六方氮化硼基复合陶瓷燃烧合成机理与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六方氮化硼(hexagonal boron nitride,h-BN)是一种优良的高性能结构陶瓷。现代科学技术的发展对陶瓷的低成本、高性能更提出高要求。本文以价格相对低廉的B4C为B源,以Si和Ti为还原剂,在高压氮气环境中采用燃烧合成-热等静压方法,低成本制备出性能优良的h-BN基复合陶瓷。由于h-BN陶瓷的低弹性模量、热膨胀系数和高的热导率,该体系的结构陶瓷具有优良的耐腐蚀性以及抗热震性能。
     首先对B4C-Si-N2体系进行了热力学和动力学分析,研究了该体系的反应机理,分析了毛坯致密度、反应氮气压力和稀释剂对反应过程和产物性能的影响。研究表明,随反应氮气压力增加,致密化作用增强,产物相对密度提高,力学性能大幅提高,但120MPa氮气压力下有Si_3N_4相生成;随毛坯相对密度的提高,产物致密度先升高后降低,在毛坯致密度52.3%有最大值,其原因是过高的毛坯致密度提高了氮气的渗透阻力,导致反应不完全;稀释剂SiC、BN的加入降低了反应温度、反应速度和烧结性能。同时加入的稀释剂没有反应原位合成生成的BN和SiC结合强度高,因此产物的性能降低。通过优化工艺参数,在毛坯致密度52.3%,100MPa反应氮气压力条件下,制备了抗弯强度83.3MPa,断裂韧性1.96MPa·m~(1/2)的h-BN-SiC复合陶瓷。
     然后对B4C-Ti-N2体系进行热力学分析,实验研究了Ti含量对反应和产物组织性能的影响。随着原料中B4C/Ti从1/1变化到1/4,产物的抗弯强度和断裂韧性分别从42MPa和0.7MPa·m~(1/2)提高到67MPa和1.1MPa·m~(1/2),产物力学性能提高的原因为产物中Ti(C,N)相氮含量增加。而且由于氮气渗透阻力小,产物表面Ti(C,N)相的N含量高于产物内部Ti(C,N)相的N含量。上述两个反应体系的实验结果表明,B4C-Si-N2体系的产物致密度较高,性能较B4C-Ti-N2体系好,其原因主要由于Si的熔点(1410oC)小于Ti(1668oC)的熔点,液相烧结较为明显。
     通过引入液相烧结作用明显、综合力学性能优良的Al-TiB_2-N2体系,结合B4C-Si-N2体系,通过燃烧合成制备了h-BN-AlN基复合陶瓷。产物致密度和综合力学性能有较大提高,但反应过程中TiB_2在高温高压氮气下部分分解氮化,造成产物组织结构不均匀。因而用热稳定性较好的TiN取代TiB_2,在100MPa高压氮气下通过燃烧合成制备了组织均匀h-BN-AlN基复合陶瓷。实验研究结果表明,AlN-TiN体积含量对h-BN-AlN陶瓷复合材料力学性能有关键影响:当AlN-TiN体积含量低于50%,AlN相含量少,没有形成连续结构,材料的强度以h-BN相的强度为主导,断裂方式主要为沿晶断裂。而AlN-TiN体积含量高于50%时,AlN相已经形成了连续结构,产物的抗弯强度和断裂韧性显著提高,在AlN-TiN体积含量70%时,达到274MPa和5.1MPa·m~(1/2)。产物的断裂主要是AlN穿晶断裂为主。
     通过对AlN-TiN体积含量为30%、50%和70%的h-BN-AlN基复合陶瓷的热震试验表明,h-BN-AlN基复合陶瓷的抗热震性能优异。在h-BN相含量高于50%时,h-BN为基体相,h-BN的高热导率、低热膨胀系数和弹性模量使材料的抗热震性能优异。AlN-TiN含量30vol%和50vol%在1200oC残余强度分别为原始强度的67%和32.5%,热震温差(?T)分别达1000oC和700oC。主要原因是低强度片层状的h-BN在产物中相当于微裂纹,起到缓解热应力作用,加上均匀分布的TiN颗粒弥散强化作用,材料的热震温差((?)T)在AlN-TiN含量70vol%仍高达800oC。
     最后对以B_2O_3为B源,Mg和Al为还原剂,在高压N_2中燃烧合成非导电h-BN-MgO和h-BN-Al_2O_3进行了初步研究。研究表明B_2O_3-Mg/Al在高压氮气中剧烈反应生成h-BN-MgO和h-BN-Al_2O_3复合陶瓷,反应基本过程是Mg/Al和B_2O_3发生置换反应生成MgO/Al_2O_3,置换出的B和氮气反应生成BN。但产物中分别有少量硼酸镁(3MgO·B_2O_3)和硼酸铝(9Al_2O_3·2B_2O_3)生成,这是由于反应温度和速率很高,Mg、Al会气化挥发,生成的MgO和Al_2O_3分别和剩余的B_2O_3结合而生成3MgO·B_2O_3和9Al_2O_3·2B_2O_3。由于Mg、Al会的挥发,造成产物致密度不高。
Hexagonal boron nitride (h-BN) is a high-performance structural ceramic with excellent properties. The development of technology raises requirements for advanced ceramics with increasing properties and low cost. In this paper, h-BN-based ceramic composites were prepared by combustion synthesis and instantaneously hot isostatic pressing (SHS-HIP) ignited under high nitrogen pressure from relative cheap raw materials of B_4C and Si or Ti, in which B_4C served as B source and Si or Ti acted as reducing agents. Based on the low elastic modulus, coefficient of thermal expansion and high thermal conductivity, h-BN-based ceramic composites have excellent corrosion resistance and thermal shock resistance.
