180: 1029
    [8] 谷口五十二,特开昭51-5300,1976
    [9] Paciorek K.J.L.,Kratzer R.H. The 12th Annual Conference on Composites and Advanced Ceramic. Cocoa Beach FL. Jan. 17~20(1998)
    [10] Wade B.et al. ACS Spring Meeting. Polymeric Materials Science and
    Engineering Division. Atlanta. April 14~19(1991)
    [11] Venkatasubramanian N. et al. J. Non-Cryst. Solids, 1991, 130:
    144~156
    [12] 川崎卓.特开平8-217424,1996
    [13] 杜帅,李龙土,刘征等。AlN-BN复合陶瓷的介电性能,硅酸盐学报,1997,4(25):433~439
    [14] 顾立德.氮化硼陶瓷.中国建筑工业出版社,1982
    [15] 吉田保夫.特开昭61-286207,1986
    [16] 佐藤忠夫.特开昭61-191505,1986
    [17] 马世昌.有机化合物辞典.陕西科学技术出版社,1989
    [18] 魏文德.有机化工原料大全(四卷).化学工业出版社,1994
    [19] 北京师范大学等 无机化学教研室.无机化学(下册),1981
    [20] 高庆文,张清文等. CN1059507A,1992
    
    
    [21] 陆逸. 合成纤维工业,1992
    [22] Paine K.T. et al., Chem. Rev,1990;90:73
    [23] Paciorek K.J.L.,Harris D.H. et al.,Polym. Sci.1986;24:173
    [24] Paciorek K.J.L.,Kratzer R.H. er al., Polymer Preprints,1984;25:15
    [25] Linquist D.A., Smith D.M. et al., Matetr. Res. Soc Symp. Proc.,1990;80:1029
    [26] Rye R.R., Tallant D.R. et al.,Chem. Rev.,1991;3(2):286
    [27] Narula C.K. et al., Chem. Mater.,1990;2(4):377
    [28] Pierre A., EP0415855A1
    [29] Pierre A., EP0450550A1
    [30] Paciorek K.J.L.,US Pat 4581468,1986
    [31] Paciorek K.J.L.,AD-A247679,1992
    [32] 蒙西尔·格拉德·米格南尼等,CN1031846A,1986
    [33] 皮埃尔·阿多德等,CN1059507A,1992
    [34] 向阳春,陈朝辉等.聚硼氮烷先驱体制备氮化硼陶瓷纤维的研究,高技术通讯,1998,2:38~41
    [35] Venkatasubramanian N. et al., J.Non-smstal. Solid.,1990;130:144
    [36] Bruce Wade et al., Polymer preprints,1991;32(3):377
    [37] Abhiraman A.S. et al., Polym. Mater. Sci. Eng.,1991;64:611
    [38] 于栋利,何巨龙,田承君等.BN纤维氮化中晶体结构演化过程的研究.复合材料学报,2000,4(17):26~31
    [39] 曾竟成,陈朝辉,向阳春等.氮化硼纤维先驱体的合成及其热解研究.
    高分子材料科学与工程,1999,6(15):53~55
    [40] 张光友,陈朝辉. 氮化硼纤维的研制.高分子材料科学与工程,1998,2(14):94~96
    [41] 高学绪,任卫,高庆文等.有机硼聚合物前驱体合成BN纤维的初步探索.工业陶瓷,1992,21(52):5~7
    [42] 李达明,朱德渝,齐铃君等.六方氮化硼优质化处理.磨料模具与模削,1992,3(69):22,43
    