     Firstly, thermodynamic and kinetic parameters of the B_4C-Si-N_2 system were calculated theoretically, and the combustion synthetic mechanism was analyzed. Process parameters such as compacts porosity, nitrogen pressure and diluent content have significant effect on the microstructure and properties of the products. The research results show that higher relative density and mechanical properties of the products were obtained with the increasing of nitrogen pressure. However, Si3N4 phase formed under higher nitrogen pressure over 120MPa; The relative density of the products has a maximum value at compacts relative density of 52.3%. h-BN-SiC ceramic composites with bending strength and fracture toughness were 83.3MPa and 1.96MPa·m1/2, respectively, were prepared under 100MPa nitrogen pressure from the compacts with relative density of 52.3%.
     Thermodynamic calculations of the B_4C-Ti-N_2 system were analyzed. The effect of Ti content in reactant on reaction, structure and mechanical properties of the products were studied by experiments. With the B_4C/Ti ratio changed from 1/1 to 1/4, bending strength and fracture toughness of the h-BN-TiCN ceramics increased from 42MPa and 0.7MPa·m1/2 to 67MPa and 1.1 MPa·m1/2, respectively. The reason for that is the increasing Ti(C,N) phase content in products. The N content in Ti(C,N) phase on the product surface is higher than that of interior product because of lower nitrogen penetration resistance during combustion reaction. In comparison with the experimental results of these two systems, B_4C-Si-N_2 system shows more intensive liquid-phase sintering, higher relative density and mechanical properties because of lower melting point of Si (1410oC) than that of Ti (1668oC).
     Relative density and mechanical properties of h-BN-AlN-based ceramic composites improved notably through introducing Al-TiB_2 combustion system into B4C-Si system because of good liquid-phase sintering of Al during combustion process. However, the thermal decomposition of TiB_2 phase under high nitrogen pressure and temperature during the combustion synthesis of B4C-Si-Al-TiB_2-N2 system leads to the non-homogeneous structure in resulting products. In order to overcome this drawback, we obtain homogeneous h-BN-AlN-based products by replacement of TiB_2 with TiN because of higher stability of TiN under high nitrogen pressure and temperature in experiments. Volume content of AlN-TiN has a critical effect on the mechanical properties of h-BN-AlN-based composites. When volume content of AlN-TiN was lower than 50%, h-BN was the main phase and determined the mechanical properties. Fracture characteristics show intergranular type. When volume content of AlN-TiN exceeded 50%, AlN was the main phase and dominated the mechanical properties and fracture characteristics exhibit transgranular type. Bending strength and fracture toughness improve to 274MPa and 5.1MPa·m1/2, respectively.
     Thermal shock resistance test on products with AlN-TiN content of 30, 50 and 70vol% were carried out. The results show that h-BN-AlN-based ceramic has excellent thermal shock resistance. h-BN was the matrix when h-BN phase was higher than 50vol%, and the excellent thermal shock resistance resulted from the low elastic modulus, coefficient of thermal expansion and high thermal conductivity of h-BN phase. The residual strength was 67% and 32.5% of original strength, and thermal shock temperature difference ((?)T) reached 1000oC and 700oC when AlN-TiN content was 30vol% and 50vol%, respectively. Microcracks bring by weak h-BN phase and dispersion strengthening of TiN grains make the thermal shock temperature difference ((?)T) reached 800oC when AlN-TiN content was 70vol%.
     h-BN-MgO and h-BN-Al_2O_3 composites were prepared by combustion synthesis under high nitrogen pressure from powder compacts of B_2O_3, acting as B source, and Mg and Al, acting as reducing agent, respectively. The reaction mechanisms of these two combustion systems were replacement reaction of thermite. 3MgO·B_2O_3 and 9Al_2O_3·2B_2O_3 phase were observed because of high reaction temperature and velocity, as well volatilization of Mg and Al. So the relative density was not high.
引文
1 A.G. Merzhanov, I.P. Borovinskaya. Self-propagating High-temperature Synthesis of Refractory Inorganic Compounds. Dokl Akad Nauk SSSR. 1972,204:366-369
    2 A.G. Merzhanov. Self-propagating High-temperature Synthesis: Twenty Years of Search and Findings, in Proc on Int Symp on Combustion and Plasma Synthesis of High Temperature Materials, Ed by Z.A. Munir and J.B. Holt, VCH Publishers, New York. 1990:1–53.
    3 Z.A. Munir, U. Anselmi-Tamburini. Self-propagating Exothermic Reactions: the Synthesis of High Temperature Materials by Combustion. Materials Science Reports. 1989,3:277-365
    4 A.G. Merzhanov. History and Recent Developments in SHS. Ceramics International. 1995,21:371-379
    5 A.G. Merzhanov. Theory and Practice of SHS: Worldwide State of the Art and the Newest Results. International Journal of Self-Propagation High-Temperature Synthesis. 1993,2:113-l58
    6 J.B. Holt, Z.A. Munir. Combustion Synthesis of Titanium Carbide: Theroy and Experiment. Journal of Materials Science. 1986,21:251-257
    7 A.G. Merzhanov. Combustion Processes that Synthesize Materials. Journalof Materials Processing Technology. 1996, 56:222-241
    8 V. Hlavacek. Combustion Synthesis: A Historical Perspective. American Ceramic Society Bullten. 1991,70:240-243
    9 W. Muthmann, K. Kraft. Investigations about Cerium and Lanthanum. Justus Liebigs Ann. Chem. in German. 1902,325:261-278
    10 P.P. Alexander. Production of Metal Hydrides. US Patent: 2372168(1943), 2425711(1944), 2467647(1949)
    11 J.D. Walton, N.E. Poulos. Cermets from Thermite Reactions. Journal of Amerian Ceramic Society. 1959,42:40-49
    12 R.K. Stringer, L.S. Williams. Special Ceramics (edited by P. Popper), British Ceramic Research Association, Academic Press, New York 1967,4:37-45
    13 L.L. Wang, Z.A. Munir, Y.M. Maximov. Thermite Reactions: Their Utilization in the Synthesis and Processing of Materials. Journal of Materials Science. 1993,28(14):3693-3708
    14傅正义. SHS技术研究进展-纪念SHS技术诞生三十周年.复合材料学报. 2000,17(1):5-10
    15张树格.燃烧合成技术的起源及其在我国的发展.粉末冶金技术. 1997, 15(4):295-298
    16殷声主编.燃烧合成.北京.冶金工业出版社. 1999:147-186
    17韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法.材料科学与工程. 1997,15(2):20-25
    18 K.G. Shkadinski, B.I. Khaikin, A.G. Merzhanov. Propagation of A Pulsating Exothermic Reaction in the Condensed Phase. Combustion Explosion and Shock Waves, 1971,7:15-22.
    19 A.G. Merzhanov. Technological Combustion Problems. In: Protsessy Goreniyav Khemicheskoi Tekhnologii i Metallurgii (Combustion Processes in Chemical Technology and Metallurgy). Chernogolovka, 1975, p.5-28
    20 Z.A. Munir, U. Anselmi-Tamburini. Self-propagating Exothermic Reactions: the Synthesis of High-temperature Materials by Combustion. Materials Science Report. 1989,3:277-365
    21 Z.A. Munir. Synthesis of High Temperature Materials by Self-propagating Combustion Methods. Ceramic Bulletin. 1988,67(2):342-349
    22梁叔全,郑子樵.材料的自蔓延高温合成.硅酸盐学报. 1993,12(3):261-241
    23 C.R. Bowen, B. Derby. Selfpropagating High-temperature Synthesis of Ceramic Materials. British Ceramic Transactions. 1997,96:25-31
    24 A.G. Merzhanov, I.P. Borovinskaya, V.K. Prokudina, NA Nikulina. Efficiency of the SHS Powders and Their Production Method. Internaitional Journal of SHS. 1994,3:353-370
    25 A.K. Khanra, M.M. Godkhindi. L.C. Pathak. Sintering Behaviour of Ultra-fine Titanium Diboride Powder Prepared by Self-propagating High-temperature Synthesis (SHS) Technique. Materials Science and Engineering A. 2007, 454-455:281-287
    26 D. Carole, N. Frety, S. Etienne-Calas, C. Merlet, R.M. Marin-Ayral. Microstructural and Mechanical Characterization of Titanium Nitride Producedby SHS. Materials Science and Engineering A. 2006,419(1-2): 365-371
    27张学军. Si3N4基复合陶瓷的燃烧合成.哈尔滨工业大学博士论文. 2007:14-17
    28 M. Kholghy, S. Kharatyan, H. Edris. SHS/PHIP of Ceramic Composites Using Ilmenite Concentrate. Journal of Alloys and Compounds. 2010, 502(2): 491-494.
    29 X.D. He, Y.L. Bai, Y.B. Li, C.C. Zhu, X.H. Kong. In situ Synthesis and Mechanical Properties of Bulk Ti3SiC2/TiC Composites by SHS/PHIP. Materials Science and Engineering:A. 2010, 527(18-19):4554-4559
    30许宝才,赵忠民,张龙,杨润泽,马玉峰.燃烧合成高强韧Al2O3/YSZ共晶系复合管陶瓷内衬.稀有金属材料与工程. 2007, 36(S1):211-214.
    31 Z. Li, W. Xin. Effect of Thermit Composition on Manual SHS Welding for Low Carbon Steel. Hanjie Xuebao/Transactions of the China Welding Institution. 2007,28(2):79-81.