    
    [43] 王运峰,林静春.氮化硼的生产方法.河南科技,1994,6:19~20
    [44] 胡孝勇,刘逢梅,娄淑芹等.全玻璃密封氮化硼波导CO2激光器的研制.
    应用激光联刊,1989,18(3):141~143
    [45] 胡孝勇,刘逢梅,娄淑芹等.封离型可调谐氮化硼陶瓷波导CO2激光器.中国激光,1992,19(7):548~549
    [46] Hagio T, Yoshida H. Sintering and cystallization of ground hexagonalboron nitride . Journal of materials Science letters, 1994,13:633~655
    [47] 陈贵清,韩杰才,张宇民等.六方BN的陶瓷的高压气-固自蔓延高温合成.
    中国有色金属学报,1999,9(3):526~530
    [48] 陈贵清,韩杰才,张宇民等.高压气-固自蔓延高温合成h-BN-SiO2陶瓷材料的研究.无机材料学报,1999,14(3):437~442
    [49] 张宇民,韩杰才,赫晓东等.六方BN基陶瓷材料的自蔓延高温合成工艺的研究.兵器材料科学与工程,2000,23(3):27~30
    [50] 潘振苏,张惠丰.高导热陶瓷的开发及应用(下).上海硅酸盐,1991,2:65~73
    [51] 贾成厂等编著.陶瓷基复合材料导论.纤维工业出版社,1998
    [52] 沈能珏.现代电子材料技术.国防工业出版社,2000
    [53] 潘振苏,张惠丰.高导热陶瓷的开发及应用(上).上海硅酸盐,1990,2:65~75
    [54] 平井敏雄,新原皓一.セラミツクス,1978,13:861~865
    [55] 杜帅,李发,高陇桥.化学气相沉积法制备BN.电子元件与材料,1995,1(14):8~13
    [56] 李世普.特种陶瓷工艺学.武汉工业大学出版社,1990
    [57] 李振荣.AlN陶瓷的制备、显微结构和热导率的研究.南京工业大学,1992
    [58] 沈爱国.AlN陶瓷热导率和显微结构的关系.南京工业大学,1993
    [59] 熊兆贤.材料物理导论.科学出版社,2001
    [60] Kimura I. et al., J. Mater Sci Lett., 1989;8(3):303
    [61] Komeya K. et al., J. Ceramic. Soc. Jap., 1993,101(12):1319
    
    
    [62] 余润洲等.硅酸盐学报,2000,4(28):376
    [63] N.Kuramoto. Advanced Ceramatics,1989,26:107~111
    [64] K.Komeya. Yogyo-Kyokal-Shi,1981.89(6):330~335
    [65] 冈本正英.セラシツクス日本協会術論文志,1989,97(12):1478~85
    [66] 胡友根,过渡塑性相工艺制备BN-AlN复合陶瓷.西北轻工业学院学报,2000,18(1):40~44
    [67] Kanai. U.S. Pat.4960734
    [68] 黑川泰弘. 特开平3-83863
    [69] 黑川泰弘. 特开平3-183662
    [70] 黑川泰弘. 特开平3-16563
    [71] 黑川泰弘. 特开平3-275979
    [72] 中本一雄.无机和配位化合物的红外和拉漫光谱.化学工业出版社,1986
    [73] 沈德言.红外光谱法在高分子研究中的应用.科学出版社,1982
    [74] 沈淑娟,方绮云.波谱分析的基本原理及应用.高等教育出版社,1988
    [75] R.M.西尔弗斯坦,G.C.巴斯勒,T.C.莫里尔 著.姚海文,黄骏雄等译.有机化合物光谱鉴定.科学出版社,1982
    [76] 杨南如,岳文涛.无机非金属材料图谱手册.武汉工业大学出版社,2000
    [77] Virkar A V, Jackson T B, Cutler R A, Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride. J Am ceram Soc,1989;72(11):2031
    [78] 周和平,缪卫国,吴音. B2O3-Y2O3添加剂对AlN陶瓷显微结构及性能的影响,硅酸盐学报,1996;2(24):146~151
    [79] 周和平,周劲松.添加CaT2-Y2O3的AlN陶瓷显微结构及热导性质.无机材料学报,1995;4(10):439~444
    [80] 叶乃清,曾照强,胡晓清等. BN基复合陶瓷致密化的主要障碍.现代技术陶瓷,1998;1(75):7~10
    [81] 叶乃清,曾照强,胡晓清等. BN-YalON复合陶瓷的烧法行为. 硅酸盐学报,1998;2(26):265~268
    [82] W.D. 金格瑞等著.清华大学无机非金属材料教研组译. 陶瓷导论.中国建
    
    筑工业出版社,1982
    [83] Phase digrams for ceramists. The American Ceramic Sociegy, Inc, 1975
    [84] 中国科学院上海硅酸盐化学与工学研究所编.无机非金属材料分析.上海人民出版社,1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700