    32 A.S. Rogachev, V.N. Sanin, A.E. Sytschev, V.I. Yukhvid, E. Medda, R. Orrù, G. Cao. Influence of Gravity on Self-propagating High-temperature Thermite Reactions: the Case of Cu2O-Al and Cu2O-Cu-Al Systems. Advances in Space Research. 2002,29(4):505-510
    33 M. Castillo, J.J. Moore, F.D. Schowengerdt, R.A. Ayers, X. Zhang, M. Umakoshi, H.C. Yi, J.Y. Guigne. Effects of Gravity on Combustion Synthesis of Functionally Graded Biomaterials. Advances in Space Research. 2003,32(2): 265-270
    34 O.A. Graeve, E. M. Carrillo-Heian. Modeling of Wave Configuration during Electrically Ignited Combustion Synthesis. Journal of Materials Research. 2001,16(1):93-100
    35 W. Morales, M. Cason, O. Aina, N.R. de Tacconi, K. Rajeshwar. Combustion Synthesis and Characterization of Nanocrystalline WO3. Journal of American Chemcal Society. 2008.130:6318-6319
    36 S. Schuyten, P. Dinka, A.S. Mukasyan, E. Wolf. A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol. Catal Catalysis Letter 2008,121:189-98
    37 S.T. Aruna, A. S. Mukasyan. Combustion Synthesis and Nanomaterials. Current Opinion in Solid State and Materials Science. 2008,12(3-4): 44-50
    38顾立德.氮化硼陶瓷.北京:中国建筑工业出版社, 1987:1-46
    39 F. P.Bundy, R. H. Jr Wentorf. Direct Transformation of Hexagonal Boron Nitride to Denser Forms. Journal of Chemical Physics. 1963,38:1144-1149
    40 V. L. Solozhenko. Current Trends in the Phase Diagram of Boron Nitride. Journal of Hard Materials. 1995,6:51-65
    41 K.M. Taylor. Hot Pressed Boron Nitride. Industrial and Engineering Chemistry. 1955,47(12):2506-2509
    42 C.L. Hoenig. High Density Hexagonal Boron Nitride Prepared by Hot Isostatic Pressing in Refractory Metal Containers. 1992, US Patent Number:5116589
    43雷玉成,包旭东,刘军,朱飞,张跃冰.液相烧结六方氮化硼陶瓷.江苏大学学报(自然科学版). 2005,26(4):357-360
    44葛雷,杨建,丘泰.六方氮化硼的制备方法研究进展.电子元件与材料. 2008,27(6):22-25,29
    45陈贵清,韩杰才,张宇民,杜善义.六方BN陶瓷的高压气-固自蔓延高温合成.中国有色金属学报. 1999,9(3):526-530
    46陈贵清,韩杰才,张宇民等.高压气-固自蔓延高温合成h-BN-SiO2陶瓷材料的研究.无机材料学报. 1999,14(3):437-442
    47张宇民,韩杰才,赫晓东,杜善义.六方BN基陶瓷材料的自蔓延高温合成工艺的研究.兵器材料科学与工程. 2000.23(3):27-30
    48 P.G. Valentine, A.N. Palazotto, R. Ruh, D.C. Larsen. Thermal Shock Resistance of SiC-BN Composites. Advanced Ceramic Materials. 1986,1:81-87
    49 W. Sinclair, H. Simmons. Microstructure and Thermal Shock Behavior of BN composites. Journal of Materials Science Letters. 1987,6:627-629.
    50 J. Runyan, R.A. Gerhardt, R. Ruh. Electrical Properties of Boron Nitride Matrix Composites:I, Analysis of McLachlan Equation and Modeling of the Conductivity of Boron Nitride-Boron Carbide and Boron Nitride-Silicon Carbide Composites. Journal of the American Ceramic Society, 2001, 84(07):1490-1496
    51 J. Runyan, R.A. Gerhardt, R. Ruh. Electrical Properties of Boron Nitride Matrix Composites:II, Analysis of McLachlan Equation and Modeling of the Conductivity of Boron Nitride-Boron Carbide and Boron Nitride-Silicon Carbide Composites. Journal of the American Ceramic Society, 2001, 84(07):1497-1503
    52 G.J. Zhang, J.F. Yang, T. Ohji. In Situ Si3N4-SiC-BN Composites: Preparation, Microstructures and Properties. Materials Science and Engineering A. 2002, 328(1-2):201-205
    53 G.J. Zhang, J.F. Yang, T. Ohji. Thermogravimetry, Differential Thermal Analysis, and Mass Spectrometry Study of the Silicon Nitride-Boron Carbide-Carbon Reaction System for the Synthesis of Silicon Carbide-Boron Nitride Composites. Journal of American Ceramic Society. 2002,85(9): 2256-2260
    54 G.J. Zhang, J.F. Yang, Z.Y. Deng, T. Ohji. Effect of Y2O3-Al2O3 Additive on the Phase Formation and Densification Process of In Situ SiC-BN Composite. Journal of Ceramic. Society Japan. 2001,109(1):45-48
    55 G.J. Zhang, T. Ohji. Effect of BN Content on Elastic Modulus and Bending Strength of SiC-BN in Situ Composites. Journal of Materias Research. 2000,15(9):1876-1880
    56 G.J. Zhang, Y. Beppu, T. Ohji, S. Kanzaki. Reaction Mechanism and Microstructure Development of Strain-Tolerant In Situ SiC-BN Composites. Acta Materialia. 2001,49(1):77-82
    57杨治华,贾德昌.原位合成SiC-BN复合陶瓷设计与热力学研究.材料科学与工艺. 2005,13(03):272-274
    58杨治华,贾德昌.原位合成SiC-BN复合陶瓷.材料科学与工程学报. 2004, 22(04):483-487.
    59 Z.H. Yang. D.C. Jia. Oxidation Resistance of Hot-pressed SiC-BN Composites. Ceramics International. 2008,34(2):317-321
    60 Z.H. Yang, D.C. Jia. Thermal Shock Resistance of In Situ Formed SiC-BN Composites. Materials Chemistry and Physics. 2008,107 (2-3):476-479
    61 G.J. Zhang, Y. Beppu, M. Ando. In Situ Reaction Synthesis of Silicon Carbide-Boron Nitride Composite from Silicon Nitride-Boron Oxide-Carbon. Journal of America Ceramic Society. 2002, 85(11):2858-2560
    62 Y. Kodera, N. Toyofuku, H. Yamasaki, M. Ohyanagi, Z.A. Munir. Consolidation of SiC/BN Composite through MA-SPS Method. Journal of Materials Science. 2008,43(19):6422-6428
    63 K. Morses; J. Vosburg, D. Wark, L.V. Interrante, A.R. Puerta, L.G. Sneddon, M. Narisawa. Microstructure and Indentation Fracture Behavior of SiC-BNComposites Derived from Blended Precursors of AHPCS and Polyborazylene. Chemistry of Materials. 2003,16(1):125-132
    64佐伯剛二,平櫛敬資,溝田恭夫. BN-SiC結合を有する複合耐火物の製造.耐火物. 2001,53(2):70-73
    65 B.I. Khachin, A.G. Merzhanov. Theory of Thermal Propagating of a Chemical Reaction Front. Combustion Explosive and Shock Wave. 1962,2(3):22-27
    66 J.W. Lee, Z.A. Munir, M. Ohyanagi. Dense Nanocrystalline TiB2-TiC Composites Formed by Field Activation from High-energy Ball Milled Reactants. Materials Science and Engineering A. 2002,325:221-227
    67 G. Wen, S.B. Li, B.S. Zhang, Z.X. Guo. Reaction Synthesis of TiB2-TiC Composites with Enhanced Toughness. Acta Materialia 2001;49:1463-1470
    68 G.J. Zhang, X.M. Yue, Z.Z. Jin. In-situ Synthesized TiB2 Toughened SiC. Journal of European Ceramic Society. 1996,16:1145-1148
    69 E.Y. Gutmanas, I. Gotman. Reactive Synthesis of Ceramic-Matrix Composites. Journal of Euopean Ceramic Society. 2004,24:171-178
    70 B.V. Radhakrishna Bhat, J. Subramanyam, V.V. Bhanu Prasad. Preparation of Ti-TiB-TiC & Ti-TiB Composites by In-situ Reaction Hot Pressing. Materials Science and Engineering A. 2002,325:126-130
    71 D. Brodkin, S.R. Kalidindi, M.W. Barsoum, A. Zavaliangos. Microstructural Evolution during Transient Plastic Phase Processing of Titanium Carbide- titanium Boride Composites. Journal of American Ceramic Society. 1996,79: 1945-1952
    72 H. Zhao, Y.B. Cheng. Formation of TiB2-TiC Composites by Reactive Sintering. Ceramic International. 1999,25:353-358
    73 I. Gotman, N.A. Travitzky, E.Y. Gutmanas, Dense in Situ TiB2/TiN and TiB2/TiC Ceramic Matrix Composites: Reactive Synthesis and Properties. Materials Science and Engineering A. 1998,244:127-137
    74 D. Vallauri, F.A. Deorsola. Synthesis of TiC-TiB2-Ni Cermets by Thermal Explosion under Pressure. Materials Research Bulletin. 2009, 44(1):1528-1533
    75 L. Klinger, I. Gotman, D. Horvitz. In situ Processing of TiB2/TiC Ceramic Composites by Thermal Explosion under Pressure: Experimental Study and Modeling. Materials Science and Engineering A. 2001;302:92-99
    76 I. Song, L. Wang, M. Wixom, L.T. Thompson. Self-propagating HighTemperature Synthesis and Dynamic Compaction of Titanium Diboride- Titanium Carbide Composites. Journal of Materials Science. 2000;35: 2611-2617
    77 C.L. Yeh, Y.L. Chen. Combustion Synthesis of TiC-TiB2 Composites. Journal of Alloys and Compounds. 2008,463(1-2):373-377
    78 B.L. Zou, P. Shen, Q.C. Jiang. Reaction Synthesis of TiC-TiB2/Al Composites From an Al-Ti-B4C System. Journal of Materials Science. 2007,42:9927-9933
    79 M. Antonio, Locci, Roberto Orrù, Giacomo Cao, Zuhair A. Munir. Simultaneous Spark Plasma Synthesis and Densification of TiC-TiB2 Composites. Journal of the American Ceramic Society. 2006,89(3):848-855
    80 P. Shen, B.L. Zou, S.B. Jin, Q.C. Jiang. Reaction Mechanism in Self- propagating High-temperature Synthesis of TiC-TiB2/Al Composites from an Al-Ti-B4C System. Materials Science and Engineering A. 2007,454/455: 300-309
    81詹承斌,陈克新,刘光华,钟继东,周和平.超重力对燃耗合成Ti(C,N)-TiB2复合粉体的影响.稀有金属材料与工程. 2007, 36(S1):49-51.
    82 Y.H. Liang, H.Y. Wang, Y.F. Yang, R.Y. Zhao and Q.C. Jiang. Effect of Cu Content on the Reaction Behaviors of Self-propagating High-temperature Synthesis in Cu-Ti-B4C System. Journal of Alloys and Compounds. 2008,462(1-2):113-118
    83 Y.F. Yang, H.Y. Wang, R.Y. Zhao, Y.H. Liang and Q.C. Jiang. Effect of Ni Content on the Reaction Behaviors of Self-propagating High-temperature Synthesis in the Ni-Ti-B4C System. International Journal of Refractory Metals and Hard Materials. 2008,26(2):77-83
    84 E.Y. Gutmanas, I. Gotman. Dense High-temperature Ceramics by Thermal Explosion under Pressure. Journal of the European Ceramic Society. 1999, 19:2381-2393
    85 B.L. Zou, P. Shen, Z.M. Gao, Q.C. Jiang. Combustion Synthesis of TiCx-TiB2 Composites with Hypoeutectic, Eutectic and Hypereutectic Microstructures. Journal of the European Ceramic Society. 2008,28:2275-2279
    86 P. Shen, W.H. Sun, B.L. Zhou, L. Zhan, Q.C. Jiang. Al Content Denpendence of Reaction Behaviors and Mechanism in Combustion Synthesis of TiB2-AlN-based Composites. Chemical Engineering Journal. 2009,150(1):261-268
    87 X.H. Zhang, C.C. Zhu, W. Qu, X.D. He, V.L.Kvanin. Self-propagating High Temperature Combustion Synthesis of TiC/TiB2 Ceramic-matrix Composites. Composites Science and Technology. 2002,62:2037-2041
    88 L.Zhan, P. Shen, Y.F. Yang, J. Zhang, Q.C. Jiang. Self-propagating High-temperature Synthesis of TiCxNy-TiB2 Ceramics from a Ti-B4C-BN System. International Journal of Refractory Metals and Hard Materials. 2009, 27(5): 829-834
    89 F. Monteverde, V. Medri, A. Bellosi. Synthesis of Ultrafine Titanium Carbonitride Powders. Applied Organometallic Chemistry. 2001,15:421-429
    90李喜坤,修稚萌,孙旭东,郑龙熙.碳热还原法制备Ti(C,N)粉末.粉末冶金工业. 2004,14:18-22
    91 A.M. Loccia, A. Cincottia, F. Delogu, R. Orrù, G. Cao. Advanced Modelling of Self-propagating High-temperature Synthesis: the Case of the Ti-C System. Chemical Engineering Science. 2004,59:5121-5128
    92 H. Pastor. Tianium Carbonitride Based Hard Alloys for Cutting Tools. Materials Science and Engineering A. 1988,105/106:401-409
    93 L. Vegard. The Constitution of Mixed Crystals and the Space Occupied by Atoms. Journal for Physics A. 1921,5:17-26
    94秦明礼,曲选辉,段柏华,徐征宙,郭世柏.无压烧结制备高致密度AlN-BN复合陶瓷.无机材料学报. 2005,01:245-250
    95 W.S. Cho, Z.H. Piao, K.J. Lee, Y.C. Yoo, J.H. Lee, M.W. Cho, Y.C. Hong, K. Park, W.S. Hwang. Microstructure and Mechanical Properties of AlN-hBN based Machinable Ceramics Prepared by Pressureless Sintering. Journal of the European Ceramic Society. 2007,27(2-3):1425-1430
    96 H.Y. Jin, W. Wang, J.Q. Gao, G.J. Qiao, Z.H. Jin. Study of Machinable AlN/BN Ceramic Composites. Materials Letters. 2006,60:190-193
    97 W.S. Cho, M.W. Cho, J.H. Lee, Z.A. Munir. Effects of h-BN Additive on the Microstructure and Mechanical Properties of AlN-based Machinable Ceramics. Materials Science and Engineering: A. 2006,418(1-2):61-67
    98沈春英,唐惠东,丘泰,徐洁,李晓云.热压烧结BN-AlN复相陶瓷致密化研究.硅酸盐通报. 2003,2:11-14,19
    99 T.K. Jia, W.M. Wang. Processing Research of AlN-BN Composites Fabricatedby In Situ Reaction. Journal of Wuhan University of Technology. 2006,28(1): 1-3
    100秦明礼,曲选辉,段柏华,汤春峰,何新波.可加工AlN-BN复合陶瓷的制备.稀有金属材料与工程. 2004,11:1186-1190
    101 H.Y. Zhao, W.M. Wang, H. Wang, Z.Y. Fu. Spark Plasma Sintered AlN-BN Composites and Its Thermal Conductivity. Journal of Wuhan University of Technology. 2008,23(6):866-869
    102 M.L. Qin, X.H. Qu, B.H. Duan. Fabrication of High Density AlN-BN Composite Ceramics by Presureless Sintering. Journal of Inorganic Materials. 2005,20(1):245-250
    103陈克新,葛昌纯.以固态氮化剂燃烧合成AlN-SiC固溶体的研究.硅酸盐学报. 1999,1:34-40
    104 R.C. Juang, C.C. Chen, J.C. Kuo, T.Y. Huang, Y.Y. Li. Combustion Synthesis of Hexagonal AlN-SiC Solid Solution under Low Nitrogen Pressure. Journal of Alloys and Compounds. 2009, 480(2):928-933
    105王斌,傅正义,王皓,王为民.烧结温度对TiB2-AlN材料的结构与性能的影响.武汉理工大学学报. 2008,30(11):20-22
    106 M. Ohyanagi, K. Shirai, N. Balandina, M. Hisa. Synthesis of Aluminum Nitride-Silicon Carbide Solid Solutions by Combustion Nitridation. Journal of American Ceramic Society. 2000,83(5):1108-1112
    107 H. Xue, Z.A. Munir. The Synthesis of Composites and Solid Solutions of ?-SiC-AlN by Field-Activated Combustion. Scripta Materialia. 1996,35: 979-982
    108 H. Xue, Z.A. Munir. Synthesis of AlN-SiC Composites and Solid Solutions by Field-Activated Self-Propagating Combustion. Journal of European Ceramic Society. 1997,17:1787-1792
    109 L. Mei, J.T. Li. Synthesis of AlN-SiC Solid Solution through Nitriding Combustion of Al-C-Si3N4 in Air. Acta Materialia , 2008,56(14):3543-3549
    110郑永挺,韩杰才,赫晓东.无包封燃烧合成气相热等静压AlN-TiB2陶瓷研究.硅酸盐学报. 2001.29(2):137-142
    111 L.J. Zhou, Y.T. Zheng, S.Y. Du, H.B. Li. Fabrication of AlN-SiC-TiB2 Ceramics by Self-propagating High Temperature Synthesis and Hot Isostatic Pressing. Materials Science Forum. 2007,546-549:1505-1508
    112 V.A. Bunin, A.V. Karpov, M. Yu. Senkovenko. Fabrication, Structure, and Properties of TiB2-AlN Ceramics. Inorganic Materials. 2002,38(7):746-749
    113 W.A.Zdaniewski. Stereoscopic Fractography of Crack Propagation Phenomena in a TiB2-AlN Composite. Journal of American Ceramic Society. 1989,72(1): 116-121
    114 I.P. Borovinskaya, V.A. Bunin, G.A. Vishnyakova, A.V. Karpov. Some Specific Features of Synthesis and Characteristics of TiB2-AlN-BN-Based Ceramic Materials. International Journal of SHS. 1999,8(4):451-457
    115 L.J. Zhou, Y.T. Zheng, S.Y. Du. H.B. Li. Oxidation Behavior of AlN-SiC-TiB2 Ceramics Synthesized by SHS-HIP. Journal of Alloys and Compounds. 2009,478(1-2):173-176
    116赵海洋,王为民. AlN-BN复合陶瓷制备工艺研究进展.硅酸盐通报. 2007, 26(4):733-736,793
    117叶乃清,曾照强,胡晓清,苗赫濯. BN基复合陶瓷致密化的主要障碍.现代技术陶瓷. 1998,1:7-10,22
    118李美娟. AlN/BN复相陶瓷的SPS制备、纤维结构与性能调整.武汉理工大学博士论文. 2006:5-30
    119周玉.陶瓷材料学.第二版.科学出版社, 2005:468-498
    120 H.C. Yi, J.Y.Guigné, L.A. Robinson, A.R. Manerbino, J.J. Moore. Characteristics of Porous B4C-Al2O3 Composites Fabricated by the Combustion Synthesis Technique. Journal of Porous Materials. 2004,11:5-14
    121 W. Zhou, W.B. Hu, D. Zhang. Combustion Synthesis of Highly Porous Ceramics: The TiC-Al2O3 Dystem. Journal of Materials Science. 1999,34: 4469-4473
    122 M.A. Meyers, E.A. Olevsky, J. Ma, M. Jamet. Combustion Synthesis/ Densification of an Al2O3-TiB2 Composite. Materials Science and Engineering A. 2001,311:83-99
    123王业亮,傅正义,王皓,张金咏,张清杰. B2O3-TiO2-Mg-C体系燃烧反应热力学与产物结构变化过程研究.硅酸盐学报. 2002,30(30):340-346
    124 J.H. Lee, C.W. Won, S.M. Joo, D.Y. Maeng. Preparation of B4C Powder from B2O3 Oxide by SHS Process. Journal of Materials Science Letters. 2000, 19:951-954
    125 L.S. Abovyan, H.H. Nersisyan, S.L. Kharatyan, R. Orru, G. Cao. The Effect ofDegassing Modes on the Self-propagating Reactions for the SiO2-Al-C System in the Presence of Reaction Promoters. Ceramics International. 2003,29: 175-182
    126 H.H. Nersisyan, L.S. Abovyan, S.L. Kharatyan. Mechanism of Initiation and Combustion Laws of SiO2-Al-C System Activated by Fluorocarbons. International Journal of SHS. 1999,8(2):153-163
    127 A.V. Kostanyan, H.H. Nersisyan, S.L. Kharatyan, D. Zedda. R. Orru, G. Cao, Chemically Stimulated Combustion in Zr/SiO2/C System and Synthesis of ZrO2/SiC Composite Ceramic Powders Containing SiC Whiskers. International Journal of SHS. 2000,9(4):387-402
    128 J.S. Li, Z.Y. Cai, H.S. Guo, B.S. Xu, L. Li. Characteristics of Porous Al2O3-TiB2 Ceramics Fabricated by the Combustion Synthesis. Journal of Alloys and Compounds. 2009,479(1-2):803-806
    129梁英教,车荫昌主编(LIANG Yingjiao,et al).无机物热力学数据手册(Handbook of Thermodynamic Data of Inorganic Matters).沈阳:东北大学出版社(Shengyang:North East University Press), 1995:7-68
    130 B.S. Xu, T.B. Li, Y. Zhang, Z.X. Zhang, X.G. Liu, J.F. Zhao. New Synthetic Route and Characterization of Magnesium Borate Nanorods. Crystal Growth & Design. 2008,8(4):1218-1222
    131李永利,乔冠军,金志浩.添加剂对Al2O3/BN可加工陶瓷性能的影响.稀有金属材料与工程. 2004,33(7):744-747
    132李永利,乔冠军,金志浩.可加工性BN/Al2O3陶瓷基复合材料的制备.中国有色金属学报. 2002,12(6):1179-1183
    133李永利,张久兴,乔冠军,金志浩.可加工Al2O3/BN纳米复合材料的抗热震性能.材料科学与工艺. 2007,15(2):248-250
    134 T. Kusunose, T. Nomoto, T. Sekino, B.S Kim, Y. Yamamoto, K. Niihara. Fabrication of Al2O3/BN Nanocomposites by Chemical Processing and their Mechanical Properties. Journal of Materials Research. 2005,20(1):183-190
    135 Y.L. Li, G.J. Qiao, Z.H. Jin. Machinable Al2O3/BN Composites Ceramics with Strong Mechanical Properties. Materials Research Bulletin. 2002,37:1401-1409
    136 G.J. Zhang, J.F. Yang, M. Ando, T. Ohji, S. Kanzaki. Reactive Synthesis of Alumina-boron Nitride Composites. Acta Materialia. 2004,52:1823-1835
    137 W.S. Coblenz, D.Lewis III. In Situ Reaction of B_2O_3 with AlN and/or Si_3N_4 toForm BN-Toughened Composites. Journal of American Ceramic Society. 1988,71(12):1080-1085
    138 E.M. Sharifi, F. Karimzadeh, M.H. Enayati. Synthesis of Titanium Diboride Reinforced Alumina Matrix Nanocomposite by Mechanochemical Reaction of Al-TiO2-B_2O_3. Journal of Alloys and Compounds. 2010, 502(2):508-512
    139 E.M. Sharifi, F. Karimzadeh, M.H. Enayati. Preparation of Al2O3-TiB2 Nanocomposites Powder by Mechanochemical Reaction between Al, B_2O_3 and Ti. Advanced Powder Technology. doi:10.1016/j.apt.2010.07.010
    140 J. Jung, S. Baik. Combustion Synthesis of AlON-BN Composites under Low Nitrogen Pressure. Journal of American Ceramic Society. 2007,90(10): 3063-3069
    141 L.L. Wang, Z.A. Munir, Y.M. Maximov. Review Thermite Reactions: Their Utilization Synthesis and Processing of Materials. Journal of Materials Science. 1993(28):3693-3708
    142 D.M. Zhang, Y.J. Li, L.M. Zhang, J.K. Guo. Aluminum Borate Whiskers Growing by Compensation of TiB2. Key Engineering Materials. 2006,313: 115-120
    143 H.D. Song, J.J. Luo, M.D. Zhou, E. Elssfah, J. Zhang, J. Lin, S.J. Liu, Y. Huang, X.X. Ding, J.M. Gao, C.C. Tang. Multilayer Quasi-Aligned Nanowire Webs of Aluminum Borate. Crystal Growth & Design. 2007,7(3):576-579

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700